高压电气设备状态检测研究

高压电气设备状态检测研究
高压电气设备状态检测研究

高压电气设备状态检测研究

摘要:电能本身是非常环保的能源,也是我们生产生活当中必不可少的能源。

我们对电能的利用往往是两个层面,第一个层面就是,我们日常生活当中所使用

的低压电能,由于这种电电压比较低,相对安全;第二个层面就是我们在工业等

生产当中所使用的能源,这部分一般都是高电压的电能。我们国家电力系统发展

的一个重要领域就是高压电,我们国家已经开始研究与应用超高压电。随着电压

的不断升高,其风险也在上升,本文通过探究高压电气设备状态的检测,目的让

高压电在检修和检测过程当中更加安全,更好地服务我们的日常生产生活。

关键词:高压电气;电气设备;电气检测;在线检测

引言

随着高压电气设备的不断创新和发展,高压电气设备工作时,由于电压伏数

比较高,往往潜伏着很大的危险性。假如高压电气设备本身发生了故障,而没有

及时排查修复,就会酿成比较大的事故发生。所以,在高压电气设备工作的时候,要不断地检测维修。现在我们国家所应用的还是传统的检测维修方式,也就是我

们所说的计划检测。这种检测是在一段时间范围内对整个高压电气设备开展一次

全面的排查,这样的检测方法看似节约了检测成本,却造成了高压电气设备出现

危险事故的可能。当前,最为前沿的在线检测与状态检测技术能够全天候实时监

控电气设备是否发生异常。如果有危险发生,该技术能够迅速报警,让工作人员

及时维修处理,这样能够让安全隐患发生的可能性大大降低。

1.0,高压电气状态检修的长处

以往的定期维修方式,在维修效果上往往不太令人满意,另外,对高压电气

来说,我们不能走“亡羊补牢”的维修老路,要应用防患于未然的现代理念。原有

的定期检修方式会针对不一样的高压设备采取不一样的定期检查时间,例如,十

万伏的高压电气采用的是五年定期检测,这个时间跨度范围过大,其工作的可靠

性只能依赖于设备本身的质量不会在较短的时段内发生问题,不然,将无法满足

当前的维修工作。因为这是间歇性的维修检查工作,如果高电压情况下出现了问题,就不能够及时的发觉。由于检测电压比实际的高压电气所应用的电压要低,

这种检测自身具有很大的局限。状态维修最大的优点就是有设备管理、设备检修、带电检测、在线检测和设备运行维护等有关系统性的工作组合而成。它最大的优

点就是可以及时的发现所出现的问题,因为高压电气设备在工作的时候,它是用

在线监控的方式及时的查找出发生的问题,这样可以避免了停顿检修,是与设备

正常工作的时候同步进行的,高压电器工作时的电压和检测时的电压是一样的,

这样就更容易找到故障发生点,便于及时开展维修。总的来说,状态维修的优点

就是具备可靠性与及时性。不过,因为是带电作业来开展维修,安全性也是其考

虑的重点之一。

2.0状态维修中的状态检测

状态检测本质上就是状态维修中的一部分,或者说是一个环节,但是这个环

节对于整个状态维修来说是一个非常关键的环节,更是能否实现状态维修最为重

要的一个前提。它是和在线检测大致相似,均是利用各种检测仪器设备全天候对

高压电气设备采取实时监控,并及时反馈其各种工作运行参数是否正常。如果有

关参数发生了问题,系统会自动报警,提示检测人员有问题发生,这样检测人员

就可以很快、而又精准的找到故障点开展维修。这种实时对高压电气设备检测与

维修技术,可以大大节省了停电而在维修的时间和操作过程。

《电气设备状态监测与故障诊断技术》复习提纲(附答案)

《电气设备状态监测与故障诊断技术》复习提纲 1 预防性试验的不足之处(P4) 答: 1、需停电进行试验,而不少重要电力设备,轻易不能停止运行。 2、停电后设备状态(如作用电压、温度等)与运行中不符,影响判断准确度。 3、由于是周期性定期检查,而不是连续的随时监测,绝缘仍可能在试验间隔期发生故障。 4、由于是定期检查和维修,设备状态即使良好时,按计划也需进行试验和维修,造成人力 物力浪费,甚至可能因拆卸组装过多而造成损坏,即造成所谓过度维修。 2 状态维修的原理(P4) 答:绝缘的劣化、缺陷的发展虽然具有统计性,发展的速度也有快慢,但大多具有一定的发展期。在这期间,会有各种前期征兆,表现为其电气、物理、化学等特性有少量渐进的变化。随着电子、计算机、光电、信号处理和各种传感技术的发展,可以对电力设备进行在线状态监测,及时取得各种即使是很微弱的信息。对这些信息进行处理和综合分析,根据其数值的大小及变化趋势,可对绝缘的可靠性随似乎做出判断并对绝缘的剩余寿命做出预测,从而能早期发现潜伏的故障,必要时可提供预警或规定的操作。 3 老化的定义(P12) 答:电气设备的绝缘在运行中会受到各种因素(如电场、热、机械应力、环境因素等)的作用,部将发生复杂的化学、物理变化,会导致性能逐渐劣化,这种现象称为老化。 4 电气设备的绝缘在运行常会受到哪些类型的老化作用?(P12) 答:有热老化、电老化、机械老化、环境老化、多应力老化等。 5 热老化的定义(P12) 答:由于在热的长期作用下发生的老化称为热老化。 6 什么是8℃规则?(P13) 答:根据V.M.Montsinger提出的绝缘寿命与温度间的经验关系式可知,lnL和t呈线性关系,并且温度每升高8℃,绝缘寿命大约减少一半,此即所谓8℃规则。 7 可靠性、失效与故障的定义(P21) 答:可靠性:产品在规定条件下和规定的时间区间完成规定功能的能力。 失效:产品终止完成规定功能的能力这样的事件。 故障:产品不能执行规定功能的状态。 8 典型的不可修复元件,其失效率曲线呈什么形状?有哪些组成部分?(P22) 答:典型的不可修复元件,一般为电子器件,其失效率曲线呈浴盆状,可分为三个部分:早期失效期、恒定失效期和耗损失效期。 9 寿命试验的目的和方式(26)

电气设备的高压试验及防范措施

电气设备的高压试验及防范措施 摘要:随着我国电压等级的日益提升,以及电网水平的不断发展,也对当前的电力系统运行稳定性与安全性提出更高要求。通过对当前的高压电网故障进行分析研究,发现大多均是由电气设备绝缘受损所导致。电气设备质量与高压试验数据息息相关。因此,落实好电气设备高压试验工作至关重要。但在当前实践过程中,仍存在较多缺陷问题,急需采取针对性措施加以预防,以此为设备及人员安全提供保障。文章主要对电气设备的高压试验及防范措施进行了分析与研究。 关键词:电气设备;高压试验;防范措施 随着社会经济的不断发展,社会各行各业对于电力能源的需求量逐年上升,电能在为人们日常生活带来极大便利的同时,也存在着较高的危险隐患,故一定要采取相应措施,确保人们的用电安全。在此也对电气设备运行稳定性提出更高要求,通过电气设备高压试验的开展,可有效解决上述问题,从而为电力设备运行的稳定性和安全性提供保障。 一、开展电气设备高压实验的必要性分析 在电力系统运行中,电气设备扮演着十分关键的角色,其运行的稳定性与电网的运行状态息息相关,但无论是哪种设备,在长时间不间断的运行过程中,均难以避免的出现问题,电气设备更是如此。因此,相关人员应尽可能的通过合理措施及时发现问题,解决问题,从而将问题产生的危害降至最低。电气设备的高压实验,主要是通过一定的测试手段,对设备的绝缘性和运行性能进行检验,之后对设备实际运行标准相关数据进行全面分析,从而可在第一时间发现设备中存在的主要问题,并采取针对性措施加以解决。 通过上述操作,即便无法解决全部问题,但仍可对相关问题进行削减,当再次出现类似问题时,也防止了工作人员无计可施、盲目操作现象的产生,使其反而能够轻松应对,顺利解决实际问题,可见,开展电气设备高压试验十分关键。在电网不断运行过程中,需定期对设备进行试验检查,如此更加有助于工作人员在第一时间发现问题,解决问题,从而为电力系统的安全、稳定运行提供保障[1]。 二、电气设备高压实验安全管理问题分析 在当前的设备高压试验过程中,仍存在较多缺陷问题,进而也对人员的工作积极性造成影响,通过信息处理技术和计算机技术的实践应用,可有效满足设

电力设备状态监测及故障诊断系统原理 黄宏宏

电力设备状态监测及故障诊断系统原理黄宏宏 发表时间:2017-01-18T14:38:24.293Z 来源:《电力设备》2016年第24期作者:黄宏宏1 徐晓明2 [导读] 通过合理的技术或者方法,科学诊断电力设备故障情况,提高电力设备故障监测和诊断的准确性和科学性。 (1集瑞联合重工股份有限公司安徽省芜湖市 241000; 2明光浩淼安防科技股份公司安徽省明光市 239400) 摘要:现阶段,电力设备故障诊断技术越来越趋于信息化和数字化,一般使用网络来传输诊断信息,实现了远距离诊断、传输的目标。有些诊断系统还开发了诊断和报警客户端,可以随时随地监控电力设备的运营状态。 关键词:电力设备;状态监测;故障诊断 一、电力设备的状态监测技术 当前,电力设备故障监测和检修缺少合理、科学、明确的规范要求,这主要是由于各个地区存在较大的电气差别,根据电力设备运行状态,采用科学合理的故障状态检修方法,但是电力设备故障监测和检修主要依赖长期积累的实践经验,存在较大的主观性和随意性,但是实效性、规范性、客观性和科学性不足,而且电力设备故障监测和检修手段比较滞后。所以电力设备运行过程中,应做好状态监测,详细记录电力设备运行状态,做好评估和分类,为故障诊断和维修提供重要参考意见。电力设备状态监测包括以下内容:其一,为电力设备运行积累数据和资料,构建电力设备运行档案;其二,科学判断电力设备的运行状态,分析其处于异常或者正常状态,结合电力设备的故障征兆或者特征、运行状态等级、历史档案等,判断电力设备的故障程度和性质;其三,科学评估电力设备运行状态,合理分类,形成一定标准后,为电力设备状态检修提供重要参考依据,对电力设备故障或者异常状态进行有效估计,全面预测电力设备未来变化状态。对于电力设备的运行状态监测,要采取有效的方法和技术。 1、信号采集 结合当前我国电力系统建设发展现状,通过电力设备在线监测系统,持续检查和分析电力设备运行状态,利用各种运行状态量,分析电力设备运行状态,全面采集电力设备状态信息,包括磁力线密度、局部放电量、频率、电力、电压等信号,结合电力设备的各种状态量,采用合适的信号采集方法:其一,定时采样,按照电力系统运行状态,做好电力设备的定时采样;其二,一次性采样,每次采集一次合适长度的数据处理信号样本;其三,根据电力设备故障突变信号,实现自动化的信息采样;其四,结合电力设备故障诊断要求,采用峰值采样、转速跟踪采样等特殊方式。结合电力设备运行状态,采用合适的状态监测方法,对于断路器,采用振动监测法、跳闸轮廓法等,采集断路器运行状态信息;对于交流旋转电机,通过小波分析、神经网络等方法监测点击运行状态;电力系统变压器运行过程中其内部会发生绝缘老化,导致变压器发生运行故障,结合变压器的电气特性和机械性能,采用电压恢复法、极化波谱、振动分析、油气分析、局部放电等方法,全面监测变压器的运行状态。 2、数据传送 信号处理系统一般距离被检测设备比较远,长距离传输过程中,信号非常容易受到影响因素的干扰,数据信息容易出现一定程度的损失,相移基本上不可能保持一致。为此,首先需要进行模数转换,将数据信息转化为数字量,然后进行预处理,并压缩打包,再通过通信传输通道将数据信息传输到数据处理中心。光导纤维具备较强的抗干扰能力,出现的信号错乱和信号数据损失的情况较少,可以有效保证信号传输质量。 3、数据处理 通过不同方法对电力设备状态数据进行解包处理,例如,利用人工智能、小波分析,在时域利用不同信号的相关性,分析和处理另一个信号数据。把电力设备运行信号进行频谱分析转换为不同频域的频率信号。 4、故障信号特征量的选取 一般情况下,运营设备出现的故障现象,都是由多个故障体征量引起,所以提取有效的故障信息量是诊断故障工作中的重点。对处于运动状态中的设备开展故障识别工作时,经常会因为选取的特征量不同,而出现不同的结果,选取的特征量不恰当,就会出现漏诊或者误诊的情况。出现误判的主要原因是设备在故障状态下和正常状态下的特征参数有重复,即正常状态和故障状态不能很好地被区分,有一定程度的模糊性。所以在监测过程中,应当提取出具有代表性的故障特征参量。 二、诊断故障 (1)通过信息融合和多传感技术来诊断。多传感技术主要是从多个侧面、不同角度来对同一个物体进行检测,即针对同一个故障的不同表现形式,可以从时间、空间、频域的角度着手,多个领域、多个层次地收集故障特征量。为了保证故障特征量的代表性,应选取故障反应速度较快的故障状态信息量。信息融合技术是将多传感的数据按照一定的标准排列整合,并进行综合性分析。同一故障设备在不同的环境中,会反映出不同的故障特征量,运用信息融合技术可以实现“求同除异”的目标。对不同的故障状态特征量进行融合,可以提高电力设备状态监测的准确度和故障诊断的可靠性。但信息融合技术基本理论并不完善,所以信息融合技术诊断方法还需进一步研究。(2)基于特征空间的矢量故障诊断手段,其最大的优势在于具有很强的适应能力,适用范围广,最适合延时性和变化性电力设备。(3)电力设备的在线监测状态和固有特性信息量不足,会导致监测出来的结果存在偏差和变化,针对此问题,可以使用模糊理论中最大隶属原则。这种诊断原则可以迅速找出电气故障原因,并且可以判断电气的故障类型。将模糊理论中最大隶属原则和状态信号相结合,可以分析电气故障的模糊性和变化性。常用的模糊方程为Y=XR,X代表故障征兆,Y代表故障原因,R为模糊关系矩阵。(4)使用人工智能方式,包括神经网络、专家系统等。 三、电力设备故障诊断系统应用 1、采集故障信号 从复杂错综的电力设备故障信号中提取有用信号,做好电力设备故障信号处理,通过采集精细的设备运行信息,准确地进行电力设备故障诊断。电力设备的一种故障可能反映出多种故障特征量,若故障特征量选取不合理,在诊断电力设备故障状态过程中会产生漏诊或者误诊,不利于电力设备故障的正确判断,因此在针对电力设备故障,应选择合适的特征参量。 2、故障诊断信息和分析技术 近年来,我国科学技术快速发展,对于电力设备故障情况,在诊断故障过程中运用信息技术,推动电力设备故障诊断的网络化、数字

传感器在电力设备检测中的应用

传感器在电力设备检测中的应用 电力设备在运行中经常受电的、热的、机械的负荷作用,以及自然环境(气温、气压、湿度以及污秽等)的影响,长期工作会引起老化、疲劳、磨损,以致性能逐渐下降,可靠性逐渐降低。为保证电力系统的安全运行,对系统的重要设备的运行状态进行的监视与检测。监测的目的在于及时发现设备的各种劣化过程的发展,以求在可能出现故障或性能下降到影响正常工作之前,及时维修、更换,避免发生危及安全的事故。 电力设备状态监测的传统方法是经常性的人工巡视与定期预防性检修、试验。设备在运行中由值班人员经常巡视,凭外观现象、指示仪表等进行判断,发现可能的异常,避免事故发生。传统方法效率低,成本高,且可能会给工作人员带来一定危险。随着传感技术与计算机技术的发展,电力设备的状态监测方法向着自动化、智能化的方向发展,设备的定期检修制度向着预警式检修制度发展。电力设备状态的监测涉及面广,大量的非电参量(热学、力学、化学参量等)需要各种相应的传感器,传感技术的发展为此提供了可能。 装备各种传感器的具有状态监测功能的新型电力设备是构成自动化的电力系统的基础,是状态监测和故障诊断的第一步,也是很重要的一步。本文以温度传感器为例,对传感器在实际生产生活中的应用做一简单介绍。 一、检测对象 电力系统中大量设备需要检测温度信息,从而确定电力设备的运行情况,以便运行调度人员及时采取措施,消除异常,避免设备的损坏和事故的发生。 电力设备过热的主要原因是过电流,单仅仅监视电流不能准确反映设备是否超温,因为温度是各种因素影响的综合反映。 主要检测的对象有:电力设备导电连接处、插接处,干式变压器的绕组,电力变压器油温,箱式变电站的出线端、低压开关和高压开关进出线端等等。 二、基本结构及工作原理 温度传感器品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。 (1)热电偶:将两种不同材料的导体或半导体A和B焊接起来,构成一

高压电气设备试验与安全管理

管理制度参考范本高压电气设备试验与安全管理a I时'间H 卜/ / 1 / 6

、高压电气设备试验内容 (一)绝缘预防性试验 电气设备绝缘预防性试验是保证设备安全运行的重要措施。通过试验,掌握设备绝缘状况,及时发现绝缘内部隐藏的缺陷,并通过检修加以消除,严重者必须予以更换,以免设备在运行中发生绝缘击穿,造成停电或设备损坏等不可挽回的损失。绝缘预防性试验可分为两大类:一类是非破坏性试验或称绝缘特性试验,是在较低的电压下或用其他不会损坏绝缘的办法来测量各种特性参数,主要包括测量绝缘电 阻、泄漏电流、介质损耗角正切值等,从而判断绝缘内部有无缺陷。 实验证明,这类方法是行之有效的,但目前还不能只靠它来可靠地判断绝缘的耐电强度。另一类是破坏性试验或称耐压试验,试验所加电压高于设备的工作电压,对绝缘考验非常严格,特别是揭露那些危险性较大的集中性缺陷,并能保证绝缘有一定的耐电强度,主要包括直流耐压、交流耐压等。耐压试验的缺点是会给绝缘造成一定的损伤。 (二)电气设备交接试验为适应电气装置安装工程和电气设备交接试验 的需要,促进电气 设备交接试验新技术的推广和应用,国家标准GB50150- 91《电气设备交接试验标准》详细地介绍了各项试验的内容和标准。电气设备交接试验除了部分绝缘预防性试验还有其他一些特性试验,例如变压器直流电阻和变比测试、断路器回路电阻测试等。 二、绝缘预防性试验的基本原理 (一)绝缘电阻的测试 绝缘电阻的测试是电气设备绝缘测试中应用最广泛、试验最方便的项目。绝缘电阻值的大小,能有效地反映绝缘的整体受潮、污秽以及严重过热老化等缺陷。绝缘电阻的测试最常用的仪表是绝缘电阻测试仪(兆欧表)。绝缘电阻测试仪(兆欧表)通常有IOOV、250V、500V、1000V 2500V和5000V等类型。使用兆欧表应按照DI11'596《电力设备预防性试验规程》的有关规定。 (二)泄漏电流的测试 般直流兆欧表的电压在2.5KV 以下,比某些电气设备的工作电 压要低得多。如果认为兆欧表的测量电压太低,还可以采用加直流高压来测量电气设备的泄漏电流。当设备存在某些缺陷时,高压下的泄漏电流要比低压下

电力设备在线监测

目录 摘要 (2) 前言 (2) 第一章高压断路器 (2) 第一节高压断路器的作用 (2) 第二节高压断路器的绝缘 (3) 第三节影响高压断路器绝缘性能 (3) 第四节断路器就其对地绝缘方式 (3) 第二章电力设备在线监测技术简介 (4) 第三章高压断路器的在线监测 (4) 第一节交流泄漏电流的在线监测 (5) 第二节高频接地电流的在线监测 (5) 第三节开关特性的在线监测 (5) 第四节温度特性的在线监测 (6) 第五节真空断路器真空度的在线监测 (6) 结论 (7)

高压断路器的在线监测方法 摘要:通过对断路器状态监测方法的介绍, 分析了在线监测方法的诸多特点, 指出其监测内容丰富, 信息处理速度快, 对提高断路器故障的识别、分析、诊断和处理有着极大的帮助作用, 提出为加强设备管理, 加强状态检修的需要, 应用在线监测技术已成为一种发展趋势。 关键词:高压断路器在线监测电力系统 前言:高压断路器是电力系统最重要的开关设备。它担负着控制和保护的功能,既根据电网的运行的需要用它来可靠地投入或切除相应线路或电气设备。当线路或电气设备发生故障时,将故障部分从电网中快速的切除,保证电网无故障部分正常的运行。如果断路器不能在电力系统发生故障是开断线路、消除故障,就会使事故扩大造成大面积的停电。因此,高压断路器性能的好坏、工作可靠程度是决定电力系统安全运行的重要因素。在电力系统中工作的高压断路器必须满足灭弧、绝缘、发热和电动力方面的一般要求。 第一章高压断路器 第一节高压断路器的作用 高压断路器(或称高压开关)它不仅以切断或闭合高压电路中的空载电流和负荷电流,而且当系统发生故障时通过继电器保护装置的作用,切断过负荷电流和短路电流,它具有相当完善的灭弧结构和足够的断流能力,可分为:油断路

我国电力设备检测行业研究

我国电力设备检测行业研究 (一)行业概况 1、检测基本概念 检测是指检测机构接受产品生产商或产品用户的委托,综合运用科学方法及专业技术对某种产品的质量、安全、性能、环保等方面进行检测,出具检测报告,从而评定该种产品是否达到政府、行业和用户要求的质量、安全、性能及法规等方面的标准。 根据检测目的的不同,检测可以分为型式检测、认证检测、专业检测、入网检测、验收检测、监督检测、验证性检测、仲裁检测等。 根据检测对象的不同,检测可以分为工业品检测、日用消费品检测、食品检测、建筑建材检测、电子电气产品检测、电力设备检测等。 2、电力设备检测概述 (1)电力系统 电力系统是一个将生产、变换、输送、消费电能的各类设备联系在一起的有机整体,是一个由多种电力设备组成的复杂系统。电力系统示意图如下:

如上图所示,电力系统能量传递主要经过发电、输变电、配电、用电四大环节,主要电气设备可以划分为一次设备和二次设备两大类,具体如下: ①电力系统一次设备 电力系统一次设备将自然界的各种能源通过发电动力装置转化成电能,再经输电、变电和配电环节将电能供应到各用户,包括发电机、变压器、母线、输电线路、断路器、隔离开关、电抗器、电动机等电气设备。 ②电力系统二次设备 电力系统二次设备对一次设备进行监测、控制、调节、保护,并为运行、维护人员提供运行工况或生产指挥信号,包括通信信息系统、调度和管理系统、继电保护设备/自动化监控设备、电能计量系统、电源及辅助系统、电动汽车充换电系统、微电网控制设备/工业电器等电气设备及系统。

(2)电力设备检测 电力设备检测对电力系统的稳定运行具有重要作用。我国国土面积跨度大、气候环境复杂,电力设备需要面对各类极端环境的考验。与此同时,我国电网向着高电压、长距离、大容量、交直流混联方向发展,电网运行特性更加复杂,安全稳定问题日益突出,对电力设备运行和控制技术也提出了更高的要求。电力设备是保障系统安全稳定运行的第一道防线,一旦发生故障,可能带来极大的停电损失,因此,必须对电力设备进行全方位检测,确保其投入使用后能够保障电力系统的安全稳定运行。 电力设备检测是按照相关国家标准、行业标准等产品技术标准的要求,模拟电网内部各类运行环境,对电力设备在不同工况下的功能性能及稳定性进行考核,以评定电力设备是否满足质量要求。 电力系统二次设备检测是从电气性能及安全、动态模拟、电磁兼容、通信规约等各个方面全方位检测电力系统二次设备的性能,验证其是否能够满足电网安全稳定需求,是否能够投入电网使用。

综述电气设备状态检测重要性及状态维修技术

综述电气设备状态检测重要性及状态维修技术 【摘要】电气设备状态监测与故障诊断系统是整个电力系统状态检修的重要组成,而确保电气设备的安全、稳定运行,避免设备运行损坏是设备状态维修的主要目标,这就需要对设备进行定期检测和维修,只有这样才能保证电气设备的安全、稳定运行。文中作者根据多年的工作实践与经验研究,阐述了电气设备状态检测重要性及设备的缺陷与故障,而状态监测技术、状态评估技术、状态预测技术等是状态维修的主要处理技术。 【关键词】变电站;电气设备;维修技术 引言 对电气设备进行状态监测所指的是检测并获取电气设备的状态信息,分析这些信息以便能找到那些能反映设备状态特征的信息,从而获知设备正在运行中的健康状况,识别设备可能将会出现的缺陷,并预测检修时间,尽量减少设备的损坏。电力系统的重要电气设备,比如变压器、发电机、高压断路器等都是状态监测的主要对象。状态监测的原理就是利用各种传感器获得反映设备状态的参量,以及表征设备的特征参数,并与闭值参数进行比较以判断设备的状态情况。在线监测可以连续监测设备运行状态的变化,但还需要积累大量的经验和数据,才能判断被监测设备是否需停电维修或报警。为了更全面地反映设备的运行状态,还需要不断研究和引入一些反映设备运行状态的新特征量。 1、电气设备状态检测重要性 电气设备的定期检修试验,是整个电力系统长期以来的一条重要原则。状态检修是根据设备当下的实际情况来决定它是否需要及时检修,对需要进行检修的设备及时修理,可以延长其检修周期,下次需要检修时再进行检修。目前在实际系统使用中造成电气设备内部各类安全隐患有很多,较轻的安全隐患在试验中比较难发现,而随着设备使用年限的增加,又长期受到外部强大电磁交融的诱导下,安全隐患会逐渐转换为故障,慢慢就会导致供电系统随时出现停电故障,从而影响到整个系统供电质量。由此,电气预防试验能有效地保障电力系统设备可靠运行。 2、状态监测技术 设备状态监测技术是根据设备诊断的目的、针对设备故障模式、选用适当方法和装置来检查测量设备的状态信息,并对这些信息进行处理、抑制各种干扰信息、提取能反映设备状态特征的信息的一项信息检测处理技术。电气设备状态监测可分为3个基本步骤:1.数据采集;2.数据分析及特征提取;3.状态评估或故障诊断及分类。对于不同的步骤,根据不同的监测对象,我们可采用不同的方法。 2.1状态监测特征量的选取 由于传感器技术的使用和进步,使得电气设备能够被监测的状态量逐渐加大,当前常用的电气设备的主要状态监测要体现在:①变压器:以充油电力变压器最为常用,接着为SF6气体绝缘和环氧树脂浇注绝缘的变压器。其监测特征量包括了:油中溶解气体含量、铁芯接地电流、局部放电、绕组变形、高压套管的介损、电压、电流、温度等。②电容型设备:主要涉及了电容式电压互感器、电容器、电抗器、电流互感器、电缆等。其监测特征量包括了:介质损耗、泄漏电流、电容值等。③氧化锌避雷器:对其阻性电流监测,有时可监测总电流。④高压断路器:涉及到的有SF6断路器、油断路器、真空断路器、真空负荷开关。当前监测的特征量包括了:分合闸线圈电流、操作机构的行程、速度和机械振动等。 2.2状态监测间隔期的确定 状态监测主要是利用状态监测的方式检查设备的故障情况,当确定故障后应当采取相应的措施来处理存在的危险,及时避免和预防功能故障的发生。这就需要对设备采取间隔期状态监测,根据不同情况的监测状态来弄清楚设备的具体情况,如果设备被检查到有存在故障的可能后,就要根据不同的情况而进行相关的检查或维修。 2.2.1按安全性要求确定状态监测的间隔期按安全性要求来确定状态监测的间隔期,可把将已出现的潜在故 李明 梧州市东能电力安装有限公司 543000 障继续发展为功能故障的概率设为P a ,如果要求功能故障发生概率控 制在,则可以确定状态监测的间隔期Tc。 P a =(1-P)n n=logP a /log(1-P)因此,状态维修的间隔期Tc为T C =T/n 检测过于频繁会浪费维修资源,因此需要综合权衡来确定T c ,如果想绝对不发生任何功能故障是不可能的,必须把功能故障发生的概率控制到规定的可接受的可靠性水平之内,以确保安全性。这种规定的可接受的可靠性水平是根据现场设备的实际情况及故障后果所事先确定的。一般来说,设备故障具有安全性影响时,在T内至少应做3次检测,也就是状态维修间隔期不得大于T/3。 2.2.2按经济性要求确定状态监测的间隔期当故障不危及设备安全,而预防性维修工作的费用损失少于故障损失时,则按最少费用损失的要求来确定状态监测的间隔期。 设单位时间状态维修的次数为n,该值越大设备故障被检测出的可能性越大,发生功能故障的可能性就越小。因此故障率λ是维修次数n 的函数, 即式中K为单位时间内进行一次状态维修的故障率。用这种方法确定间隔期,须已知一次事故后维修的平均费用C F ,一次状态维修的平均费用C p 。则总的维修费用C为: 于是有 然后令dC/dt=0就可以求得状态监测的间隔期 以上综述是确定状态监测时间间隔期的方法,在实际应用中还会 遇到很多困难。因为在计算间隔期时做出了很多的假设,而这些假设的成立都要有许多实际数据和支持验证,在工程实践应用中这些数据的支持和验证还是远远不够的。 3、状态预测技术 设备运行状态的预测是从已知运行状态出发、考虑运行、气候、历史等相关因素,对未来的运行状态作出预测。电气设备的定期预防性试验作业程序十分复杂,且随着电力系统的迅速发展,电气设备的数量也会越来越多,如果逐一对每台设备进行离线试验,势必需要更长的试验周期,这样就会增加设备产生故障的危险性。因此通过预测预防试验参数值,在预防性试验进行之前,预知进行设备的状态,就可以更好地将设备事故防患于未然,提高设备的运行可靠性。常用的状态预测中最为普遍的方法主要分别以下几点:时间序列预测法、回归分析预测法、模糊预测法、灰色预测法、人工神经网络法。 ①时间序列预测是最普遍且有效的传统状态预测方法,作为传统状态预测方法可以对不同时刻观测值的相关性进行反映,主要显现出状态变化的“惯性”,主要能够如实反映出观测值的变化趋势。 ②回归分析预测法是根据历史资料建立数学模型,将预测目标作为因变量,将影响预测目标的因素作为自变量,预测事物未来状态。研究各组变量之间的相关性,得到表示它们之间的定量关系的经验回归方程式,进行预测。 ③模糊预测法是将数据和语言形成模糊规则库,这需要应用模糊逻辑和预报人员的专业知识,用线性逼近非线性的动态系统进行预测。但是由于模糊预测不具备学习能力,所以在实际应用中,单纯应用模糊预测的精度往往不甚理想。 (>>下转第249页)

电气设备的高压试验及其安全策略研究

电气设备的高压试验及其安全策略研究 发表时间:2018-07-10T09:29:33.187Z 来源:《基层建设》2018年第15期作者:赵凯 [导读] 摘要:随着人们用电需求的提高,对于电力设备的安全性更加注重,进而电气设备的高压试验的安全策略成为新的热点问题。 宁夏送变电工程有限公司宁夏银川 750004 摘要:随着人们用电需求的提高,对于电力设备的安全性更加注重,进而电气设备的高压试验的安全策略成为新的热点问题。本文正对这一问题,主要从电气设备进行高压试验的必要性、电力设备高压试验方法、电气设备进行高压试验的注意原则以及电力设备高压试验的安全保障策略四个方面对此进行了深入的研究,以期指导实践。 关键词:电气设备;高压试验;安全;策略 随着国家经济和科技的不断发展,人们的用电需求和逐年增加,供电安全问题也成为社会的热点问题。作为电力系统基础的电力设备,其安全问题也渐渐成为我国电力企业及其重视的问题之一,在电力企业整个电网的运行过程中,不同的电气设备有着不同的特性、技术特性以及功能,因此工作人员在对电气设备进行高压试验时,必须结合每一设备的不同点进行试验工作,并且根据不同的设备得出的结论进行分析总结,制定出符合电力系统实际并且方便后续维护的安全策略,进而提高电气设备的安全系数,让人们在生活、学习和工作中可以享受电力系统更加舒适安全的服务。 一、电气设备进行高压试验的必要性 众所周知,任何设备使用时间过长都会导致问题的出现,作为极需要保障使用安全的电气设备自然也不例外。电气设备作为电力系统中的基础和关键,一旦出现运行问题,很有可能会导致整个电力系统异常,因此,我们必须在电力设备日常工作中进行高压试验,今早发现问题,解决问题,尽量将损失降到最低,把一切异常阻止在摇篮里。关于电气设备的高压试验,现阶段主要是利用相应的试验方法对整个设备的绝缘性能以及安全抗压的性能进行测试,之后在根据试验得出的结果进行全面的分析,进而制定出相应的防止策略进行预防,这样即使设备当前没有异常,也可以提前做好预防准备,如若电气设备出现了问题,到时也你能做到轻松应对,不至于无计可施。综合以上原因,对电力系统中的电气设备进行相应的高压试验是非常有必要的一个过程,因此,在整个电力系统运行时,电力系统的相关工作人员必须定时定期的对电气设备进行高压试验。 二、电力设备高压试验方法 对电力设备进行高压试验是检测其运行是否正常的主要方式,在设备进行测验时,因为电力设备比较复杂,在再加上这一测验方法的对象广泛,所以工作人员在多电力设备进行高压试验时必须具有足够的耐心和细心,才能让在电力设备不受损伤的基础上,做好整体的试验工作。目前,我国引进了许多电力设备高压试验的方法,经过多次调查也实践,比较常用的方法主要有以下三种:(一)、局部放电试验法 局部放电试验法作为一种测试电力设备局部性能的方法,主要的测试原理就是听通过对电力设备局部放电区域进行强度的检验,进而测试出该电力设备在高压下的安全系数。而且这一方法必须完全按照一定的试验测试顺序,在这一试验进行时,主要的过程是首先将电力设备的运行电压保持在测验的电压值范围内,之后再通过稳定的刺激电压这一方法,将电力设备的放电量测出,追后工作人员通过测试得出的放电量来分析出该电气设备在高压下的电力损耗程度和安全性。 (二)、截波冲击试验 截波冲击实验法其实可以分为尾波截断和多级点火截断两种试验方法。其主要的试验过程就是截取试验中设备的波形,之后再根据波形的特点分析出设备的安全性和状态。尾波截断主要是通过波形和时间点的差别进行波点特征分析,而多级点火截断方法则是通过IEC标准棒状的间隙来得到试验所需的波形。 (三)、操作波试验法 在电力设备高压试验常见的三种方法中,操作波实验法一般是电气设备前期安全检查时进行,同时必须严格按照过程来试验的标准最高的方法,检测数据精准以及测试过程灵敏都是这一试验方法的优势所在。因为其对空气间隙的感应比较快捷和敏感,使得这一方法可以快熟测出电气设备是否满足安全要求标准。 三、电气设备进行高压试验的注意原则 (一)、安全性原则 工作人员在度电气设备进行高压试验时,必须贯彻实施好安全性原则,确保自身和设备的安全。最好的方法就是做好区域内的绝缘隔离措施。工作人员在对设备进行高压测试时,可以在测试区域放置一个可以接触到地面的隔栏进行隔离,如果场地足够大的话,最好还可以划分出一个隔离的安全区域,防止无关人员进入试验区域。同时试验相关人员还必须注意自身安全,严格按照规定进行操作,禁止违规操作,保持安全距离,最大限度地保证自己的人生安全和电气设备的安全。 (二)、接地的可靠性原则 为了确保试验工作人员的安全,在进行电气设备的高压试验时,还必须贯彻实施好接地的可靠性原则。实验人员在进行试验前后,都必须要保证好实验室内电位的连接安全,检查好试验设备的金属外壳的接地情况,保证每个设备节点金属性连接良好,最主要的是必须将电气设备的接线面积控制在规定范围内。 (三)、严禁感应电压和放电反击情况发生 高压试验进行时,两个距离较近的设备常出现感应电动势情况,对整个实验准确性和安全性造成影响。因此,工作人员在的设备进行连接时必须使用短线进行连接,而对于闲置的电气设备也要做好避免短路的接线处理。同时,在进行试验时,实验人员也应该尽量降低电反击的影响程度。 四、电力设备高压试验的安全保障策略 (一)、培养员工的安全意识 在对电气设备进行试验时,因为试验对象的复杂程度和细致程度之高,要求进行高压测试的工作人员必须在具有扎实的专业知识和素养的基础上,建立起基本的安全意识。高压测验一般涵盖了电力系统中多个核心的电气设备,过程中,任何一个电气设备发生故障或损伤,都可以导致整个电力系统出现瘫痪,给电网的运行造成不必要的压力。所以电力企业必须重视培养员工的安全意识,只有将安全常放

物联网技术在电力设备状态监测系统中的应用

物联网技术在电力设备状态监测系统中的应用 北极星电力信息化网 2013-11-1 11:05:33 我要投稿 关键词: 在线监测避雷器电力设备 北极星电力软件网讯:摘要:避雷器作为电力设备的过电压保护装置,其性能的优劣对电力设备安全运行起着很大作用。提出了一种基于无线传感技术的避雷器状态监测系统,并利用基波分析法来诊断避雷器运行状态,并取得较好效果。 0 引言 金属氧化物避雷器已在电力系统中得到了广泛的应用,其作为电力设备的过电压保护装置,对电力设备安全运行起着很大的作用。避雷器在运行电压作用下产生泄漏电流,包括容性电流和阻性电流,其中容性电流的大小仅对电压分布有意义,并不影响发热,而阻性电流则是造成金属氧化物电阻片发热的真正原因。当避雷器内部出现异常时,主要是阀片严重劣化和内壁受潮等阻性分量将明显增大,并可能导致热稳定破坏,造成避雷器损坏。但这个持续电流阻性分量的增大一般是经过一个过程的,因此运行中监测金属氧化物避雷器的持续电流的阻性分量,是保证安全运行的有效措施。 目前开展避雷器带电测试方式有全泄漏电流在线测试技术和利用便携式测试仪定期带电检测阻性电流。这二种测试方式均存在不足之处,其中前者只能观测全泄漏电 流无法区分容性电流和阻性电流,由于采用模拟测试技术结果易受空间电磁场干扰、精度差、准确度差;而后者无法实现实时监测,虽然能较为准确地测量阻性电流分量,但试验接线较繁琐,大型变电所引线布置复杂难以满足测试要求,雷雨季节前后各变电所普遍开展测试工作量大,此外测试过程中需要在运行设备上进行接线对工作人员及试验设备都有一定安全风险。因此,研究一种新型的避雷器状态监测系统已迫在眉睫。 1 以前避雷器在线监测存在的不足 以往有过避雷器泄漏电流在线监控实验性产品,主要采用RS-485,CAN组成监控网络。其安全保证主要是光电隔离,然而这类避雷器泄漏电流在线监控方案的安全性是有疑问的。由于避雷器在动作时要承受巨大的雷击能量,避雷器泄漏电流监视器同样也要承受这个能量,如果采用这类在线监视技术不可避免的需要布设供电和通讯线缆,电源线只能采用铜缆,这会带来巨大风险,如果装置出现问题很可能将雷击能量引入控制室,导致故障扩散到变电站主控设备而使得整个变电站崩溃。由于安全风险巨大,采用此类在线监测方案的产品几乎没有得到变电站采用。

电力设备检修与巡视检查管理规则

电力设备检修及巡视检查管理规则 第一章电力设备检修管理 一、电力设备检修原则 第1条电力设备检修,应贯彻“预防为主,保养与维修、一般修与重点修、状态检测与计划检修相结合”的原则,按标准精检细修,不断提高检修质量。 第2条电力设备检修采用状态检测和计划检修方式,根据设备状态确定检修等级及内容,合理安排计划。 第3条电力设备检修工作由供电段技术科根据铁道部《铁路电力管理规则》进行管理,由供电车间或检修车间组织按修前调查、修中检查、修后验收三步实施。 二、电力检修技术管理 第4条年度电力检修计划的编制工作应逐级进行,每年1月15日前由供电车间根据电力设备检修范围及周期编制次年的保养计划,对设备名称、规格、地点、数量建立明细表,按段统一格式报段技术科。由段技术科负责汇总编制全段重点修和保养计划并填报《年度电力设备维修、保养工作计划表》(附表1),经主管段长审批签字后,于1月31日前上报机务处。 第5条计量设备的检修计划由检修车间根据国家、省部级相关规定标准进行编制。 第6条在帐的固定资产,虽未履行报废手续,但已拆除或

封存和列入年度大修计划的设备,可不编入检修计划。 第7条检修计划由供电段技术科负责下达到各供电车间,由供电车间组织按计划检修。 第8条电力设备检修工作应遵照部规定检修范围进行,做到按周期、修程、标准、工艺精检细修,保证设备安全可靠的运行到下次检修周期。 第9条修前调查、修中检查、修后验收制度 1.修前调查:设备修理前应进行质量状态检查,确定检修项目,认真做好设计文件和材料、工具、备件及劳力的准备工作。 2.修中检查:检修过程中检修人员必须按工艺精检细修,解决技术关键,加强零、部件的中间检查,保证检修质量。同时对设备的关键部件、主要的技术参数和隐蔽工程,应认真做好记录。 3.修后验收:按设备鉴定标准进行验收。大修工程验收应按《铁路建筑安装工程质量评定验交标准(电力)》的有关规定进行,并提出验收报告。验收报告包括:竣工图纸、试验合格证、各种记录和技术文件,并及时纳入技术档案。 第10条电力设备检修工作实行《电力设备维修、保养工作单》(附表2)制度。维修工作单由车间填写,段、车间保存,保养工作单由班组填写,车间、班组保存,保存期为两年。各项电力设备检修工作结束后,必须认真填写《电力设备维修、保养工作单》。 第11条电力设备检修工作实行检修计划、检修工作单、

电气一次设备在线检测和状态检修要点讨论

电气一次设备在线检测和状态检修要点讨论 发表时间:2018-08-01T10:59:53.247Z 来源:《电力设备》2018年第11期作者:刘伟 [导读] 摘要:电厂电气一次设备的状态检修工作包括多方面内容,例如在线设备检测与故障诊断、设备维修等,并由多个设备的状态检修组成,工作量较大。 (国网朔州供电公司山西朔州 036002) 摘要:电厂电气一次设备的状态检修工作包括多方面内容,例如在线设备检测与故障诊断、设备维修等,并由多个设备的状态检修组成,工作量较大。然而和传统的定期维修相比,状态检修对于一次设备来讲显得更为实用。 关键词:电气一次设备;检修状态;定期维修 引言:在电力系统中,直接用于生产和使用电能,比控制回路电压高的电气设备称为一次设备。其主要包括发电机、变压器、断路器、输电线路等。由一次设备相互连接,构成生产、输送、分配电能或直接用于生产的电气回路称为一次回路。一次设备的主要功能包括进行电力生产和电能转换、接通和断开电路的开关、保护电气、接地装置等。在变电站一次设备运行过程中,其状态检修是非常重要的。 1电力一次设备在线监测 1.1 在线监测的特点 在线监测是指在设备正常运行的情况下,对于设备的整体情况进行连续或者定期的监测,这种行为一般自动进行。做好在线监测工作能在第一时间发现设备运行时的异常状况,及时进行整修以延长设备的使用寿命。对于一些旧的或者存在不安全因素的问题设备需跟踪监测,尽量延长其使用寿命;对于正常的设备应随时掌握其健康情况,为设备正常工作提供保障。至今为止,利用在线监测能使一次设备安全运行,保证变压器不因工作量大而受到破损,发生停电状况。由于其为自动操作,所以可使检修、监测过程更加安全,减少投入资金,是我国应用最早、最全面的监测技术,效果非常好,应用最为广泛。 1.2 电力一次设备的在线监测在智能电网中的作用 智能电网是在每个输电元件、变电站以及发电站都设有一个具有较强操作系统的单一、独立的处理器,也可用代理器,每个处理器或者代理器彼此间都可以进行双向、迅速的信号传输,进而形成规模庞大的分布式平台。所有处理器都要与其相应部件连接,以了解处理器或代理器的运行情况,再通过高速光纤的通信系统把数据输送至其他的处理器或者代理器,每个处理器的工作既相互独立,又彼此相关,可协调控制工作。 智能电网自愈控制是指当出现事故时,在影响电网的整体安全之前将局部地区的故障处理后,进而能自动恢复的功能。因此,电力一次设备的在线监测装置也就是智能电网能够进行自愈控制的基本结构。电力一次设备在线监测开始是对一次设备的状态进行常规检测,之后发展成一次设备状态的检修,取代了旧时的计划检修。现阶段的在线监测还无法实现真正意义上的在线检修,但是,如果以此为基础的状态监测的准确率得到很大程度的提升,并且使监测的频率加快,就能逐渐取代传统技术,成为自愈智能电网中的智能处理器。如此一来,在全新的传感器和在线监测装置投入使用后成为智能代理器,进而使电网的适应性与重组能力加强。 2 状态检修原则 电气一次设备状态检修要与电厂的实际情况相结合,制定检修计划,及时对设备出现的各种问题进行维修,确保电气一次设备的正常使用。开展电气一次设备状态检修时,必须遵循以下原则: 2.1 设备绝缘良好 电厂对电气一次设备开展状态检修工作时,首先要选择具有良好绝缘性的设备。只有优质的绝缘材料才能符合电力设备的材料要求,其抗腐蚀性也更好。其次,技术人员必须对一次设备材料进行绝缘特性检测,将检测材料设备的绝缘性和相应标准、规范进行比较,确保设备和材料具备良好的绝缘性。 2.2检修操作应严格 电气一次设备状态检修基本是在设备带电的情况下进行,这增加了检修工作的危险性,因此检修前要对检修人员做好相关的安全培训,只有那些具有丰富经验或是具备过硬专业素质的工作人员才能参与检修。当工作人员在开展状态检修时,必须安排安全监理人员进行全程监护,及时提醒和纠正不当、粗心的操作,一旦出现问题,也能及时做好应急工作,促进电气一次设备状态检修的安全开展。 2.3 热故障诊断 对电气一次设备进行温度丈量时,需用到红外线热成像原理技术,该技术能对一次设备运行状况是否正常做出精确判断。运行过程中的一次设备可能存在接头处发热现象,此时通过红外线热成像技术能将设备的发热方位和发热温度进行精确丈量,从而准确地对热故障进行辨识。 3 状态检修的应用 电气一次设备状态检修的内容分别是隔离开关检修、断路器检修、变压器检修。 3.1 隔离开关 隔离开关常见故障主要是接触不良和开关触点过热现象。产生接触不良的主要原因通常由安装调试或制造工艺造成,即未利用铜铝过渡材料对铜铝接触进行处理,安装时未将接触面打磨完全,导致隔离开关无法完全合闸、触头臂与接线座连接螺母松动,其结果是接线座产生过热现象。由此,需从制作工艺方面对隔离开关的隔离面进行设计,规范过渡材料使用,并要在安装过程中将接触面进行完全打磨,降低隔离开关的故障发生率。由于隔离开关是故障频发点,在装置技术不精的情况下,需经常性地对开关进行调试或调整,最好有针对性地进行隔离开关的要点维修[2]。 3.2 断路器 断路器可切断故障电路,避免安全事故的发生,确保电源线路及电动机的安全。温度过高、拒动、误动、反常声响、起火等是断路器较为常见的故障。其中断路器拒动主要是因为蓄电池欠压、二次接线时存在错误操作、线圈层间短路、线圈低电压不合格、互感器衔接过错使得控制回路短路、接触不良、直流系统电压过高以及过低等。 总之,断路器拒动的原因较多,当断路器遇到故障时,通过故障表征逐一排查,此间需要投入备用系统维系电力系统的运转。当出现越级跳闸时,要先检测断路器的动作,如果是保护动作导致越级跳闸,需合上拒跳的隔离开关,使断路器继续运行供电即可。当出现

关于一次电气设备高压实验分析

关于一次电气设备高压实验分析 摘要:在近几年当中,我国的经济在不断的发展,各方面的需求也在不断的增加,电已经在全国绝大多数地方普遍应用,人们的生活已经离不开电的存在,各 种电气电子产品的使用,使得电成为人们生活当中必不可少的一部分。这就对我 国电力的要求越来越大,可是在供电的时候,供电设备都会有一些电力的损耗, 而且这损耗的量是巨大的,造成了很大的损失和经济上的浪费。因此,供电的企 业都会通过高压实验来检测一次电气设备的性能,从而减少浪费,提高利用率。 关键词:一次设备;高压;实验 引言 目前,中国社会的发展已经完全离不开电能,其不仅影响中国社会生产力, 对经济发展也有一定的支撑作用。电力系统中的电气设备十分重要,不论是在电 能供应还是使用上都发挥出巨大的作用。一旦电气设备出现故障,不仅影响整个 供电系统正常运行,也会产生一定的安全隐患。因此,为了保证中国电力系统稳 定运行,就需要对电气设备进行安全测试,安全测试中的一个重点就是高压试验。 1对于一次设备进行高压实验的原因以及意义 对一次电气设备进行高压实验对于电力产生系统是一个非常重要的步骤,如 果对一次电气设备进行高压实验,那么对于电气设备有很好的维护作用,减少在 电力产生的过程中产生的消耗,同时这样也可以减少这一方面的经济投入,而且 还可以保证设备的正常运行,从而对工作人员的安全有一定的保障。所以高压实验,对于一次电气设备来说有着很重要的意义,高压设备能够正常的运行、稳定 的运行,对于整个电网的稳定性来说是一个很好的保障。 2一次设备高压实验的内容 对于一次设备的高压实验,就是用一定的技术来对他进行间接或者是连续的 实验,然后观测记录数据,与标准数据进行比较,从而发现其是否能够正常运行,是不是有存在什么安全隐患,如果存在安全隐患,便会制定专门的措施来解决这 些问题,以防事故的发生,以此让电力系统能够正常运行。所以对于一次设备的 高压实验可以概括为以下几个步骤:首先,我们需要有一个合适的电源,这个电 源继续要满足相关软件的运行配置,还需要与设备相匹配;然后进行实验,记下 数据,再根据所得的数据进行精密专业的判断,预测设备的运行趋势,判断机器 是否有故障,是否有存在安全隐患;最后对电气设备进行评估,对整个设备有一 个整体的判断,以便对其进行管理和修理。具体实验内容: 2.1截波冲击试验 这个试验的目的是了解电气设备是否存在问题,利用截断相关波形的原理进 行试验。一般,中国比较常用的截波方式是波尾截断波形,按照IEC标准的棒状 间隙截断,或采用多级点火截断装置进行截断。通过多次研究与对比,发现采用 多级点火截断装置进行截波效果好,当截断时间差异大于0.15μs,说明试验结果 有问题。需要注意的是,截波冲击试验最好是与全波冲击试验交替进行,并采用 负极性截波。 2.2局部放电试验 该试验主要是针对电气设备局部进行试验,一般是在绝缘试验结束之后进行。目前工作中比较频繁使用到的是以工频耐压作为预激磁电压和以Um为预激磁电 压为主,以工频耐压作为预激磁电压是对局部放电量进行检测,而以Um为预激 磁电压是降低到局部放电试验电压后,持续1h,从而对局部放电量进行检测。因

相关文档
最新文档