长方体和正方体的体积PPT课件
合集下载
长方体正方体体积计算-完整版课件

长方体、正方体体积计算(2)
11
底面
底面
长方体和正方体底面的面积,叫作它们的底面积。
怎样计算长方体和正方体的底面积?
长方体的底面积=长×宽 正方体的底面积=棱长×棱长
想一想,长方体和正方体体积还可以怎样计算? 长方体(或正方体)的体积=底面积×高
11
底面
底面
长方体和正方体底面的面积,叫作它们的底面积。
长方体(或正方体)的体积=底面积×高 你能说说这个公式是怎样得到的吗?
如果用S表示底面积,上面的公式可以写成: V=Sh
1.先计算长方体和正方体的底面积,再计算它们的体积。
20×16=320(m2) 320×10=3200(m3)
5×5=25(m2) 25×5=125(m3)
2.一个长方体的底面积是15平方厘米,高6厘米。求它的体积。
15×6=90(立方厘米) 答:它的体积是90立方厘米。
3.一根长方体木料,长3米,横截面是一个 边长0.3米的正方形。这根木料的横截面面 积是多少平方米?体积是多少立方米?
0.3×0.3=0.09(平方米) 0.09×3=0.27(立方米) 答:这根木料的横截面面积是0.09Байду номын сангаас方米, 体积是0.27立方米。
11
底面
底面
长方体和正方体底面的面积,叫作它们的底面积。
怎样计算长方体和正方体的底面积?
长方体的底面积=长×宽 正方体的底面积=棱长×棱长
想一想,长方体和正方体体积还可以怎样计算? 长方体(或正方体)的体积=底面积×高
11
底面
底面
长方体和正方体底面的面积,叫作它们的底面积。
长方体(或正方体)的体积=底面积×高 你能说说这个公式是怎样得到的吗?
如果用S表示底面积,上面的公式可以写成: V=Sh
1.先计算长方体和正方体的底面积,再计算它们的体积。
20×16=320(m2) 320×10=3200(m3)
5×5=25(m2) 25×5=125(m3)
2.一个长方体的底面积是15平方厘米,高6厘米。求它的体积。
15×6=90(立方厘米) 答:它的体积是90立方厘米。
3.一根长方体木料,长3米,横截面是一个 边长0.3米的正方形。这根木料的横截面面 积是多少平方米?体积是多少立方米?
0.3×0.3=0.09(平方米) 0.09×3=0.27(立方米) 答:这根木料的横截面面积是0.09Байду номын сангаас方米, 体积是0.27立方米。
《长方体和正方体的体积》PPT课件

计算
43
10 3
0.13
103=10×10×10 =1000
43=4×4×4 =64
0.13=0.1×0.1 ×0.1=0.001
5分米 3分米
5分米 7分米
一个长方体水箱,长7分米,宽5分米,水深3分米。把一个铁球浸 没在水中,水面升高到5分米。这个铁球的体积是多少立方分米?
★解法一:
7×5 ×5-7 ×5 ×3 =175 -105 =70(立方分米)
3厘米
1厘米
2厘米
2×1×3 = 2 ×3 = 6(立方厘米)
8
6厘米
4厘米
2厘米
4×2×6 = 8 ×6 = 48(立方厘米)
本课小结
今天你有哪些收 获?说说你学到了哪 些知识?
今天的课堂作业书本习题第5、 6、7、8题
谢谢大家!
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
1.什么叫做体积?
答:物体所占空间的大小叫 做物体的体积。
2.常用的体积单位有哪些?
答:常用的体积的体积单位有 “立方厘米(cm3)、 立方 分米(dm3)、立方米(m3)。
观察表格中这些长方体的 长、宽、高以及它们的体 积,再联系刚才数出它们 体积的过程,你能发现什 么?
长方体的体积(所含的体积单位 数)正好是长、宽、高的乘积。
答:这个铁球的体积是70立方分米。
★解法二
7×5 ×(5-3) =35 ×2 =70(立方分米)
答:这个铁球的体积是70立方分米。
看谁想得快?
判断题 1、一个长方体被切割成两个小长方体, 它的表面积和体积都没有改变。( × )
2、一个长方体,长、宽、高都扩大2 倍,体积也扩大2倍。( ×)
43
10 3
0.13
103=10×10×10 =1000
43=4×4×4 =64
0.13=0.1×0.1 ×0.1=0.001
5分米 3分米
5分米 7分米
一个长方体水箱,长7分米,宽5分米,水深3分米。把一个铁球浸 没在水中,水面升高到5分米。这个铁球的体积是多少立方分米?
★解法一:
7×5 ×5-7 ×5 ×3 =175 -105 =70(立方分米)
3厘米
1厘米
2厘米
2×1×3 = 2 ×3 = 6(立方厘米)
8
6厘米
4厘米
2厘米
4×2×6 = 8 ×6 = 48(立方厘米)
本课小结
今天你有哪些收 获?说说你学到了哪 些知识?
今天的课堂作业书本习题第5、 6、7、8题
谢谢大家!
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
1.什么叫做体积?
答:物体所占空间的大小叫 做物体的体积。
2.常用的体积单位有哪些?
答:常用的体积的体积单位有 “立方厘米(cm3)、 立方 分米(dm3)、立方米(m3)。
观察表格中这些长方体的 长、宽、高以及它们的体 积,再联系刚才数出它们 体积的过程,你能发现什 么?
长方体的体积(所含的体积单位 数)正好是长、宽、高的乘积。
答:这个铁球的体积是70立方分米。
★解法二
7×5 ×(5-3) =35 ×2 =70(立方分米)
答:这个铁球的体积是70立方分米。
看谁想得快?
判断题 1、一个长方体被切割成两个小长方体, 它的表面积和体积都没有改变。( × )
2、一个长方体,长、宽、高都扩大2 倍,体积也扩大2倍。( ×)
长方体正方体表面积和体积ppt(共21张PPT)

长方体的体积=长×宽×高 V=abh
长方体的体积=长×宽×高
=底面积×高
V=Sh
正方体的体积=长×宽×高 =棱长×棱长×棱长
V=a3
长=a
高=h 宽=b
第三节 长方体正方体的体积
习题:
1、求下列图形的体积。
3
第长二方节 体上面(长或方下体面正)方的体面的积表=面长积×宽
长做方一体 个或如正图方所体示6的个长面方的体总纸面盒积,,长叫6厘做米它,的宽表5面厘积米。,高4 厘米,至少要用多少平方厘米硬纸板?
4面第5×积三24、是 节=2_0光_(_平_明方_长_厘纸_3方_米_体盒_)正__厂方__体生__的_产_体_;积一1 种正方形1纸2 板箱,棱长是8分米,体积是多少立方分米?
=棱上长面是积1d+m下的面正积方+前体面,积体+积后是面1积d+m左3 面;积+右面积=30 ×2 +24 ×2 +20 ×2 =148(平方厘米)
第三节
长方体正方体的体积
需要引入的概念
计算体积,常用到的体积单位:立方厘米,立方分米,立方米,也可以写成:cm3,dm3,m3
棱长是1cm的正方体,体积是1 cm3 ;
棱长是1m的正方体,体积是1m3
一个手指尖的体积大约是1 cm3
可以用3根1m的木条做成一个互 成直角的架子,放到墙角,看看 体积为1 m3 是多大哦!
4cm 5 第棱二长节 是1dm的长正方方体体正,方体体积的是表1面d积m3 ;
dm
8cm 第5×一4节=20(平方回厘米顾)
第做三一节 个如图所长示方的体长正方方体体纸的盒体,积长6厘米,宽5厘米,高4 厘米,至少要用多少平方厘米硬纸板?
长方体的体积=长×宽×高
=底面积×高
V=Sh
正方体的体积=长×宽×高 =棱长×棱长×棱长
V=a3
长=a
高=h 宽=b
第三节 长方体正方体的体积
习题:
1、求下列图形的体积。
3
第长二方节 体上面(长或方下体面正)方的体面的积表=面长积×宽
长做方一体 个或如正图方所体示6的个长面方的体总纸面盒积,,长叫6厘做米它,的宽表5面厘积米。,高4 厘米,至少要用多少平方厘米硬纸板?
4面第5×积三24、是 节=2_0光_(_平_明方_长_厘纸_3方_米_体盒_)正__厂方__体生__的_产_体_;积一1 种正方形1纸2 板箱,棱长是8分米,体积是多少立方分米?
=棱上长面是积1d+m下的面正积方+前体面,积体+积后是面1积d+m左3 面;积+右面积=30 ×2 +24 ×2 +20 ×2 =148(平方厘米)
第三节
长方体正方体的体积
需要引入的概念
计算体积,常用到的体积单位:立方厘米,立方分米,立方米,也可以写成:cm3,dm3,m3
棱长是1cm的正方体,体积是1 cm3 ;
棱长是1m的正方体,体积是1m3
一个手指尖的体积大约是1 cm3
可以用3根1m的木条做成一个互 成直角的架子,放到墙角,看看 体积为1 m3 是多大哦!
4cm 5 第棱二长节 是1dm的长正方方体体正,方体体积的是表1面d积m3 ;
dm
8cm 第5×一4节=20(平方回厘米顾)
第做三一节 个如图所长示方的体长正方方体体纸的盒体,积长6厘米,宽5厘米,高4 厘米,至少要用多少平方厘米硬纸板?
长方体和正方体的体积ppt课件

理解体积的概念
体积的概念
体积是指物体所占空间的大小,是三维空间的一个量度。对 于长方体和正方体,体积是指其内部空间的大小。
体积的单位
体积的国际单位是立方米,常用的单位还有立方厘米、立方 分米等。
掌握体积的计算方法
长方体体积的计算
长方体的体积可以通过其长、宽、高 的乘积计算得出,即体积 = 长 × 宽 × 高。
长方体和正方体的体积
目录
• 长方体和正方体的定义 • 长方体和正方体的体积公式 • 体积公式的应用 • 体积公式的推导 • 体积公式的理解与掌握
01
长方体和正方体的定义
长方体的定义
总结词
长方体是一个六面体,其中相对的面都是矩形。
详细描述
长方体的每个面都是矩形,其中相对的两个矩形面相等,并且三个矩形面两两 垂直。长方体的长度、宽度和高度分别用$l$、$w$和$h$表示。
04
体积公式的推导
长方体体积公式的推导
计算长方体的体积
V = l × w × h。
推导过程
长方体的体积等于其底面积乘以高,即V = l × w × h。
正方体体积公式的推导
计算正方体的体积:V = a^3。 推导过程:正方体的体积等于其边长的三次幂,即V = a^3。
05
体积公式的理解与掌握
应用
在计算实际生活中如冰 箱、箱子等物体的体积 时,可以使用长方体的 体积公式进行计算。
计算正方体的体积
01
02
03
公式
正方体的体积 = 边长 × 边长 × 边长 或 边长³
实例
一个正方体的边长为4cm ,则其体积 = 4cm × 4cm × 4cm = 64cm³
应用
《长方体和正方体的体积》ppt课件

06 课堂小结与回顾
关键知识点总结
长方体和正方体的体积公式
长方体的体积V=a×b×c,正方体的体积V=a^3,其中a、 b、c分别为长方体的长、宽、高,a为正方体的棱长。
体积单位的认识与换算
常见的体积单位有立方厘米(cm³)、立方分米(dm³)、立方 米(m³)等,需掌握各单位之间的换算关系。
实际问题的应用
提出改进方案
03
针对可能出现的误差,提出相应的改进方案,如提高测量精度、
使用更精确的计算方法等。
05 拓展延伸:不规则物体体 积估算方法
排水法原理及应用
原理
将不规则物体完全浸没于水中,通过计算物体排开水的体积来估 算物体的体积。
应用
适用于易溶于水或与水发生反应的物体以外的任何不规则物体。 如石块、金属块等。
公式应用注意事项
单位统一
在应用公式计算体积时,需要确 保长度、宽度和高度的单位统一,
避免出现错误结果。
公式适用范围
长方体和正方体的何体需要采用其他方
法进行计算。
公式变形应用
在实际应用中,可以根据需要对 公式进行变形,如已知体积和其
中两个维度求第三个维度等。
体积单位换算
1立方米=1000立方分米,1立 方分米=1000立方厘米。
实物体积感受
常见物体体积
列举生活中常见物体的体积,如 一个苹果的体积约为200立方厘米, 一个电冰箱的体积约为0.5立方米
等。
体积比较
通过比较不同物体的体积大小,让 学生感受体积的概念。
体积估算
通过估算物体的体积,培养学生的 空间想象力和估算能力。
02 长方体和正方体认识
长方体特点与性质
01
02
长方体与正方体的体积课件(28张PPT)

棱长 a
棱长 a
a 棱长
长方正体方的体体的积体积==长 ×棱长宽 ×× 高棱长 × 棱长
a3读作a的立方,或a的3次方。
a a
a
V=a×a×a =a3
a3 表示3个a相乘。
3a
a
a
a
3a 表示3个a相加。
例2.求正方体的体积
2dm
解:V=a3 =2×2×2 =8(dm3)
答:它的体积是8dm3。
3cm 6cm 4cm
6 × 4 × 3 =72(cm3)
3.5cm 6cm 4cm
6 × 4 × 3.5 =84(cm3)
v
. h 高 宽b 长a 长方体的体积=长×宽×高
例1.求长方体的体积4cm源自10cm2.5cm
解:V=abh =10×2.5×4 =100(cm3)
答:它的体积是100cm3。
2.基础练习
(1)有一个长方体饼干包装盒,长15厘米,宽4厘米,
高8厘米。它占多大空间?
解:V=abh =15×4×8 =480(cm3)
答:它的体积是480cm3。
(2)一个魔方,棱长7厘米,体积是多少?
解:V=a3 =7×7×7 =343(cm3)
答:它的体积是343cm3。
3.我是小老师:
从前往后数, 前面有4×3=12个, 有2排, 一共有4×3×2=24(个), 体积是24cm3。
从右往左数,右面有2×3=6个, 有4列, 一共有2×3×4=24(个), 体积是24cm3。
4×2×3=24(个)
4×3×2=24(个) 3 2×3×4=24(个)
4表示每排摆4个,
2
2表示摆2排,
我来总结:
这节课我学会了什么本领? 是怎么学会的? 还有什么疑问?
《长方体和正方体的体积》精品PPT课件

课程目标
掌握长方体和正方体 的体积计算公式。
培养学生的空间观念 和几何直觉,提高解 决几何问题的能力。
能够运用公式解决实 际问题,如计算容积、 体积等。
02
长方体的体积
长方体的定义
总结词
长方体的定义
详细描述
长方体是一种三维图形,由六个矩形面组成,相对的两个面完全相同。它的三 个边分别是长度、宽度和高度。
06
总结与回顾
本节课的重点回顾
计算长方体和正方体的体积公式 掌握长方体和正方体的体积计算方法
理解体积的概念和意义 了解体积单位的应用
本节课的难点解析
如何理解体积的概念 如何正确应用长方体和正方体的体积公式进行计算
如何解决与体积相关的实际问题
下节课预告
学习圆柱体的体积计算方法 了解圆锥体的体积计算公式
《长方体和正方体的 体积》精品ppt课件
• 引言 • 长方体的体积 • 正方体的体积 • 体积的单位和换算 • 练习与巩固 • 总结与回顾
目录
01
引言
课程背景
01
长方体和正方体是生活中常见的 几何形状,了解其体积计算方法 对于解决实际问题具有重要意义 。
02
学生已经学习了长方形和正方形 的面积计算,在此基础上进一步 学习长方体和正方体的体积计算 有助于巩固几何知识体系。
学习如何解决与立体几何相关的实际问题
感谢观看
THANKS
体积计算公式
正方体的体积可以通过其 棱长的三次方来计算,即 V = a^3,其中a是正方体 的棱长。
公式推导
正方体的体积可以通过其 底面积和高的乘积来推导, 即 V = a^2 × a = a^3。
单位换算
正方体的体积单位通常是 立方单位,如立方米、立 方厘米等,根据需要可以 进行单位换算。
长方体和正方体的体积 (PPT课件)

长方体和正方体的体积计算
复习: 1、_物_体__所__占__空__间_的__大__小__叫做物体 的体积。
2、常用的体积单位有:_立_方__厘__米__、 __立__方_分__米___、 ___立_方__米___ 。
1cm³
9cm³
8cm³
自学指导: 小组合作摆出不同的长方体并在
书(41页)中做好记录,摆好后仔 细观察,思考:你发现了什么?想 好后在组内交流。
1、一块砖的长是24厘米,宽是长的 一半,厚是6厘米,它的体积是多少 立方厘米?
2、一个正方体魔方的棱长总和是36 厘米,它的体积是多少立方厘米?
( 2 )一个正方体棱长是2分米,它的体
积是:2³=6(立方分米)。 ( × )
( 3 )一个长方体,长5分米,宽4分米,高3
分米,它的体积是60分米 。 ( × )
( 4)一个正方体棱长6cm,它的体积和
表面积相等。
(× )
4、建筑工地要挖一个长50m,宽 30m,深50cm的长方体土坑,挖
方 出多少 的土?在工程上,“1m³”的土沙、石
等均简称“1方”(1m³=1 方)
5、妈妈送奶奶的生日蛋糕长2dm,宽 2dm,高0.6dm,奶奶把它平均分成4 块,每人分到多大一块蛋糕?
作业:
1、一个长方体长2分米,宽2分米, 高0.6分米,它的体积是多少立方分 米?
2、一个棱长3厘米的正方体橡皮它 的体积是多少立方厘米?
当堂作业
请同学们 审题认真 书写规范
1cm,体积是( 8 )立方厘米。
3、一个正方体的棱长是3分米,它的体 积是( 27 )立方分米。
43页 2、计算下面长方体和正方体的体积。
做一做
4cm 5dm
复习: 1、_物_体__所__占__空__间_的__大__小__叫做物体 的体积。
2、常用的体积单位有:_立_方__厘__米__、 __立__方_分__米___、 ___立_方__米___ 。
1cm³
9cm³
8cm³
自学指导: 小组合作摆出不同的长方体并在
书(41页)中做好记录,摆好后仔 细观察,思考:你发现了什么?想 好后在组内交流。
1、一块砖的长是24厘米,宽是长的 一半,厚是6厘米,它的体积是多少 立方厘米?
2、一个正方体魔方的棱长总和是36 厘米,它的体积是多少立方厘米?
( 2 )一个正方体棱长是2分米,它的体
积是:2³=6(立方分米)。 ( × )
( 3 )一个长方体,长5分米,宽4分米,高3
分米,它的体积是60分米 。 ( × )
( 4)一个正方体棱长6cm,它的体积和
表面积相等。
(× )
4、建筑工地要挖一个长50m,宽 30m,深50cm的长方体土坑,挖
方 出多少 的土?在工程上,“1m³”的土沙、石
等均简称“1方”(1m³=1 方)
5、妈妈送奶奶的生日蛋糕长2dm,宽 2dm,高0.6dm,奶奶把它平均分成4 块,每人分到多大一块蛋糕?
作业:
1、一个长方体长2分米,宽2分米, 高0.6分米,它的体积是多少立方分 米?
2、一个棱长3厘米的正方体橡皮它 的体积是多少立方厘米?
当堂作业
请同学们 审题认真 书写规范
1cm,体积是( 8 )立方厘米。
3、一个正方体的棱长是3分米,它的体 积是( 27 )立方分米。
43页 2、计算下面长方体和正方体的体积。
做一做
4cm 5dm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用下面每排的个数乘摆的排 数,再乘摆的层数。
每排摆的个数与长,摆的 排数与宽,摆的层数与高 有什么关系?
长 宽 高 用小正方 长方体的体积 长方体 (cm)(cm)(cm) 体的个数 (cm3 )
1
44 33 11 12
12
2
44 22 22 16
16
长 宽 高 用小正方 长方体的体积 长方体 (cm)(cm)(cm) 体的个数 (cm3 )
5cm
1
44 33 11 12
12
2
3
4444 2323 2222
16 24
16 24
观察下表,思考:1、摆的长方体的体积数与所用正方体 的个数有什么关系?
2、长与下面每排摆的个数、宽与下面的排数、 高与摆的层数有什么关系?
3、所用的正方体个数怎么算?
4、你能说说怎么求长方体的体积吗?
长方体
长宽高 (cm)(cm)(cm)
想一想:
1、什么叫体积? 2、常用的体积单位有哪些? 3、你能用数方块的方法数出下面长方体或正方体 的体积吗?(每个小正方体的体积是1cm3。)
6cm3
12cm3
如果一个长方体不是用小正方体摆成的,如 下图,那该怎么办呢?
4cm
8cm
3cm
你们想知道求长方体的体积公式吗?
它的意思是——从书本上学来的总是感觉浅 显,要想真正的掌握它,那还是要亲自去对 比着做做看,才能真正领会其中的奥秘。
用小正方 体的个数
长方体的体积 (cm3 )
1
44 33 11 12
12
2 3
4444 2323 2222
16 24
16 24
4
33 33 22 18
18
长方体的体积计算公式是: 长方体的体积= 长×宽×高
如果长用字母ɑ,宽用字母b,高用字母 h,体积用字母V来表示,你能用字母表 示长方体的体积公式吗?
如果用字母字母V表示体积,用 ɑ表示棱长, 正方体的体积公式可
棱长 ɑ 以怎么写?
棱长 ɑ 棱长 ɑ V=ɑ·ɑ·ɑ 或V=ɑ3 读作“ɑ的立
方”
例2
一块正方体石料,棱长是6dm,它 的体积是多少?
V=ɑ3 =63 =6×6×6 =216立方分米
答:它的体积是216立方分米。
4cm
8cm
3cm
4㎝, 高是3cm。它的体积是多少?
V=ɑbh
=7×4×3 =84(立方厘米) 答:它的体积是84立方厘米。
长、宽、高 都相等 的长方体是正方体。每条 棱的长度叫做 棱长 。 那你根据长方体的体积公式写出正方体的 体积计算公式吗?
正方体的体积= 棱长×棱长×棱长
3
说出每排的个数,摆的排数,摆的层数。怎么能很 快数出正方体的个数?
用每排的个数乘摆的排数乘层数。
每排摆的个数与长,摆的排数与 宽、摆的层数与高有什么关系?
长 宽 高 用小正方 长方体的体积 长方体 (cm) (cm) (cm) 体的个数 (cm3 )
1
44 33 11 12
12
这次你又是怎么很快数出 正方体的个数?