基于DSP的信号发生器设计..

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于DSP的信号发生器设计设计题目:正弦信号发生器

专业班级电科11级-1班

学号 ************

学生姓名王博

指导教师王科平

摘要

正弦信号发生器是信号中最常见的一种,它能输出一个幅度可调、频率可调的正弦信号,在这些信号发生器中,又以低频正弦信号发生器最为常用,在科学研究及生产实践中均有着广泛应用。

目前,常用的信号发生器绝大部分是由模拟电路构成的,当这种模拟信号发生器用于低频信号输出往往需要的RC值很大,这样不但参数准确度难以保证,而且体积大和功耗都很大,而由数字电路构成的低频信号发生器,虽然其低频性能好但体积较大,价格较贵,而本文借助DSP运算速度高,系统集成度强的优势设计的这种信号发生器,比以前的数字式信号发生器具有速度更快,且实现更加简便。正弦信号发生器是信号中最常见的一种,它能输出一个幅度可调、频率可调的正弦信号,在这些信号发生器中,又以低频正弦信号发生器最为常用,在科学研究及生产实践中均有着广泛应用。

目前,常用的信号发生器绝大部分是由模拟电路构成的,当这种模拟信号发生器用于低频信号输出往往需要的RC值很大,这样不但参数准确度难以保证,而且体积大和功耗都很大,而由数字电路构成的低频信号发生器,虽然其低频性能好但体积较大,价格较贵,而本文借助DSP运算速度高,系统集成度强的优势设计的这种信号发生器,比以前的数字式信号发生器具有速度更快,且实现更加简便。

目录

一、概述 (3)

二、系统设计 (4)

2.1 总体方案 (4)

2.2正弦波信号发生器 (4)

三、硬件设计 (5)

3.1硬件组成部分 (5)

3.2控制器部分 (6)

3.4人机接口部分 (7)

四、软件设计 (8)

4.1流程图 (8)

4.2 正弦信号发生器程序清单 (9)

五、总结 (14)

参考文献 (14)

一、概述

数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。在过去的二十多年时间里,信号处理已经在通信等领域得到极为广泛的应用。

图一是数字信号处理系统的简化框图。此系统先将模拟信号转换为数字信号,经数字信号处理后,再转换成模拟信号输出。其中抗混叠滤波器的作用是将输入信号x(t)中高于折叠频率的分量滤除,以防止信号频谱的混叠。随后,信号经采样和A/D转换后,变成数字信号x(n)。数字信号处理器对x(n)进行处理,得到输出数字信号y(n),经D/A转换器变成模拟信号。此信号经低通滤波器,滤除不需要的高频分量,最后输出平滑的模拟信号y(t)。

图1.1 数字信号处理系统简化框图

数字信号处理是以众多学科为理论基础的,它所涉及的范围极其广泛。例如,在数学领域,微积分、概率统计、随机过程、数值分析

等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。可以说,数字信号处理是把许多经典的理论体系作为自己的理论基础,同时又使自己成为一系列新兴学科的理论基础。

二、系统设计

2.1 总体方案

1.基于DSP 的特点,本设计采用TMS320C54X 系列的DSP 作为正弦信号发生器的核心控制芯片。

2.用泰勒级数展开法实现正弦波信号。

3.设置波形时域观察窗口,得到其滤波前后波形变化图;

4.设置频域观察窗口,得到其滤波前后频谱变化图。

2.2正弦波信号发生器

正弦波信号发生器已被广泛地应用于通信、仪器仪表和工业控制等领域的信号处理系统中。

通常有两种方法可以产生正弦波,分别为查表法和泰勒级数展开法。

查表法是通过查表的方式来实现正弦波,主要用于对精度要求不很高的场合。

泰勒级数展开法是根据泰勒展开式进行计算来实现正弦信号,它能精确地计算出一个角度的正弦和余弦值,且只需要较小的存储空间。

本次主要用泰勒级数展开法来实现正弦波信号。

产生正弦波的算法正弦函数和余弦函数可以展开成泰勒级数,其表达式:

-+-+-=!9!7!5!3)sin(9753x x x x x x

取泰勒级数的前5项,得近似计算式:

递推公式:

sin(nx) = 2cos(x)sin[(n-1)x]-sin[(n-2)x]

cos(nx) = 2cos(x)sin[(n-1)x]-cos[(n-2)x]

由递推公式可以看出,在计算正弦和余弦值时,需要已知cos(x)、sin(n-1)x 、sin(n-2)x 和cos(n-2)x 。 三、硬件设计

3.1硬件组成部分

基于DSP 的信号发生器的硬件结构图如图3.1所示,它主要由D SP 主控制器,输出D/A 通道和人机界面等几个主要部分组成。

-+-+-=!8!6!4!21)cos(8642x x x x x ))))((((9

81761541321 !9!7!5!3)sin(2

2229

753⨯-⨯-⨯-⨯-=+-+-=x x x x x x x x x x x )))(((87165143121 !

8!6!4!21)cos(22228

642⨯-⨯-⨯--=+-+-=x x x x x x x x x

图3.1 基于DSP 的信号发生器系统框图

3.2控制器部分

本系统采用TI 公司的TMS320LF2407 DSP 处理器,该器件具有外设集成度高,程序存储器容量大,A/D 转换精度高,运算速度高,I/O 口资源丰富等特点,芯片内部集成有32KB 的FLASH 程序存储器、2KB 的数据/程序RAM ,两个事件管理器模块(EVE 和EVB )、16通道A/D 转换器、看门狗定时器模块、16位的串行外设接口(SPI )模块、40个可单独编程或复用的通用输入输出引脚(GPIO )以及5个外部中断和系统监视模块。

TMS320LF2407芯片中的事件管理模块(EV )是一个非常重要的组成部分。SPWM 波形的产生和输出就是由这一部分完成的,它由两个完全相同的模块(EVA 和EVB )组成,每个模块都含有2个通用定时器、3个比较器、6至8个PWM 发生器、3个捕获单元和2个正交脉冲编码电路(QEP )。由于TMS320LF2407有544字的双口RAM (DARAM )和2K 字的单口RAM (SARAM );而本系统的程序仅有几KB ,且所用RAM 也不多,因此不用考虑存储器的扩展问题,而对于TMS320LF2407的I/O 扩展问题,由于TMS320LF2407器件有多达40个通用、双向的数字I/O (GPIO )引脚,且其中大多数的基本功能和一般I/O 复用的引脚,而实际上,本系统只需要17路I/O 信号,这样,就可以为系统剩余50%多的I/O 资源,因此可以说,该方案既不算浪费系统资源,也为系统今后的升级留有余地。

相关文档
最新文档