高三物理核反应和核能

合集下载

高三物理 核反应 核能

高三物理  核反应 核能
核反应
放射性的本质是原子核的天然衰变, 那么能否利用人工的方法使原子核发生变 化呢?本节课就来研究原子核的人工转变所 产生的核反应以及引起的能量变化——核 能。如果要人工转变原子核那用什么办法 呢,若用αβγ粒子作为“炮弹”去轰击其 他的原子核,能不能使其发生转变呢
核反应
卢瑟福
查德威克
1919年,卢瑟福用α粒子轰击氮原子核, 是氮原子嬗变成了氧原子,首次实现科原 子核的人工转变,把一种化学元素变成另 一种化学元素,被誉为当代“炼金术”。 1932年,卢瑟福的学生查德威克发现中子, 由于中子是电中性,不受静电的影响,因 此适合作为“炮弹”去轰击原子核。从此 揭开了原子核人工转变的序幕。
+
1 0
n
粒子
中子
和衰变过程一样,核反应中,质量数和电荷数都守恒.
质能方程
化学反应中,往往要吸热或放热,类似的核 反应中也伴随着能量的变化.
中子
氘核
核反应放
质子
2.2MeV( )
出的能量 叫做核能
质能方程
物理学家研究质子、中子和氘核之间的关系 发现:
中子 (mn)
氘核
〓 (m)
精确的计 算表明氘核 的质量比中 子和质子的 质量之和要 小一些.
因为△m=0.030375u 所以
△E=△mc2=0.030375×931.5Mev=28.3Mev
课堂小结
一 核反应
(1)原子核在其他粒子的轰击下产生新原子核的过程称为核反应。
(2)卢瑟福发现质子的核反应
14 7
N
+
4 2
He

17 8
O
+
1 1
H
(3)查德威克发现中子的核反应

核反应高三知识点

核反应高三知识点

核反应高三知识点核反应是高三物理学习中的重要知识点之一,它涉及到核能的释放和利用。

本文将从核反应的基本概念、核反应的种类、核反应的应用以及核能的前景等方面进行探讨。

一、核反应的基本概念核反应是指原子核之间发生的各种变化的过程。

原子核是由质子和中子组成的,而核反应是通过改变原子核的质子和中子的数量和排列方式来实现的。

核反应可以使原子核变得更加稳定,或者释放出大量的能量。

二、核反应的种类1. 裂变反应裂变反应是指重核的原子核分裂成两个或更多的轻核的反应。

这种反应通常伴随着大量的能量释放,是核反应中能量产生最为显著的方式之一。

裂变反应广泛应用于核能的产生和核武器的制造。

2. 聚变反应聚变反应是指两个轻核的原子核相互融合成为一个更重的原子核的反应。

在聚变反应中,通常伴随着巨大的能量释放,是太阳等恒星中能量产生的主要方式。

然而,目前聚变反应在地球上的应用还面临很大的挑战。

三、核反应的应用1. 核能发电核能发电是利用核反应释放的能量来产生电力的过程。

核能发电具有能源稳定、环境友好等优势,能够满足大规模电力需求。

然而,核能的开发利用需要高度的安全措施和严格的辐射监测,以确保公众的安全。

2. 放射性同位素应用核反应还可以用于生产放射性同位素,这些同位素在医学、工业和科研领域有着广泛的应用。

例如,放射性同位素可以用于癌症治疗、无损检测以及放射性示踪等方面。

3. 核武器制造核反应的裂变反应部分由于能够释放巨大的能量,被应用于核武器制造。

然而,核武器的使用会造成无法估量的人员伤亡和环境污染,因此国际社会普遍呼吁全面禁止核武器。

四、核能的前景核能作为一种清洁高效的能源形式,具有巨大的潜力。

当前,许多国家正在加大核能的研发和应用力度,致力于提高核能的安全性、减少核废料的产生以及推动聚变能的实现。

未来,核能有望成为替代传统化石能源的重要选择。

结语:核反应是高三物理学习中的重要知识点,涉及到核能的释放和利用。

通过了解核反应的基本概念、种类、应用以及核能的前景,我们可以更好地理解和应用核反应的知识。

物理高考核物理基本原理

物理高考核物理基本原理

物理高考核物理基本原理物理高考 - 核物理基本原理核物理基本原理是高考物理中的重要内容之一,它关乎着我们对于原子核结构、核反应以及核能的理解。

下面将为大家介绍核物理基本原理的相关知识。

一、原子核结构我们知道,原子由原子核和电子构成。

原子核是原子中的中心部分,它由质子和中子组成。

质子带正电荷,中子不带电荷。

原子核的质量主要由质子和中子的质量决定,而电子的质量可以忽略不计。

二、核反应核反应是指原子核中的质子和中子之间的相互作用过程。

核反应可分为核衰变、核裂变和核聚变等不同类型。

核衰变是指原子核自发地释放出粒子或射线,以使原子核的结构更加稳定。

核裂变是指重核(如铀)被中子轰击后产生裂变产物和释放大量能量的过程。

核聚变是指轻核(如氢、氦)在高温高压条件下融合成更重的核,产生巨大能量的过程。

三、核能核能是指核反应中释放的能量。

核能具有高能量密度和巨大的能量储存特点,是一种重要的清洁能源。

核能可以用于发电,被广泛应用于核电站中。

核电站通过核裂变反应产生的能量驱动发电机发电,为人们的生活和工业生产提供电力。

四、核辐射核反应过程中可能伴随着核辐射的释放。

核辐射主要有α粒子、β粒子和γ射线三种形式。

α粒子是双氢离子,具有正电荷,能量相对较低,容易被物质阻挡。

β粒子是高速电子,带负电荷,其穿透能力比α粒子强,但仍能被一定厚度的物质阻挡。

γ射线是电磁波,穿透能力最强,只有通过较厚的铅屏蔽才能有效阻挡。

五、辐射防护为了保护生命和健康,必须采取措施防护核辐射对人体的危害。

常用的辐射防护方法包括:增加距离,减少接触时间,使用合适的屏蔽材料。

当与放射性物质接触时,应佩戴适当的防护设备,防止辐射对人体造成伤害。

六、核物理在生活中的应用核物理的应用领域非常广泛。

除了核能发电,核物理还应用于核医学、碳测年、核磁共振等方面。

核医学利用核素在生物体内的放射性衰变特性,进行诊断、治疗等。

碳测年是利用碳14同位素的半衰期对古生物、古器物等的年代进行测定。

核物理学中的核能与核反应知识点总结

核物理学中的核能与核反应知识点总结

核物理学中的核能与核反应知识点总结核物理学是研究原子核及其内部结构、性质和相互作用的科学领域。

掌握核能与核反应的知识对于我们理解核物理学的基本原理和应用有着重要的意义。

本文将对核物理学中的核能与核反应的一些基本知识进行总结。

1. 原子核的结构和组成原子核由质子和中子组成,质子带正电,中子不带电。

质子和中子都是由夸克组成的基本粒子。

质子数和中子数共同决定了原子核的质量数。

原子核的直径非常小,通常在10^-14米量级。

2. 核能的定义与性质核能是指原子核内部存在的结合能,也就是核力的能量。

核结合能是使原子核稳定存在的能量,它是质子和中子通过核力相互结合而释放出的能量。

核结合能越大,原子核越稳定。

核能在核电站、核武器和核医学等方面有广泛的应用。

3. 核反应的基本概念核反应是指由于原子核发生变化而产生的转变过程。

核反应可以分为裂变和聚变两种类型。

裂变是指重核(如铀、钚)被中子轰击后分裂成两个或多个较轻的核片段的过程。

聚变是指两个轻核(如氢-1和氘)在高温高压条件下发生融合的过程。

4. 裂变反应的特点与应用裂变反应是指重核裂变为两个或多个轻核的过程。

裂变反应通常伴随着释放大量的能量和中子。

核反应堆中使用铀或钚等重核材料进行裂变反应,产生的能量被用于发电。

此外,裂变还是核武器的基础。

5. 聚变反应的特点与应用聚变反应是指轻核发生融合形成更重的核的过程。

聚变反应需要高温和高压的条件才能进行。

在太阳内部,聚变反应是主要的能源来源。

人造聚变反应目前仍面临着技术难题,但它有望成为未来清洁能源的重要途径。

6. 辐射与放射性衰变放射性衰变是指具有不稳定核的核素通过发射α粒子、β粒子或γ射线等方式逐渐转变为稳定核的过程。

放射性核素具有辐射性,可以通过测量射线的活度来判断物质的放射性强度。

核辐射对人体具有一定的伤害作用,因此在核能应用中需要严格控制辐射防护。

7. 核裂变链式反应核裂变链式反应是指一个裂变反应产生的中子引发下一个核裂变反应,并不断释放更多中子,使反应以指数形式迅速发展的过程。

高三物理复习核反应 核能 质能方程

高三物理复习核反应   核能  质能方程

15.3 核反应核能质能方程一、考点聚焦核能.质量亏损.爱因斯坦的质能方程Ⅱ要求核反应堆.核电站Ⅰ要求重核的裂变.链式反应.轻核的聚变Ⅰ要求可控热核反应.Ⅰ要求二、知识扫描1、核反应在核物理学中,原子核在其它粒子的轰击下产生新原子核的过程,称为核反应.典型的原子核人工转变14 7N+42He 178O+11H 质子11H的发现方程卢瑟福9 4Be+42He 126C+1n 中子1n的发现方程查德威克2、核能(1)核反应中放出的能量称为核能(2)质量亏损:原子核的质量小于组成它的核子质量之和.质量亏损.(3)质能方程:质能关系为E=mc2原子核的结合能ΔE=Δmc23、裂变把重核分裂成质量较小的核,释放出的核能的反应,叫裂变典型的裂变反应是:235 92U+1n9038Sr+13654Xe+101n4.轻核的聚变把轻核结合成质量较大的核,释放出的核能的反应叫轻核的聚变.聚变反应释放能量较多,典型的轻核聚变为:2 1H+31H42He+1n5.链式反应一个重核吸收一个中子后发生裂变时,分裂成两个中等质量核,同时释放若干个中子,如果这些中子再引起其它重核的裂变,就可以使这种裂变反应不断的进行下去,这种反应叫重核裂变的链式反应三、好题精析例1.雷蒙德·戴维斯因研究来自太阳的电子中微子(v。

)而获得了2002年度诺贝尔物理学奖.他探测中微子所用的探测器的主体是一个贮满615t四氯乙烯(C2Cl4)溶液的巨桶.电子中微子可以将一个氯核转变为一个氢核,其核反应方程式为νe+3717Cl→3718Ar十 0-1e已知3717Cl核的质量为36.95658 u,3718Ar核的质量为36.95691 u, 0-1e的质量为0.00055 u,1 u质量对应的能量为931.5MeV.根据以上数据,可以判断参与上述反应的电子中微子的最小能量为(A)0.82 Me V (B)0.31 MeV (C)1.33 MeV (D)0.51 MeV [解析] 由题意可得:电子中微子的能量E≥E∆=mc2-(m Ar+m e-m Cl)·931.5MeV=(36.95691+0.00055-36.95658)×931.5MeV=0.82MeV则电子中微子的最小能量为 E min =0.82MeV[点评] 应用爱因斯坦质能方程时,注意单位的使用。

高三物理学科中的核物理知识点总结与应用

高三物理学科中的核物理知识点总结与应用

高三物理学科中的核物理知识点总结与应用核物理是物理学的一个重要分支,涉及到原子核的结构与性质以及核反应等内容。

在高三物理学科中,核物理是一个重点且复杂的知识点。

本文将对高三物理学科中的核物理知识点进行总结,并探讨其在实际应用中的作用。

一、核物理知识点总结1. 原子核的结构与组成:原子核由质子和中子组成,其中质子带正电荷,中子不带电荷。

质子和中子的质量几乎相等,都远大于电子的质量。

2. 原子核的尺寸与密度:原子核的直径约为10^(-15)米,而整个原子的直径约为10^(-10)米,因此可以看出原子核的体积非常小,但是其密度却非常大,约为10^17 kg/m3。

3. 原子核的相对稳定性:原子核的稳定性与中子和质子的比例有关。

如果一个原子核的中子和质子的比例适合某个数值,该原子核通常是相对稳定的。

如果质子或中子的数量过多或过少,原子核就会不稳定,进而发生放射性衰变。

4. 放射性衰变:放射性衰变是指原子核自发地发射粒子或电磁辐射的过程。

主要有α衰变、β衰变和γ衰变三种形式。

其中α衰变是指原子核发射α粒子(由两个质子和两个中子组成),β衰变是指原子核发射β粒子(可以是电子或正电子),γ衰变是指原子核发射γ射线(高能量的电磁辐射)。

5. 核裂变与核聚变:核裂变是指重核(如铀235)被低能中子轰击后分裂成两个或更多轻核的过程,同时释放出大量能量和中子。

核聚变则是指轻核(如氢)在高温和高压下融合成重核的过程,也伴随着释放出巨大的能量。

二、核物理的应用核物理在现实生活中有着重要的应用价值,以下将列举一些常见的应用场景。

1. 核能的利用:核能是一种非常高效的能源形式。

核能反应不仅能够提供大量的电力,还可以用于驱动舰船和潜艇等核动力器械。

核能的利用不仅可以解决能源短缺问题,还可以减少对化石燃料的依赖,从而减少环境污染。

2. 放射性同位素的应用:许多放射性同位素具有特定的放射性衰变特性,可以应用于医学、工业和科学研究领域。

高考物理中的核能与核反应揭示核能的释放利用与安全问题

高考物理中的核能与核反应揭示核能的释放利用与安全问题

高考物理中的核能与核反应揭示核能的释放利用与安全问题核能与核反应是高考物理中的重要内容,它们揭示了核能的释放利用与安全问题。

本文将从核能的来源、核反应原理、核能的利用和核能的安全问题四个方面进行探讨。

一、核能的来源核能的来源主要包括两个方面:核裂变和核聚变。

核裂变是指重核(如铀-235)被中子轰击后,发生核分裂,产生能量和两个新的轻核的过程。

核聚变是指两个轻核(如氘和氚)在高温和高压条件下发生碰撞,合成一个更重的核的过程。

二、核反应原理核反应的原理是在核裂变和核聚变过程中,原子核发生改变,释放出巨大的能量。

在核裂变中,中子轰击重核之后,重核不稳定,因此发生核分裂,释放出能量和新的中子。

在核聚变中,轻核在高温和高压条件下发生碰撞,形成更重的核,同时也释放出能量。

三、核能的利用核能的利用主要体现在核电站的建设和核武器的制造两个方面。

1. 核电站的建设核电站利用核裂变的原理进行能源的生产。

在核电站中,通过控制中子释放和吸收的过程,实现核反应的稳定,从而产生高温和高压的蒸汽,驱动涡轮发电机发电。

相比传统的化石燃料电站,核电站不会产生大量的二氧化碳等温室气体,对环境污染较小,因此具有很大的潜力和重要性。

2. 核武器的制造核武器利用核裂变或核聚变的原理产生巨大的能量,并实现核链式反应,形成核爆炸。

核武器的制造和使用是一个极其严肃和敏感的问题,世界各国都在努力控制核扩散,维护全球核安全。

四、核能的安全问题核能的利用必须重视核能的安全问题。

核能的安全问题主要包括三个方面:放射性废物的处理、核泄漏的防范和核事故的应急响应。

1. 放射性废物的处理核能的利用会产生大量的放射性废物,这些废物需要妥善处理,以防止对环境和人类健康造成损害。

目前,常用的处理方法包括深埋、封存以及高温熔融等方式,以确保废物的安全存放和长期管理。

2. 核泄漏的防范在核电站运行和核设施建设中,必须严格控制放射性物质的泄漏,避免对周围环境造成污染。

高三原子核知识点总结

高三原子核知识点总结

高三原子核知识点总结原子核是物质世界中的基本组成部分,也是高中物理学中重要的知识点之一。

本文将针对高三原子核知识点进行总结和梳理,旨在帮助读者更好地理解和掌握这一内容。

一、结构组成原子核由质子和中子组成,质子带正电,中子不带电。

质子数目称为原子核的核电荷数,中子数目和质子数目之和称为原子核的质量数。

二、引力互斥力平衡原子核内部的质子之间存在着相互排斥的库仑力作用,如果没有其他力的干扰,质子会相互排斥而发生解体。

然而,质子和中子之间有着强相互作用力,称为核力,这种力能够克服库仑力而保持原子核的稳定。

三、核反应与核能核反应是指原子核发生变化的过程,可以是核衰变、核裂变或核聚变。

核反应释放出的能量称为核能,是一种极为巨大的能量。

1. 核衰变:某个原子核自发地放射出一个或多个粒子,转变成其他元素的原子核。

常见的类型有α衰变、β衰变和γ衰变。

2. 核裂变:重核(如铀、钚等)受到一定条件下的中子轰击后发生裂变。

裂变会释放出巨大的能量和更多的中子,引发连锁反应,是原子弹和核电站的基础。

3. 核聚变:轻核(如氢、氦等)在极高温度和压力下相互融合,生成较重的原子核。

聚变是太阳和恒星内部的能量来源,也是未来核聚变电站的目标。

四、放射性核素与半衰期放射性核素是指具有放射性的原子核,它们不稳定并会通过核衰变释放出射线。

放射性核素可以用半衰期来描述其放射性衰变的速率,半衰期是指放射性物质衰变到其初始数量的一半所需的时间。

五、原子核能级与能带结构原子核中存在着不同的能级,每个能级可以容纳不同数量的质子或中子。

原子核的能带结构和电子的能带结构有所不同,原子核是由奇数或偶数个质子或中子填充能级而成的。

六、高能物理与粒子加速器高能物理研究是研究微观世界最基本粒子的性质和相互作用的学科,粒子加速器是进行高能物理实验的重要工具。

粒子加速器通过对带电粒子进行加速,使其具备极高的能量,然后观察和研究粒子之间的相互作用。

七、核能利用与安全核能具有巨大的潜力和广泛的应用领域,核电站、核医学和核武器等都是核能利用的范畴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑴写出氘和氚聚合的反应方程。
⑵试计算这个核反应释放出来的能量。
⑶若建一座功率为3.0×105kW的核聚变电站,假设聚变所产生的能量有一半变成了电能,每年要消耗多少氘的质量?
(一年按3.2×107s计算,光速c=3.00×108m/s,结果取二位有效数字)
[解析](1)(3)
(2)ΔE=Δmc2=(2.0141+3.0160-4.0026-1.0087)×1.66×10-27×32×1016J=2.8×10-12J
(2)每小时从太阳表面辐射的总能量为多少?
(3)火星受到来自太阳的辐射可认为垂直到面积为πr2(r为火星半径)的圆盘上。已知太阳到火星的距离约为太阳半径的400倍,忽略其他天体及宇宙空间的辐射,试估算火星的平均温度。
12.核聚变能是一种具有经济性能优越、安全可靠、无环境污染等优势的新能源。近年来,受控核聚变的科学可行性已得到验证,目前正在突破关键技术,最终将建成商用核聚变电站。一种常见的核聚变反应是由氢的同位素氘(又叫重氢)和氚(又叫超重氢)聚合成氦,并释放一个中子了。若已知氘原子的质量为2.0141u,氚原子的质量为3.0160u,氦原子的质量为4.0026u,中子的质量为1.0087u,1u=1.66×10-27kg。
5.链式反应
一个重核吸收一个中子后发生裂变时,分裂成两个中等质量核,同时释放若干个中子,如果这些中子再引起其它重核的裂变,就可以使这种裂变反应不断的进行下去,这种反应叫重核裂变的链式反应
二、典型例题
例1.雷蒙德·戴维斯因研究来自太阳的电子中微子(v。)而获得了2002年度诺贝尔物理学奖.他探测中微子所用的探测器的主体是一个贮满615t四氯乙烯(C2Cl4)溶液的巨桶.电子中微子可以将一个氯核转变为一个氢核,其核反应方程式为
6.中微子失踪之迷是一直困扰着科学家的问题。原来中微子在离子开太阳向地球运动的过程中,发生“中微子振荡”,转化为一个 子和一个 子。科学家通过对中微子观察和理论分析,终于弄清了中微子失踪的原因,成为“2001年世界十大科技突破”之一。若中微子在运动中只转化为一个 子和一个 子,并已知 子的运动方向与中微子原来的方向一致,则 子的运动方向( )
①衰变方程可表示为: U Th+ He
②衰变后的Th核和 粒子的轨迹是两个内切圆,轨道半径之比为1:45
③Th核和 粒子的动能之比为2:17
④若 粒子转了117圈,则Th核转了90圈
A.①③ B.②④ C①② D.③④
2.下列核反应或核衰变方程中,符号“X”表示中子的是
(A) (B)
(C) (D)
3.下列关于原子结构和原子核的说法正确的是( )
一方面,因太阳质量变小,发光功率变小;另一方面,日地距离变大,引起辐射到地球表面的能量减小,导致地球表面温度变低.
[点评]该题集原子物理与力学为一体,立意新颖,将这一周而复始的自然用所学知识一步一步说明,是一道考查能力、体现素质的好题.
三、过关测试
1、静止在匀强磁场中的 U核,发生。衰变后生成Th核,衰变后的 粒子速度方向垂直于磁场方向,则以下结论中正确的是()
10.如下图所示,一个有界的匀强磁场,磁感应强度B=0.50T,磁场方向垂直于纸面向里,MN是磁场的左边界。在磁场中A处放一个放射源,内装 (镭), 放出某种射线后衰变成Rn(氡)。试写出: 衰变的方程,若A距磁场的左边界MN的距离OA=1.0m,放在MN左侧的粒子接收器接收到垂直于边界MN方向射出的质量较小的粒子,此时接收器位置距经过OA的直线1.0m,由此可以推断出一个静止镭核Ra衰变时放出的能量是多少?保留两位有效数字(取1u=1.6×10-27kg,电子电量e=1.6×10-19c)
地球绕太阳旋转是靠太阳对地球的万有引力来提供向心力 G =mω2R, 现因M减小,即提供的向心力减小,不能满足所需的向心力,地球将慢慢向外做离心运动,使轨道半径变大,日地平均距离变大.
由上式可知,左边的引力G 减小,半径R增大,引起地球公转的角速度变化从而使公转周期变化 G =m R,T2= ,即 T增大.
νe+ Cl→ Ar十 e
已知 Cl核的质量为36.95658 u, Ar核的质量为36.95691 u, e的质量为0.00055 u,1 u质量对应的能量为931.5MeV.根据以上数据,可以判断参与上述反应的电子中微子的最小能量为
(A)0.82 Me V (B)0.31 MeV (C)1.33 MeV (D)0.51 MeV
A 21.04MeV B 35.56MeV C 77.64MeV D 92.16MeV
5.下列说法正确的是
A、太阳辐射的能量主要来自太阳内部的裂变反应
B、卢瑟福的a粒子散射实验可以估算原子核的大小
C、玻尔理论是依据a粒子散射实验分析得出的
D、氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,电子的动能减小,电势能增大,总能量增大
6.D
7.A
8.BCD
9.
10.2.0×10-12j
A 卢瑟福在 粒子散射实验的基础上提出了原子的核式结构
B 天然放射性元素在衰变过程中电荷数和质量数守恒,其放射线在磁场中不偏转的是 射线
C 据图15.3-3可知,原子核A裂变变成原子核B和C要放出核能
D 据图15.3-3可知,原子核D和E聚变成原子核F要吸收核能
4.当两个中子和两个质子结合成一个 粒子时,放出28.30MeV的能量,当三个 粒子结合成一个碳核时,放出7.26MeV的能量,则当6个中子和6个质子结合成一个碳核时,释放的能量约为( )
单位是J,也可像本题利用1 u质量对应的能量为931.5MeV.
例2、质子、中子和氘核的质量分别为m1、m2、m3,质子和中子结合成氘核时,发出γ射线,已知普朗克恒量为h,真空中光速为c,则γ射线的频率υ=______.
[解析]核反应中释放的能量ΔE=Δmc2以释放光子的形式释放出来,由于光子的能量为hυ,依能量守恒定律可知:hυ=Δmc2据此便可求出光子的频率。
[解析]由题意可得:电子中微子的能量E =mc2-(mAr+me-mCl)·931.5MeV
=(36.95691+0.00055-36.95658)×931.5MeV
=0.82MeV
则电子中微子的最小能量为 Emin=0.82MeV
[点评]应用爱因斯坦质能方程时,注意单位的使用。当 用kg单位,c用m/s时,
⑴写出氘和氚聚合的反应方程。
⑵试计算这个核反应释放出来的能量。
⑶若建一座功率为3.0×105kW的核聚变电站,假设聚变所产生的能量有一半变成了电能,每年要消耗多少氘的质量?
(一年按3.2×107s计算,光速c=3.00×108m/s,结果取二位有效数字)
参考答案
1.D
2.AC
3.ABC
4.D
5.BD
(B)在任意方向的磁场中都不会发生偏转
(C)电离本领特别强,是原子核的组成部分之一
(D)用来轰击铀235可引起铀榱的裂变
9.假设钚的同位素离子 Pu静止在匀强磁场中,设离子沿与磁场垂直的方向放出 粒子后,变成铀的一个同位素离子,同时放出能量为E=0.09Mev的光子。(1)试写出这一核反应过程的方程式。(2)光子的波长为多少?(3)若不计光子的动量,则铀核与 粒子在匀强磁场中的回旋半径之比是多少?
质子和中子结合成氘核: H+ n H+γ这个核反应的质量亏损为:
Δm=m1+m2-m3
根据爱因斯坦质能方程 ΔE=Δmc2
此核反应放出的能量 ΔE=(m1+m2-m)c2
以γ射线形式放出,由E=hυ
υ=
[点评]此题考查计算质量亏损,根据爱因斯坦质能方程确定核能.关键是对质量亏损的理解和确定.
例3、如图所示,有界匀强磁场的磁感应强度为B,区域足够大,方向垂直于纸面向里,直角坐标系xoy的y轴为磁场的左边界,A为固定在x轴上的一个放射源,内装镭核( )沿着与+x成 角方向释放一个 粒子后衰变成氡核( )。 粒子在y轴上的N点沿 方向飞离磁场,N点到O点的距离为l,已知OA间距离为 , 粒子质量为m,电荷量为q,氡核的质量为 。
(3)M=
= =23kg
例 5.众所周知,地球围绕着太阳做椭圆运动,阳光普照大地,万物生长.根据学过的知识试论述说明随着岁月的流逝,地球公转的周期,日、地的平均距离及地球表面的温度的变化趋势.
[解析]太阳内部进行着剧烈的热核反应,在反应过程中向外释放着巨大的能量,这些能量以光子形式放出.根据爱因斯坦质能关系: ΔE=Δm·c2, 知太阳质量在不断减小.
(1)写出镭核的衰变方程;(2)如果镭核衰变时释放的能量全部变为 粒子和氡核的动能求一个原来静止的镭核衰变时放出的能量。
[解析](1)镭核衰变方程为:
(2)镭核衰变放出 粒子和氡核,分别在磁场中做匀速圆周运动, 粒子射出 轴时被粒子接收器接收,设 粒子在磁场中的轨道半径为R,其圆心位置如图中 点,有
在下面的问题中,把研究对象都简单地看作黑体。
有关数据及数学公式:太阳半径Rs = 696000Km,太阳表面温度T = 5770K,火星半径r = 3395Km。已知球面积S = 4πR2,其中R为球半径。
(1)太阳热辐射能量的绝大多数集中在波长为2×10-7~1×10-5m范围内,求相应的频率范围。
A.反应前后系统总动量皆为0
B.反应过程系统能量守恒
C.根据爱因斯坦质能方程可知,反应前每个质子的能量最小为2mpc2:
D.根据爱因斯坦质能方程可知,反应后单个质子的能量可能小于mpc286.用 粒8.子轰击铍核( Be),生成一个碳核( C)和一个粒子,则该粒子( )
(A)带正电,能在磁场中发生偏转
(3)质能方程: 质能关系为E=mc2
原子核的结合能ΔE=Δmc2
3、裂变
把重核分裂成质量较小的核,释放出的核能的反应,叫裂变
典型的裂变反应是:
相关文档
最新文档