三向地震波的合理选取和人工定义
地震波的定义

地震波的定义地震波的定义地震是地壳的一切颤动,是一种自然现象。
其主要能源来自地球的内部,是由地球内部自然力冲击引起的。
地壳或地幔中发生振动的地方称为震源。
震源在地面上的垂直投影称为震中。
震中到震源的距离称为震源深度。
地震波是指从震源产生向四外辐射的弹性波。
地球内部存在着地震波速度突变的基干界面、莫霍面和古登堡面,将地球内部分为地壳、地幔和地核三个圈层。
发生原理英文seismic wave.由地震震源发出的在地球介质中传播的弹性波。
地球内地震波部存在着地震波速度突变的基干界面、莫霍面和古登堡面,将地球内部分为地壳、地幔和地核三个圈层。
地震震源发出的在地球介质中传播的弹性波。
地震发生时,震源区的介质发生急速的破裂和运动,这种扰动构成一个波源。
由于地球介质的连续性,这种波动就向地球内部及表层各处传播开去,形成了连续介质中的弹性波。
概念介绍地震波是指从震源产生向四外辐射的弹性波。
地球内部存在着地震波速度突变的基干界面、莫霍面和古登堡面,将地球内部分为地壳、地幔和地核三个圈层。
传播方式地震波按传播方式分为三种类型:纵波、横波和面波[1]。
纵波是推进波,地壳中传播速度为5.5~7千米/秒,最先到达震中,又称P波,它使地面发生上下振动,破坏性较弱。
横波是剪切波:在地壳中的传播速度为3.2~4.0千米/秒,第二个到达震中,又称S波,它使地面发生前后、左右抖动,破坏性较强。
面波又称L波,是由纵波与横波在地表相遇后激发产生的混合波。
其波长大、振幅强,只能沿地表面传播,是造成建筑物强烈破坏的主要因素。
纵波和横波现象介绍我们最熟悉的波动是观察到的水波。
当向池塘里扔一块石头时水面被扰乱,以石头入水处为中心有波纹向外扩展。
这个波列是水波附近的水的颗粒运动造成的。
然而水并没有朝着水波传播的方向流;如果水面浮着一个软木塞,它将上下跳动,但并不会从原来位置移走。
这个扰动由水粒的简单前后运动连续地传下去,从一个颗粒把运动传给更前面的颗粒。
三向地震波的合理选取和人工定义分解

19.5。动力弹塑性分析方法
动力弹塑性分析方法的特点
将罕遇地震作用以较为真实的加速度时程方式进行输入。 考虑结构的弹塑性性质。 对结构没有过多限制其应用范围的基本假定,适用范围 广泛,可以认为是一种仿真分析方法。 多条地震波分析时,计算时间相对较长。 选取不同的地震波进行分析时,计算结果可能差别较大, 需要使用者进行合理罕遇地震下三种薄弱层弹塑性变形 验算方法及其适用范围
19.1。弹塑性分析目的、意义 19.2。弹塑性分析的规范规定 19.3。简化弹塑性分析方法及适用范围 19.4。静力弹塑性分析方法 19.5。动力弹塑性分析方法
19.1。弹塑性分析目的、意义
三水准设防中的“大震不倒” 。 两阶段设计中的“第二阶段弹塑性变形验算”。 强震下变形验算的基本问题:计算和确定薄弱层位移 反应和变形能力;通过改善结构均匀性、加强薄弱层 和薄弱部位使得层间位移角满足弹塑性变形验算限值 要求。
19.4。静力弹塑性分析方法
抗倒塌分析图
静力弹塑性分析方法的特点
静力弹塑性分析方法是将动力地震作用静力化的一种罕 遇地震分析方法。 考虑结构的弹塑性性质。 较动力弹塑性分析方法能一定程度上节省计算时间。 通过静力推覆分析过程可以了解结构的抗倒塌能力。 通过能力谱方法可以得到结构的罕遇地震下最大弹塑性 位移角。 能力谱方法存在“以第一振型振动为主、结构可以等效 为单自由度体系”等前提假定,能否适用于超高层结构 仍然需要探讨;但推覆分析过程有一定的普适性。
选取地震波
实测地震波——特征参数
实测地震波——反应谱
规准加速度谱
3.69
周期(秒)
1
2
3
4
5
6
实测地震波——东南向40度作用
地震波描述

1.1设计加速度过程线依据GB18306-2001《中国地震动参数区划图》,50年超越概率为10%时,工程区地震动峰值加速度为0.15 g,地震动反应谱特征周期为0.45 s,相应地震基本烈度为7度。
场地土属中软场地土,场地类别为Ⅱ类。
根据(DL5073-2000)《水工建筑物抗震设计规范》的规定,本工程壅水建筑物抗震设防类别为乙类,设计烈度按7度取。
参考工程地质报告,本课题选取美国Taft地震波、人工地震波与实测地震波共三条地震波进行分析。
Taft地震波,1952年7月21日发生于美国的加利弗里亚州地震(California Earthquake,震级7.4级),是位于加州Kern County林肯学校的No.1095地震台测得的地震记录,该记录地距震中约43.5 km。
地震仪设于学校附近一隧洞混凝土地板上,测得完整的三向地震波,记录长达54 s,最大地震加速度175.9 cm/s2,最大速度17.7 cm/s,最大位移9.15 cm。
Taft 地震波由于记录完整、数据可靠,在国际地震工程界被广泛引用。
本报告中将其峰值加速度调整至0.15 g得到设计地震加速度过程线进行动力反应分析,通过SHAKE91程序反演后,坝基水平向基岩地震波峰值为0.12 g,竖直向基岩地震波峰值为0.08 g。
横河向、顺河向和竖直向输入加速度之比为3:3:2。
计算地震时长20 s,时间步长为0.02 s,各方向地震波时程如图1.1-1至图1.1-3所示。
人工地震波,是根据《水工建筑物抗震设计规范》选取规范标准反应谱为目标谱生成。
人工波生成时,迭代误差取为5%,其中特征周期Tg按照基岩场地取0.3 s,反应谱最大值的代表值βmax取为2,设计加速度代表值为0.15 g。
由此得到设计地震加速度过程线进行动力反应分析,通过SHAKE91程序反演后,坝基水平向基岩地震波峰值为0.12 g,竖直向基岩地震波峰值为0.08 g。
地震勘探原理知识点总结讲解

第三章地震资料采集方法与技术一.野外工作概述1.陆地石工基本情况介绍试验工作内容:①干扰波调查,了解工区内干扰波类型与特性。
②地震地质条件调查,了解低速带的特点、潜水面的位置、地震界面的存在与否、地震界面的质量如何(是否存在地震标志层)、速度剖面特点等。
③选择激发地震波的最佳条件,如激发岩性、激发药量、激发方式等。
④选择接收和记录地震波的最佳条件,包括最合适的观测系统、组合形式和仪器因素的选择等。
生产工作过程:地震队的组成(1)地震测量:把设计中的测线布置到工作地区,在地面上定出各激发点和接收排列上各检波点的位置(2)地震波的激发陆上地震勘探的震源类型:炸药震源和可控震源。
激发方式:炸药震源的井中激发、土坑等。
激发井深:潜水面以下1-3m,(6-7m)。
(3)地震波的接收实现方式:检波器、排列和地震仪器2.调查干扰波的方法(1)小排列(最常用)3-5m道距、连续观测目的:连续记录、追踪各种规则干扰波,分析研究干扰波的类型和分布规律。
从地震记录中可以得到干扰波的视周期和视速度等基本特征参数(2)直角排列适用于不知道干扰波传播方向的情况Δt1和Δt2的合矢量的方向近似于干扰波的传播方向(3)三分量检波器观测法(4)环境噪声调查信噪比:有效波的振幅/干扰波的振幅(规则)信号的能量/噪声的能量3.各种干扰波的类型和特点(1)规则干扰指具有一定主频和一定视速度的干扰波,如面波、声波、浅层折射波、侧面波等。
面波(地滚波):在地震勘探中也称为地滚波,存在于地表附近,振幅随深度增加呈指数衰减。
其主要特点:①低频:几Hz~20Hz;②频散(Dispersion):速度随频率而变化;③低速:100m/s ~1000m/s,通常为200m/s~500m/s;④质点的振动轨迹为逆时针方向的椭圆。
面波时距曲线是直线,记录呈现“扫帚状”,面波能量的强弱与激发岩性、激发深度以及表层地震地质条件有关。
(能量较强)声波:速度为340m/s左右,比较稳定,频率较高,延续时间较短,呈窄带出现。
三分量地震采集方1

三分量地震采集方1三分量地震采集方法一、概述1、开展多波多分量勘探的目的和意义多波多分量勘探又称为矢量勘探,是指综合利用纵横波震源和多分量检波器对各种波场进行观测,以揭示更多的地下构造、岩性和油气信息的勘探技术。
三分量地震勘探一般指利用纵波激发,采用三分量检波器记录一个纵向分量和两个横向分量的技术方法。
随着油气勘探的逐步深入,大庆探区的油气勘探与开发中需要解决的地质问题越来越复杂,如对松辽盆地复杂构造和复杂岩性气藏、中浅层薄互层岩性油藏、深层火山岩气藏、海拉尔古潜山裂缝性油藏等复杂目标的勘探等,这些地区常规地震数据的成像质量、分辨率,探测地下岩性、流体和各向异性的能力已无法满足复杂地质目标勘探的要求。
解决这些复杂问题,仅仅依靠纵波已经难以解决,必须采用综合物探技术方法。
国内外大量实例表明,多波多分量地震勘探能有效推动复杂地质问题的解决。
同样,在油气田开发过程中增加转换波信息也可以更好地描述油气藏、刻画油气藏动态。
在兴城地区开展三分量地震勘探试验是针对松辽盆地北部中浅层砂泥薄互层及深层火山岩等复杂勘探目标的特点,在充分吸收、消化国内外已有技术的基础上,通过现场试验,一是探讨利用数字检波器采集的三分量地震资料进一步提高葡萄花油层、扶杨油层分辨率的潜力,二是探索利用数字检波器采集的三分量地震资料识别营城组、登楼库组及泉头组储层和储层含气性有效预测的潜力,形成一套有效和实用的多分量地震资料采集、处理、解释等方法和相应的技术流程,提高储层岩性识别以及含油气储层预测的精度,同时,为大庆探区其它地区油气勘探开发进行技术准备。
2、国内外研究现状目前,三分量地震勘探技术在国际上发展迅猛,正成为海上油气田勘探开发阶段必不可少的技术手段,取得了可观的经济效益。
在进行海上多分量地震勘探研究的同时,国外也在开展陆上转换波勘探的研究工作,在理论和实际应用方面对多分量地震勘探技术进行了深入研究,并做了许多工作。
在三分量检波器研制方面,已由动圈式三分量检波器发展到数字检波器。
三分量地震采集方2

保证目的层最大炮检距道经动校后不被切除。
同时还要考虑消除多次波、AVO 必须的炮检距以及电缆最大长度等。
根据纵波、转换波联合观测系统设计理论模型可知,最大炮检距的确定应以转换波为主。
⑶采样间隔与道间距在已知地下速度模型的情况下,可以利用射线追踪的方法来计算道间距。
对于时间采样间隔的选择,应满足时间采样定理:max 21f t ≤∆ (6)其中∆t 表示时间采样间隔,f max 表示信号最大频率。
同理,对于道间距的选择,应满足空间采样定律:2minλ≤∆x (7)其中∆x 表示道间距,λmin 表示信号最小波长。
而λmin 与视波速和最大频率之间具有如下关系:max *min f v =λ (8)上述视速度要采用转换波的视速度;假设目的层的深度为H ,目的层以上介质的纵波等效速度分别为pv ,炮检距为x ,纵波零炮检距时间为0t ,则纵波视速度为:xx H v xv x t v dtdx v p ppp2222202*4+=+== (9)纵波和横波等效速度分别为p v 和s v ,炮检距为x ,纵波单程垂直旅行时为图2 PP 波反射系数(左)和PS 波反射系数(右)与炮检距关系图p t 0,横波单程垂直旅行时为s t 0,转换点到炮点和检波点的距离分别为p x 和s x ,则转换波时距曲线可以表示为:根据转换点的渐进线公式计算视速度为:xx c H v c x c H v c x c H x c H v v v p p s s s p s p s p ps )(22222222222222*+++++=(10)其中p s p p v v v c +=,ps ss v v v c +=其中为ΔS 炮间距,ΔX 为道间距。
⑷ 覆盖次数 在转换波勘探中,由于转换反射点靠近接收点,当炮点移动而检波点不动时,转换点间距小于半个道距,覆盖次数聚焦于大炮检距,即转换反射点靠近检波点。
当炮点不动而检波点移动时,转换点间距大于半个道距,覆盖次数发散于大炮检距。
地震动曲线的选取

地震动曲线的选取全文共四篇示例,供读者参考第一篇示例:地震动曲线是指地震过程中的地震动力学参数随时间变化的曲线图。
地震动曲线的选取是地震工程中非常重要的一环,正确选取地震动曲线可以保证结构设计的准确性和安全性。
本文将介绍地震动曲线的选取方法及其重要性。
一、地震动曲线的选取方法1.根据工程设计要求:根据工程结构的设计要求,选择合适的地震动曲线。
常见的地震动曲线包括速度时间历程、加速度时间历程等,根据具体结构的设计要求来选取合适的地震动曲线。
2.根据地震波特性:地震波的特性也是选择地震动曲线的重要因素。
地震波的震级、地震波形、频谱特性等都会影响到地震动曲线的选择。
根据地震波的特性来选取合适的地震动曲线可以更好地反映地震对结构的影响。
3.根据地震烈度:地震烈度是描述地震破坏性大小的一个重要参数,根据地震烈度的不同,地震动曲线也会有所不同。
在选取地震动曲线时,要根据地震烈度的具体数值来选择合适的地震动曲线。
4.根据地震场地分类:地震场地的分类也是选择地震动曲线的重要依据。
不同地质条件下地震波会有很大差异,根据具体地震场地分类来选择相应的地震动曲线可以更好地反映实际情况。
1.保证结构的安全性:正确选取地震动曲线可以保证结构在地震波作用下的稳定性和安全性。
选取合适的地震动曲线可以更好地评估结构的地震风险,有助于制定合理的抗震设计方案。
2.指导抗震设计:选取合适的地震动曲线可以为结构的抗震设计提供重要参考依据。
地震动曲线可以反映地震波对结构的影响,根据地震动曲线的特性可以更好地调整结构设计参数,提高结构的抗震性能。
3.提高地震评估的准确性:地震动曲线选取的准确性直接影响到地震评估结果的准确性。
正确选取地震动曲线可以更好地反映地震作用下结构的响应情况,为地震风险评估提供更为精准的数据支持。
4.符合规范要求:在抗震设计过程中,地震动曲线的选取也要符合相应的规范要求。
不同的设计规范对地震动曲线的选取有具体规定,要按照规范要求选择合适的地震动曲线进行抗震设计。
三维地震资料解读

第一章概述(原理及方法)第二章三维地震勘探数据采集第三章三维地震勘探数据处理第四章三维地震勘探资料解释物探知识回顾1、应用地球物理、勘察地球物理、地球物理勘探简称物探2、地球物理学:研究地球内外,包含地核、地幔、地壳以及水圈、大气圈及其空间的物理场和物理现象,如地磁、重力、地震、放射性、地电、地球热学、气象等。
广义地球物理学:大气圈地球物理学、水圈地球物理学、固体地球物理学又称狭义地球物理学3、物探含义:用物理方法来勘探地壳上层岩石的构造与寻找有用矿产的一门学科。
它是根据地下岩层在物理性质上(密度、磁性、电性、弹性、放射性等)的差异,通过物理学原理,借用一定的装置和专门的物探仪器测量因岩石物理性质的差异引起的物理场(如电场、重力场、磁场)变化规律及分布状况,通过分析和研究物理场的变化规律,结合有关地质资料推断出地下一定深度范围内地质体的分布规律,为地质勘探、工程勘察、环境调查及地下资源分布规律的研究提供依据。
地球物理勘探是物理学、数学、现代计算机科学和地学结合的边缘科学和最有活力的生长点。
它不同于传统的找矿方式,即通过古生物、岩石矿物性质等确定矿藏。
4、几种重要物探方法重力勘探重力勘探是以地壳中岩矿石等介质密度差异为基础,通过观测与研究天然重力场的变化规律以查明地质构造、寻找矿产、解决工程环境问题的一种物探方法。
它主要用于探查含油气远景区的地质构造、研究深部构造和区域地质构造,与其他物探方法配合,也可以寻找金属矿,近年来重力勘探在城市工程、环境方面也有应用。
磁法勘探磁法勘探是以地壳中岩矿石等介质磁性差异为基础,通过观测与研究天然磁场及人工磁场的变化规律以查明地质构造、寻找矿产的一种物探方法。
它主要用于各种比例尺的地质填图、研究区域地质构造、寻找磁铁矿、勘查含油气构造、预测成矿远景区以及寻找含磁性矿物的各种金属非金属矿床,近年来磁法勘探在城市工程、环境方面主要用于开发区、核电站、大坝选址,寻找沉船、炸弹等金属遗弃物与地下管道,考古等方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
荷载因子-位移曲线,PUSH与ABAQUS的比较
4.5 4 3.5 3 2.5 2 1.5 1 0 50 100 150 200 250 abaqus-rebar×1 abaqus-rebar×2 push-rebar×1 push-rebar×2 push-rebar×5 abaqus-rebar×5
19.2。弹塑性分析的规范规定
《建筑抗震设计规范》GB 50011-2001 《高层混凝土结构技术规程》JGJ 3-2002 《高层民用建筑钢结构技术规程》JGJ99-98
《建筑抗震设计规范》
3.4.3条 竖向不规则结构应(宜)进行弹塑 性变形分析 3.6.2条 弹塑性分析可以根据具体情况采用 弹塑性静力、时程、简化方法 5.5.2条 何种结构需要进行弹塑性变形验算 5.5.3条 弹塑性变形验算方法 5.5.4条 弹塑性分析的简化方法 5.5.5条 弹塑性层间位移角限值
荷载因子-位移曲线,PUSH与ABAQUS的比较
1.2 1 0.8 0.6 0.4 0.2 0 0 100 200 300 400 500
荷载因子-位移曲线,PUSH与ABAQUS的比较
1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1 0 50 100 150
abaqus PUSH
新抗震规范5.5.3条规定,罕遇地震下薄弱层(部位)弹塑 性变形验算可采用下列方法: “不超过12层且层刚度无突 变的钢筋混凝土框架结构、单层钢筋混凝土柱厂房可采用 5.5.4条的简化计算方法。” 新抗震规范5.5.4条规定的简化弹塑性分析方法包含两方面 内容: 薄弱层按照楼层区分强度系数确定。 弹塑性层间位移角由罕遇地震弹性层间位移角折减得到。 可以看出,简化的弹塑性分析方法: 有明确的适用范围,超出此范围不能采用。 薄弱层的判断和相应弹塑性层间位移角的确定均是估算结 果。
PUSH软件主要参数说明
荷载类型:有倒三角形和矩形两种选择,通常可以选择 倒三角形。 基底剪力与总重量的比值:通过该参数定义侧向荷载的 总和,比如填0.5意思是侧向荷载总量最大可以施加到 50%的结构总重量。 荷载方向与X轴的夹角:一次静力弹塑性分析只在一个 方向上施加侧向荷载,该荷载的方向通过荷载正向与X 轴正向的夹角决定。单位度。 从头运行和接力运行:PUSH软件具有重启动功能。通 过该功能可以接力原来的计算结果进行连续计算。 停机控制:配合重启动功能进行计算步数选择。
19.5。动力弹塑性分析方法
动力弹塑性分析方法的特点
将罕遇地震作用以较为真实的加速度时程方式进行输入。 考虑结构的弹塑性性质。 对结构没有过多限制其应用范围的基本假定,适用范围 广泛,可以认为是一种仿真分析方法。 多条地震波分析时,计算时间相对较长。 选取不同的地震波进行分析时,计算结果可能差别较大, 需要使用者进行合理的判断。
σ(压) E0
强化
σ(压) σc 弱化 ε(压) 退化斜率 退化起始界
ε(压) σt εc 三线性模型 εu
σt
εc 双线性模型
εu
混凝土本构关系模型
“塑性铰判断方法”:给出了“弹性积分点比例”和“截面 刚度退化比例”两种判断杆系构件的塑性铰的方法。“弹性 积分点比例”方法是按照构件截面的积分点仍然保持弹性的 比例来判断构件的端部是否出现塑性铰。“截面刚度退化比 例”是按照结构进入弹塑性状态后的杆端截面刚度与初始截 面刚度的比值来判断构件是否形成塑性铰。
PCG解线性方程 多种解动力微分方程方法 多种解非线性方程方法
方程解法
接力SATWE、PMSAP程序,适用的结构类型广 泛
弹塑性动力时程分析参数选择
EPDA软件主要参数说明
“地震波作用方向角 (度)”:地震波主方向与结构 X轴夹角, 如用户希望地震波主方向作用沿着 Y 轴方向,此处应添 “90”。 “主分量峰值加速度 (cm/s2)”:地震烈度对应的罕遇地震 主方向峰值加速度。 “次分量峰值加速度 (cm/s2)”:地震烈度对应的罕遇地震 次方向峰值加速度。 “竖直分量峰值加速度 (cm/s2)”:地震烈度对应的罕遇地 震竖直方向峰值加速度。 “混凝土本构关系类型”:用户可以选择“双线性模型” 和“三线性模型”两种混凝土本构关系。
新抗震规范5.1.2条规定,“围的高层建筑,应采用时程分 析法进行多遇地震下的补充计算”,“采用时程分析法 时,应按建筑场地类别和设计地震分组选用不少于两组 的实际强震记录和一组人工模拟的加速度时程曲线”。
地震波与反应谱应在“统计意义上相符”。 时程分析法单波和平均值的底部剪力应不小于按反应谱 方法得到的底部剪力的“65%”和“80%”等限值。 新抗震规范5.5.3条规定,除可以采用简化方法计算外的 建筑结构,可采用静力弹塑性分析方法或弹塑性时程分 析方法。
加速度 方向:VERT,记录时长:40.00秒
时间(秒)
保留的旧版地震波库
18.3。如何人工定义地震波
在当前的工程目录下建立相应的地震波文件。 文件名应采用“ USER”加上“ 1”或“ 2”或其他阿拉伯数 字。 使用“.X”、“.Y”和“.Z”文件后缀给出主方向、次方向 和竖向所对应的地震波波形。如果用户给出了无后缀的 文件,则认为该文件中的内容为主方向的地震波波形。 例 如 “ USER1” 、 “ USER2.X” 、 “ USER2.Y” 、 “USER2.Z”等文件名都是合法的。 文件中第一行输入用户地震波步数N;在第2~第N+1行写 入地震波加速度值,单位任意,但要一致。
三向地震波的合理选取和人工定义
18.1。时程分析与三向地震波 18.2。三向地震波的合理选取 18.3。如何人工定义地震波
18.1。 时程分析与地震波
弹性、弹塑性时程分析均与地震波相关。 TAT 、 SATWE 、 PMSAP 、 EPDA 等软件时程分析时均 需选取地震波。 旧版软件采用的是按照场地土区分的单向地震波库; 新版软件采用的是按照特征周期区分的三向地震波库。 三向地震波可以退化为单向地震波进行计算。 可以通过填写文本文件的方式增加用户地震波。
19.4。静力弹塑性分析方法
抗倒塌分析图
静力弹塑性分析方法的特点
静力弹塑性分析方法是将动力地震作用静力化的一种罕 遇地震分析方法。 考虑结构的弹塑性性质。 较动力弹塑性分析方法能一定程度上节省计算时间。 通过静力推覆分析过程可以了解结构的抗倒塌能力。 通过能力谱方法可以得到结构的罕遇地震下最大弹塑性 位移角。 能力谱方法存在“以第一振型振动为主、结构可以等效 为单自由度体系”等前提假定,能否适用于超高层结构 仍然需要探讨;但推覆分析过程有一定的普适性。
9层钢框架模型
1.3 1.25 1.2 1.15 1.1 1.05 1 0 100 200 300 400 500 600 700 abaqus-0.01 PUSH-0.01 abaqus-1 PUSH-1
荷载因子-位移曲线,PUSH与ABAQUS的比较
混凝土框架模型
1.2 1 0.8 0.6 0.4 0.2 0 0 10 20 30 40 50 60 abaqus epsa
18.2。三向地震波的合理选取
按照规范的要求,至少应该选择三条地震波进行地震时程反 应的分析,并规定了最小基底剪力。当计算的基底剪力不满 足规范要求,则应认为该地震波不合格,应重新选择分析, 直至选到合适的地震波为止。 而实际上,只有在建筑物所在地的地震波才有可能有意义。 但是大多数地区不具备这个条件,则可以用实测的人工波来 代替。目前重要建筑物的场地波都是通过实测和人工模拟产 生的,即实测人工波。
“塑性铰判断参数”:该参数与“塑性铰判断方法”相对应, 填入 0.0 ~1.0 之间的一个数值。当通过“弹性积分点比例” 判断塑性铰时,如果填入“0.3”表示“只有30%的端截面积 分点保持弹性时出现塑性铰”。当选择当通过“截面刚度退 化比例”判断塑性铰时,如果填入“0.3”表示“截面刚度退 化为初始截面刚度的30%时出现塑性铰” 。
“动力微分方程组解法”:目前程序提供给用户两种求解动 力微分方程组的方法,Wilson-θ法和Newmark-β法。这两种 方法的计算结果差别不大,用户根据需要选择。 “非线性方程组解法”:程序提供了两种求解非线性方程组 的 迭 代 方 法 , Newton-Raphson 迭 代 和 modified NewtonRaphson迭代。这两种方法的迭代次数和适用条件是不同的。 对于混凝土结构一般建议采用 Newton-Raphson 迭代进行计 算。 “非线性迭代步数限值”:该限值规定了非线性迭代的最多 次数,当达到该步数限值时,如果还没有收敛,需要缩短步 长进行计算。该值不宜取的过大,“ 10” 左右比较合适,否 则会明显增加计算时间。 “非线性迭代收敛精度”:EPDA程序衡量非线性迭代是否 收敛的依据是“不平衡力向量范数”,一般认为0.01~0.001 左右的精度是可以满足工程要求的。该值不宜取的过小,否 则程序将难以收敛。
人工输入地震波选择
19。罕遇地震下三种薄弱层弹塑性变形 验算方法及其适用范围
19.1。弹塑性分析目的、意义 19.2。弹塑性分析的规范规定 19.3。简化弹塑性分析方法及适用范围 19.4。静力弹塑性分析方法 19.5。动力弹塑性分析方法
19.1。弹塑性分析目的、意义
三水准设防中的“大震不倒” 。 两阶段设计中的“第二阶段弹塑性变形验算”。 强震下变形验算的基本问题:计算和确定薄弱层位移 反应和变形能力;通过改善结构均匀性、加强薄弱层 和薄弱部位使得层间位移角满足弹塑性变形验算限值 要求。
20。弹塑性静力分析的正确应用和普及
20.1。弹塑性分析软件整体功能简介 20.2。弹塑性静力分析软件PUSH简介 20.3。弹塑性静力分析软件PUSH工程实例 20.4。弹塑性静力分析软件PUSH验证
20.1。弹塑性分析软件整体功能简介