2016电工杯A题国家二等奖电力系统短期负荷预测
短期电力负荷预测影响因素分析与研究

短期电力负荷预测影响因素分析与研究短期电力负荷预测是电力系统运行中的关键问题,准确的负荷预测可以帮助电力系统进行有效的调度和运行,从而保障电力系统的安全稳定运行。
影响电力负荷预测的因素多种多样,包括天气、人口变化、经济活动等,本文将对这些影响因素进行分析与研究。
一、天气因素天气是影响电力负荷的重要因素之一。
气温的变化会直接影响到用电需求,一般来说,夏季高温和冬季寒冷会使得电力负荷急剧增加,而春秋季节的气温变化对电力负荷的影响也比较明显。
降雨、下雪等天气情况也会对电力负荷产生一定的影响,比如暴雨导致的停电事件、雪灾导致的电网故障等都会使得电力负荷的预测产生较大的偏差。
在短期电力负荷预测中,对天气因素进行准确的预测和分析是非常关键的。
目前,气象预测技术已经非常发达,可以通过气象资料和气象模型对未来的天气情况进行较为准确的预测,这为短期电力负荷预测提供了重要的依据。
二、人口变化人口变化也是影响电力负荷的重要因素之一。
随着城市化进程的不断加快,人口的集中分布和增长都会对电力系统的负荷产生影响。
比如在工作日的早晚高峰期,由于上下班的人流聚集,导致电力负荷急剧增加;而在节假日或者夜间,人口分布相对分散,电力负荷相对减少。
对人口变化进行准确的预测和分析是短期电力负荷预测的重要内容之一。
通过对城市化进程、人口流动情况等进行深入研究,可以掌握人口分布规律,从而更准确地预测未来的电力负荷。
三、经济活动经济活动也是影响电力负荷的重要因素之一。
一般来说,经济的发展水平越高,工业生产和商业活动越发达,电力负荷就会越大。
经济的发展状况、行业结构的变化等都会对电力负荷产生影响。
四、其他因素除了天气、人口变化、经济活动等因素外,还有一些其他因素也会对电力负荷预测产生影响,比如节假日的安排、特殊事件的发生等。
在研究电力负荷预测的影响因素时,还需要充分考虑这些因素的影响,并进行科学的分析和预测。
在总结各种影响因素的基础上,我们可以利用现代科技手段,比如大数据分析、人工智能等技术,对电力负荷进行更准确的预测。
【文献综述】电力系统短期负荷预测方法及研究

文献综述电气工程与自动化电力系统短期负荷预测方法及研究一、负荷预测的原理电力系统负荷预测是根据现在和过去时刻的用电负荷情况,估计未来时刻用电负荷的大小。
因此它的研究对象是不确定的事件,随机事件。
而电力负荷预测要预知负荷的发展趋势和可能达到的状况,下面介绍一些原理,用于指导负荷预测工作:1)可知性原理:预测对象的发展规律,其未来的发展趋势和状况是可以为人民所知道的,这是人们进行预测活动的基本依据。
2)可能性原理因事物的发展变化是在内因和外因共同作用下进行的,内因的变化和外因作用大小不同,因此事物的发展变化会有很多可能。
3)连续性原理预测对象的发展是一个连续化的过程,其未来的发展是这个过程的连续。
电力系统负荷的发展变化同样存在着惯性,这种惯性正是进行负荷预测的主要依据4)相似性原理在很多情况下,作为预测对象的一个事物,其现在的发展过程和状况可能与过去一定阶段的发展过程和状况相似,因此可根据已知的发展过程及状况来预测所预测对象的未来的发展过程及状况。
5) 系统性原理预测对象的未来发展是系统整体的动态发展,而整个系统的动态发展与它的各个组成部分和影响因素之间的相互作用相互影响密切相关。
只有系统整体最佳预测,才是最高质量的预测,才能为决策者提供最佳预测方案。
二、负荷预测的研究背景众所周知,电力系统的作用就是为各类用户提供可靠且合乎质量要求的电能,以随时满足各类负荷的需求。
而电力系统负荷预测是电力系统调度,用电,计划,规划等管理部门的主要工作之一。
提供负荷预测技术水平,有利于用电管理,有利于合理安排电网运行方式和机组检修计划,有利于节煤,节油和见地发电成本,有利于制定合理的电源建设规划,有利于提供电力系统的经济效益和社会效益。
因此,负荷预测已成为事先电力系统管理现代化的主要内容之一。
电力系统负荷预测按预测时间可以分为长期,中期,短期和超短期。
短期电力负荷预测主要是指预报未来几小时、一天至几天的电力负荷并做出估计,目的是给各个电厂安排日,周发电计划,是电力系统最为关键的一类负荷预测。
电力系统中负荷预测与管理

电力系统中负荷预测与管理在现代社会中,电力已经成为了我们生活和生产不可或缺的能源。
从家庭的照明、电器使用,到工厂的大规模生产设备运转,无一不需要稳定可靠的电力供应。
而电力系统的高效运行,离不开对负荷的准确预测和科学管理。
负荷预测,简单来说,就是对未来一段时间内电力用户的用电需求进行预估。
这可不是一件简单的事情,它需要考虑众多因素。
比如说季节的变化,夏天大家都开空调,冬天要用电取暖,这用电量自然就上去了;还有每天不同的时间段,白天工厂开工、写字楼办公,用电量比较大,晚上居民用电增多,工业用电减少。
另外,社会经济的发展状况也会对负荷产生影响,新的工厂开业、新的商业区建成,都会增加用电需求。
准确的负荷预测对于电力系统的规划和运行具有极其重要的意义。
如果预测过高,就会导致电力设施的过度建设,造成资源的浪费;而预测过低,则可能无法满足用户的需求,出现停电等问题,影响正常的生产生活。
那怎么进行负荷预测呢?目前有多种方法。
一种是基于历史数据的分析。
通过收集过去一段时间内的用电数据,找出其中的规律和趋势,然后利用数学模型来预测未来的负荷。
另一种是考虑各种影响因素,比如天气、节假日、经济形势等,建立综合的预测模型。
在实际操作中,通常会将多种方法结合起来使用,以提高预测的准确性。
比如说,先通过历史数据的分析得出一个初步的预测结果,然后再根据当前的天气情况、节假日安排等因素进行调整。
说完负荷预测,咱们再来说说负荷管理。
负荷管理的目的是在满足用户用电需求的前提下,实现电力系统的经济、安全和稳定运行。
为了实现有效的负荷管理,电力部门通常会采取一些措施。
比如实行分时电价,在用电高峰时段电价较高,低谷时段电价较低,引导用户合理安排用电时间,从而达到削峰填谷的效果,减轻电网的压力。
还有就是推广节能设备和技术,提高能源利用效率,减少不必要的电力消耗。
对于一些大型的用电企业,电力部门还会与其签订合同,约定在用电高峰时适当减少用电量,以保障整个电网的稳定运行。
电力系统负荷预测

04
年负荷预测
根据历史年负荷数据 ,对未来一年的电力 需求进行预测。
负荷预测的步骤
数据收集
收集历史负荷数据、天气数据、节假日信息等。
数据处理
对收集的数据进行清洗、整理,消除异常值和缺失值。
影响因素分析
分析天气、节假日、政策等因素对负荷的影响。
模型选择与建立
选择适合的预测模型,如时间序列分析、神经网络等,建立预测模型 。
电价政策
电价政策也会影响电力负荷,如提高电价可以抑制电力浪费,从而降低电力负 荷。
03
负荷预测的方法
Chapter
时间序列法
时间序列法需要具备连续、准确 的历史负荷数据,数据质量对预 测结果影响较大。
时间序列法简单易行,但受历史 数据影响较大,如历史数据存在 异常或缺失,将影响预测结果的 准确性。
稳定性
评估预测模型在时间序列上的表现是否稳定,通 常通过计算预测误差的方差或标准差来实现。
3
鲁棒性
评估预测模型对于异常数据或噪声数据的抵抗能 力。
模型优化方法
数据预处理
对原始数据进行清洗、去噪、填充缺失 值等处理,以提高预测模型的准确性。
超参数调优
通过调整模型的超参数(如学习率、 迭代次数、隐藏层节点数等),以提
电力系统负荷预测
汇报人: 日期:
目录
• 电力系统负荷预测概述 • 负荷预测的影响因素 • 负荷预测的方法 • 负荷预测的模型构建与优化 • 负荷预测的应用案例 • 负荷预测的未来发展趋势与挑战
01
电力系统负荷预测概述
Chapter
负荷预测的概念
01
负荷预测是指根据历史负荷数据,考虑天气、节假日、政策等因素,对未来电力 需求进行预测。
电力系统负荷预测方法及特点

电力系统负荷预测方法及特点1引言负荷预测是从已知的用电需求出发,考虑政治、经济、气候等相关因素,对未来的用电需求做出的预测。
负荷预测包括两方面的含义:对未来需求量(功率)的预测和未来用电量(能量)的预测。
电力需求量的预测决定发电、输电、配电系统新增容量的大小;电能预测决定发电设备的类型(如调峰机组、基荷机组等)。
负荷预测的目的就是提供负荷发展状况及水平,同时确定各供电区、各规划年供用电量、供用电最大负荷和规划地区总的负荷发展水平,确定各规划年用电负荷构成。
2负荷预测的方法及特点2.1单耗法按照国家安排的产品产量、产值计划和用电单耗确定需电量。
单耗法分”产品单耗法"和“产值单耗法”两种。
采用”单耗法”预测负荷前的关键是确定适当的产品单耗或产值单耗。
从我国的实际情况来看,一般规律是产品单耗逐年上升,产值单耗逐年下降。
单耗法的优点是:方法简单,对短期负荷预测效果较好。
缺点是:需做大量细致的调研工作,比较笼统,很难反映现代经济、政治、气候等条件的影响。
2.2趋势外推法当电力负荷依时间变化呈现某种上升或下降的趋势,并且无明显的季节波动,又能找到一条合适的函数曲线反映这种变化趋势时,就可以用时间t为自变量,时序数值y为因变量,建立趋势模型y=f(t)°当有理由相信这种趋势能够延伸到未来时,赋予变量t所需要的值,可以得到相应时刻的时间序列未来值。
这就是趋势外推法。
应用趋势外推法有两个假设条件:①假设负荷没有跳跃式变化;②假定负荷的发展因素也决定负荷未来的发展,其条件是不变或变化不大。
选择合适的趋势模型是应用趋势外推法的重要环节,图形识别法和差分法是选择趋势模型的两种基本方法。
外推法有线性趋势预测法、对数趋势预测法、二次曲线趋势预测法、指数曲线趋势预测法、生长曲线趋势预测法。
趋势外推法的优点是:只需要历史数据、所需的数据量较少。
缺点是:如果负荷出现变动,会引起较大的误差。
2.3弹性系数法弹性系数是电量平均增长率与国内生产总值之间的比值,根据国内生产总值的增长速度结合弹性系数得到规划期末的总用电量。
电力系统负荷预测方法研究

电力系统负荷预测方法研究随着社会的不断发展,电力已经成为了现代工业、农业、交通等各行各业中不可或缺的基础设施之一。
而负荷预测就是电力系统中至关重要的环节。
一般而言,负荷预测包括长期预测、中期预测和短期预测三个层次。
其中长期预测可以用于电力生产和输电设施的投入规划,中期预测则用于电力系统运行调度和电力市场交易,而短期预测则主要涉及电力系统实时调度和安全运行管理等方面。
本文主要就电力系统负荷预测的方法进行讨论。
一、时间序列预测方法时间序列预测方法是目前电力系统负荷预测主要手段之一。
这种方法最重要的是基于一个假设,即历史负荷记录与未来负荷变化之间存在一定的规律,可以利用这种规律进行负荷预测。
时间序列预测方法通常分为单变量预测和多变量预测两种类型。
1. 单变量预测单变量预测并不涉及负荷变化所可能影响的其他因素,而是仅基于历史负荷数据来预测未来负荷变化。
该方法适用于短期预测,可使用的预测模型包括时间序列分析、单指数平滑法、双指数平滑法和三指数平滑法四种。
时间序列分析是以时间序列为基础的建模方法,它通常分为平稳时间序列和非平稳时间序列两个类别。
对于平稳时间序列,可使用ARMA模型进行建模和预测。
而对于非平稳时间序列,常使用ARIMA模型来进行预测。
单指数平滑法、双指数平滑法和三指数平滑法是基于加权平均值的方法,通过对历史数据进行平滑处理,然后预测未来数据。
其中,单指数平滑可用于短期预测,而双指数平滑和三指数平滑则可用于中期预测。
2. 多变量预测多变量预测是一种更加复杂的预测方法,它考虑了负荷变化可能涉及的其他因素。
这些因素可以是天气、经济、节假日、工业生产等等,不同的因素之间关系非常复杂。
因此,这种方法需要使用更加复杂的模型进行建模和预测,如神经网络、支持向量机、贝叶斯网络、决策树等等。
二、模糊数学预测方法模糊数学预测方法是一种基于模糊逻辑理论的预测方法。
这种方法主要是针对具有不确定性的问题,因此对于电力系统等涉及多种因素的负荷预测而言,能够有效地发挥作用。
短期负荷预测

短期负荷预测引言短期负荷预测是电力系统运行和能源管理中非常重要的一部分。
通过对未来一段时间内的负荷进行准确的预测,可以有效地规划发电计划、购买电力和优化电网运行。
本文将介绍短期负荷预测的背景、方法和应用,并探讨电力行业中使用的一些常见的短期负荷预测技术。
背景随着经济的发展和人们对电力需求的增加,电力系统的负荷变化日益复杂。
准确地预测负荷变化对于电力系统的稳定运行和经济运营至关重要。
短期负荷预测一般指预测未来数小时、数天或数周内的负荷变化。
准确的短期负荷预测可以帮助电力系统实现以下目标:•确定电力需求,以满足各个时段的负荷需求;•优化发电计划和购买电力,以实现运营成本最小化;•预测电力需求的峰值和谷值,以优化电网运行和资源分配。
方法短期负荷预测的方法有多种,下面介绍一些常用的预测方法:统计方法统计方法是最常用的短期负荷预测方法之一。
它基于历史负荷数据进行预测,通过分析负荷的周期性和趋势来预测未来的负荷。
常见的统计方法包括:•移动平均法:根据历史负荷数据的平均值来预测未来的负荷;•季节性分解法:将负荷数据分解为长期趋势、季节性和随机成分,然后对这些分量进行预测;•线性回归法:通过拟合历史负荷数据的线性模型来预测未来的负荷。
机器学习方法机器学习方法是近年来在短期负荷预测中得到广泛应用的方法之一。
机器学习方法通过训练模型来学习输入特征与负荷之间的关系,并用学习到的模型对未来的负荷进行预测。
常见的机器学习方法包括:•支持向量机(SVM):通过构建一个高维特征空间来将样本分为不同类别,并用于负荷预测;•神经网络(NN):使用多层神经元来模拟人脑的学习和决策过程,对负荷进行预测;•随机森林(RF):将多个决策树组合起来,通过投票的方式预测负荷。
基于物理模型的方法基于物理模型的方法是基于电力系统的物理特性和运行原理进行负荷预测的方法。
这种方法需要建立电力系统的数学模型,并使用模型对未来的负荷进行预测。
常见的基于物理模型的方法包括:•方程组方法:根据负荷的物理特性,建立负荷预测模型,并使用模型对未来的负荷进行预测;•优化方法:将短期负荷预测问题转化为优化问题,并使用数学优化方法求解最优解。
2016电工杯数模大赛a题

2016电工杯数模大赛a题
2016年电工杯数学建模大赛A题是一个涉及数学建模和解决实际问题的竞赛题目。
根据我的了解,A题的具体内容可能涉及到某个具体的实际问题,可能涉及到数学模型的建立和求解,也可能需要进行数据分析和结果的解释等方面。
在这个题目中,参赛者可能需要考虑如何利用数学工具和方法对所提出的问题进行建模,可能需要运用概率统计、微积分、线性代数等数学知识,结合实际情况进行分析和求解。
此外,A题可能还需要参赛者具备一定的编程能力,能够利用计算机对模型进行仿真和求解。
在参赛者回答A题时,需要从实际问题出发,分析问题的背景和意义,明确问题的求解目标,提出合理的数学假设和模型假设,选择合适的数学方法进行建模和求解,并对结果进行合理的解释和分析。
同时,还需要考虑模型的合理性和稳定性,以及对结果的敏感性分析等方面。
总的来说,2016年电工杯数学建模大赛A题是一个综合性较强的竞赛题目,需要参赛者具备扎实的数学基础知识、良好的建模能
力和分析能力,以及较强的团队合作能力和创新思维。
希望我的回答能够对你有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
报名序号:1254论文题目:电力系统短期负荷预测指导教师:参赛学校:证书邮寄地址、邮编、收件人:报名序号:电力系统短期负荷预测摘 要提高负荷预测进度是保障电力系统优化决策科学性的重要手段。
根据已有电力负荷数据及气象因素数据,文章主要建立了4个模型来解决关于短期负荷预测方面的问题。
针对问题一,建立日最高负荷量模型、日最低负荷量模型、日峰谷差模型、日平均负荷量模型以及日负荷率模型。
利用Excel 软件可将两地区014年各个负荷量的统计值求出(详见附件1),其中地区二2014年1月1日的日最高负荷量、日最低负荷量、日峰谷差、日平均负荷量以及日负荷率分别为6765.5、3748.48、3017.05、5138.23和0.76。
通过观察两地2014年负荷数据变化曲线图,考虑数据的波动性等因素可得出地区二更准确的预测结果的结论。
针对问题二,构建多元线性回归模型,利用SPSS 软件对日最高负荷、日最低负荷、日平均负荷与各气象因素进行回归分析。
通过观察标准化残差图(详见图4),认为没有趋势性,回归模型有效。
用同样的方法可得出两地区各个因变量的回归方程(详见表5)。
对多元线性方程做回归误差分析,认为将不重要的气象因素剔除可减小误差。
利用逐步回归法可进行更合理的回归分析,得出优先推荐平均温度来提高负荷预测精度。
针对问题三,构建ARIMA 预测模型,对数据进行预处理,取每年春季的负荷量作为参照数据,消除了季节成分的影响。
通过自相关方面的分析,确定模型为ARIMA (1,1,1),利用SPSS 软件可得出所需的预测结果。
例如地区一在时间点T0000的负荷量预测模型为10.9280.999t t t x x ε-=+-。
模型拟合的可决系数都在0.8以上,说明预测结果精度比较高。
针对问题四,构建基于BP 神经网络算法的多元非线性系统模型,确定模型为12345(,,,,)y ANN x x x x x =,利用Matlab 编程可训练出相应的神经网络结构,得出预测结果。
通过参照数据、模型原理这两个方面,论证了计及气象因素影响的负荷预测结果的精度得到了改善这一结论。
针对问题五,提取两地区日负荷率作为待处理数据,分别对两地区日负荷率进行正态拟合、T 分布拟合、Logistic 拟合,做出拟合曲线并对各个拟合进行拟合曲线广义似然比检验。
得出地区二的数据比地区一的数据更有规律的结论。
关键词:短期负荷预测;多元线性回归;ARIMA 预测模型;BP 神经网络;拟合1.问题的重述短期负荷预测是电力系统运行与分析的基础,对机组组合、经济调度、安全校核等具有重要意义。
提高负荷预测精度,是保障电力系统优化决策科学性的重要手段。
现代电力系统中,构成电力负荷的用电器种类繁多,空调等受气象条件影响的负荷占比持续增高,气象因素(温度、湿度、降雨量等)对电力系统负荷的影响愈显突出。
考虑气象因素成为调度中心进一步改进负荷预测精度的主要手段之一。
已知地区1、地区2从2009年1月1日至2015年1月10日的电力负荷数据(每15 min一个采样点,每日96点,量纲为MW)以及2012年1月1日至2015年1月17日的气象因素数据(日最高温度、日最低温度、日平均温度、日相对湿度以及日降雨量)。
具体要求如下:1.请分析两个地区2014年1月1日一2014年12月31日的负荷数据,统计各地区全年的日最高负荷、日最低负荷、日峰谷差、日负荷率指标的分布情况,并绘制两地区2014年全年的负荷持续曲线;结合上述结果,分析两地区负荷变化的主要差异;初步预判哪个地区的负荷可以获得更准确的预测结果,说明你的理由。
2.根据2012年1月1日至2014年12月31日的数据,分别对日最高负荷、日最低负荷、日平均负荷与各气象因素的关系进行回归分析,分析回归误差;如果要用气象因素来提高负荷预测精度,在诸气象因素中,你优先推荐哪个(或哪几个)?简要说明理由。
3.请根据已知负荷数据,构建预测方法,对两个地区2015年1月11日至17日共7天的电力负荷进行预测(间隔15min),给出负荷预测结;在不知道实际负荷数据的条件下,你对预测结果的准确度有何推断,请说明理由。
4.如果已获得2015年1月11日至17日的气象因素数据,你能否构建计及气象因素的负荷预测方法,对两个地区2015年1月11日至17日共7天的电力负荷再次进行预测(间隔15min),给出预测结果;与原有的预测结果相比,你认为计及气象因素影响的负荷预测结果精度得到改善了吗?有何证据?请说明理由。
5.综合上述计算结果,你如何评价两地区负荷规律性的优劣?你还有什么证据可以佐证两地区负荷整体规律性优劣的判断?2.问题的分析2.1 对于问题一的分析问题一要求分析两个地区二014年的负荷量数据的一些统计量,全年的日最高负荷、日最低负荷、日峰谷差、日负荷率指标的分布情况。
可以直接建立最大量最小量模型以及一些简单算数模型来解决,利用Excel软件可以很快求出答案。
题目还要求绘制出两地区二014年全年的负荷数据变化曲线,可以利用Matlab 的绘图工具来绘制出想要的结果。
最后对所得统计量以及两地区二014年全年的负荷数据变化曲线进行分析,可以初步预判哪个地区的负荷可以获得更准确的预测结果。
2.2 对于问题二的分析问题二要求对日最高负荷、日最低负荷与各气象因素的关系进行回归分析,分析回归误差,还要求用推荐哪个(或哪几个)气象因素,来提高负荷预测精度。
可利用统计学知识分别对日最高负荷、日最低负荷与各气象因素的关系进行回归分析,并通过回归分析所得的一些统计学数据来进行回归误差分析以及选出推荐的气象因素。
2.3 对于问题三的分析该问题要求根据一致负荷数据,构建预测方法,对两个地区二015年1月11日至17日共7天的电力负荷进行预测。
此问题没有提及气象因素对负荷的影响,说明要求我们通过负荷数据本身进行预测,这是个时间序列预测问题,可建立ARIMA模型就可预测出指定7日的负荷量。
2.4 对于问题四的分析该问题要求构建计及气象因素的负荷预测方法,并给出预测结果。
气象因素对负荷影响是很大的,我们可以尝试构建人工建神经网络的模型,通过训练网络可以比较准确地找到各气象因素与负荷之间的关系,进而预测出指定7日的负荷量。
该问题还要求将通过气象因素预测出的结果与问题3的预测结果进行比较,可以从多个方面比较预测结果的精度。
2.5 对于问题五的分析该问题要求对两地区负荷规律性的优劣进行评价,既然是考虑规律性,我们可以将两地区的负荷数据进行正态拟合、Logistic拟合以及T分布拟合,比较两个地区负荷的拟合效果,就可以得出哪个地区的规律性更好。
3.模型的假设与符号说明3.1 模型的假设(1)假设2009年1月1日至2015年1月10日的电力负荷数据均为真实有效数据;(2)神经网络训练期间,“坏数据”带来的训练误差;不会使网络不能收敛到理想误差。
3.2 符号说明M隐层节点数F权值输入端连接的神经节点数X第i个地区第j天第k个时刻所测量的负荷数据ijka第i个地区第j天的日最高负荷量ijb第i个地区第j天的日最低负荷量ijc第i个地区第j天的日峰谷差ijd第i个地区第j天的日平均负荷,ije第i个地区第j天的日负荷率ijY日最高负荷、日最低负荷、日平均负荷中的一种变量ANN非线性函数X最高温度1X最低温度2X平均温度3X相对湿度4X降雨量54.模型的准备4.1 回归分析法基本原理回归分析法是根据历史数据的变化规律和影响负荷变化的因素,寻找自变量与因变量之间的相关关系及回归方程式,确定模型参数,据此推断将来时刻的负荷值。
回归分析法的优点是计算原理和结构形式简单,预测速度快,外推性能好,对于历史上没有出现的情况有较好的预测。
4.2 针对问题三对原始数据进行预处理在解决问题三的过程中,利用ARIMA预测模型,首先运用SPSS软件将地区一的原始负荷数据导入,对时间点T0000构建如下的序列图。
图1 数据处理前地区一T0000时间点序列图图中有明显的季节成分,因此需要做季节分解。
题目要求预测两个地区二015年1月11日至17日共7天的电力负荷,都属于春季。
因此只需提取每年的前三个月的负荷数据作为输入的数据。
分解后,序列图如下。
图2 数据处理后地区一T0000时间点序列图从上图可知,排除了季节成分。
所做的预测将会更精准,同时计算的复杂程度将会降低。
4.3 BP神经网络基本原理概述4.3.1 BP神经网络基本原理BP网络模型处理信息的基本原理是:学习过程由信号的正向传播和误差的反向传播两个过程组成。
正向传播时,输入信号通过中间层作用于输出层,经过非线形变换,产生输出信号;若输出层的实际输出与期望输出不符,则转向误差的反向传播阶段。
误差的反向传播是将输出误差以某种形式通过中间层向输入层逐层反转,并将误差分摊给各层的所有单元,从而获得各层的误差信号作为修正各单元权值的依据。
此过程周而复始,直到输出的误差降到可以接受的程度。
此时经过训练的神经网络即能对类似样本的输入信息自行处理,进而输出误差最小的经过非线形转换的信息,然后可通过检验神经网络的有效性。
运用BP神经网络处理实际问题时分为两个步骤即网络训练和网络应用。
第一步网络训练采用有监督的学习,有监督的学习是指每一个训练样本都对应一个代表环境信息的教师信号作为期望输出,训练时计算实际输出与期望输出之间的误差,根据误差的大小和方向反复调整网络连接权值,直到误差达到预订的精度为止。
4.3.2 BP神经网络的结构BP神经网络是一种多层前馈网络,其神经元连接权值的调整规则采用误差反传算法即BP算法。
BP神经网络又是一个多层感知器,多层次感知器强调神经网络在结构上由输入层、隐含层、输出层等多层构成,BP网络则强调层间连接权值通过误差反传算法进行调整。
BP神经网络的特点是:网络由多层次构成,包括输入层、隐含层(单层或多层)和输出层;层与层之间全连接,同层神经元之间无连接;传递函数必须可微,常用的有Sifmoid 型的对数、正切函数或线性函数;采用误差反传算法进行学习,逐层向前修正网络连接权值。
BP 神经网络结构在设计时主要包括以下方面: (1)网络层数BP 神经网络至少包括一个输入层和一个输出层,可以包含一个或多个隐含层,所以网络层数的决定问题即是隐含层层数的决定问题。
理论上己经证明,单个隐层可以通过适当增加神经元节点数达到任意的非线性映射,因此大多数情况单隐层结构的神经网络足以满足需求。
在样本较多的情况下,增加一个隐层可以有效减小网络规模。
(2)输入层节点数输入层节点数取决于输入向量维数,具体可根据实际问题和数据类型确定。
如果输入数据为模型信号波形,则可根据波形的采样点数目决定输入向量维数;如果输入数据为时间序列数据,则输入节点为时间点数;如果输入为图像,则输入单元可以为图像像素或经处理的图像特征。