电力系统短期负荷预测方法研究综述
电力系统短期负荷预测方法的研究及实现

电力系统短期负荷预测方法的研究及实现一、本文概述随着经济的发展和人民生活水平的提高,电力系统的稳定运行对于社会的正常运转和人民的生活品质具有至关重要的作用。
电力负荷预测作为电力系统规划、调度和运行的基础,其准确性和实时性直接影响到电力系统的安全性和经济性。
研究和实现高效的电力系统短期负荷预测方法具有重要的理论价值和实际应用意义。
本文旨在深入研究电力系统短期负荷预测方法,包括传统的预测方法以及基于人工智能、大数据等新兴技术的预测方法。
我们将对短期负荷预测的基本概念、影响因素和预测精度评估方法进行详细阐述。
我们将对传统的短期负荷预测方法,如时间序列分析、回归分析、灰色预测等进行梳理和评价。
我们将重点探讨基于人工智能的短期负荷预测方法,如神经网络、支持向量机、深度学习等,并详细介绍这些方法的原理、模型构建和训练过程。
我们将通过实际案例,对本文所研究的短期负荷预测方法进行实证分析和效果评估,以验证其有效性和实用性。
本文的研究将为电力系统短期负荷预测提供新的思路和方法,有助于提高预测精度和效率,为电力系统的规划、调度和运行提供有力支持。
同时,本文的研究也将为人工智能和大数据技术在电力系统中的应用提供有益的参考和借鉴。
二、短期负荷预测的基本理论短期负荷预测是电力系统运行中的重要环节,其基本理论涉及统计学、模式识别、人工智能等多个领域。
其核心目标是利用历史负荷数据、气象信息、经济数据等相关因素,对电力系统未来一段时间内的负荷变化进行准确预测,以指导电力系统的调度和运行。
时间序列分析理论:该理论认为负荷数据具有一定的时间序列特性,通过分析历史负荷数据的时间序列特征,可以挖掘出负荷变化的规律和趋势,进而对未来的负荷进行预测。
常见的时间序列分析方法包括自回归模型(AR)、移动平均模型(MA)和自回归移动平均模型(ARMA)等。
回归分析理论:回归分析是一种通过建立自变量和因变量之间数学关系来预测因变量变化的方法。
在短期负荷预测中,可以将历史负荷数据、气象信息、经济数据等作为自变量,未来负荷作为因变量,通过回归分析建立它们之间的数学关系,从而进行负荷预测。
【文献综述】电力系统短期负荷预测方法及研究

文献综述电气工程与自动化电力系统短期负荷预测方法及研究一、负荷预测的原理电力系统负荷预测是根据现在和过去时刻的用电负荷情况,估计未来时刻用电负荷的大小。
因此它的研究对象是不确定的事件,随机事件。
而电力负荷预测要预知负荷的发展趋势和可能达到的状况,下面介绍一些原理,用于指导负荷预测工作:1)可知性原理:预测对象的发展规律,其未来的发展趋势和状况是可以为人民所知道的,这是人们进行预测活动的基本依据。
2)可能性原理因事物的发展变化是在内因和外因共同作用下进行的,内因的变化和外因作用大小不同,因此事物的发展变化会有很多可能。
3)连续性原理预测对象的发展是一个连续化的过程,其未来的发展是这个过程的连续。
电力系统负荷的发展变化同样存在着惯性,这种惯性正是进行负荷预测的主要依据4)相似性原理在很多情况下,作为预测对象的一个事物,其现在的发展过程和状况可能与过去一定阶段的发展过程和状况相似,因此可根据已知的发展过程及状况来预测所预测对象的未来的发展过程及状况。
5) 系统性原理预测对象的未来发展是系统整体的动态发展,而整个系统的动态发展与它的各个组成部分和影响因素之间的相互作用相互影响密切相关。
只有系统整体最佳预测,才是最高质量的预测,才能为决策者提供最佳预测方案。
二、负荷预测的研究背景众所周知,电力系统的作用就是为各类用户提供可靠且合乎质量要求的电能,以随时满足各类负荷的需求。
而电力系统负荷预测是电力系统调度,用电,计划,规划等管理部门的主要工作之一。
提供负荷预测技术水平,有利于用电管理,有利于合理安排电网运行方式和机组检修计划,有利于节煤,节油和见地发电成本,有利于制定合理的电源建设规划,有利于提供电力系统的经济效益和社会效益。
因此,负荷预测已成为事先电力系统管理现代化的主要内容之一。
电力系统负荷预测按预测时间可以分为长期,中期,短期和超短期。
短期电力负荷预测主要是指预报未来几小时、一天至几天的电力负荷并做出估计,目的是给各个电厂安排日,周发电计划,是电力系统最为关键的一类负荷预测。
电力负荷预测研究文献综述

电力负荷预测研究文献综述电力负荷预测是指利用先进的计算机技术、数学模型和统计方法,对未来一段时间内的电力总负荷进行预测和规划。
电力负荷预测的准确性直接影响到电力市场的稳定与发展,因此,对于电力负荷预测的研究也日益引起人们的关注。
一、电力负荷预测的背景和意义电力是维持现代社会正常运转的重要资源,而电力负荷预测则是保证电力供需平衡、维持电力市场稳定的关键。
电力负荷预测除了对电力市场有着深远的影响外,还可在政府、企业和居民之间协调用电、降低用电峰谷差距、提高电网供电效率等方面减轻压力。
二、电力负荷预测研究现状近年来,国内外学者在电力负荷预测方面进行了大量的研究,主要在以下四个方面:1. 基于时间序列分析的电力负荷预测时间序列分析是一种基于时间序列数据的统计学方法,已被广泛应用于电力负荷预测。
这种方法可以分为平稳性分析、自回归模型、移动平均模型、ARIMA模型、GARCH模型等多个分支。
2. 基于人工神经网络的电力负荷预测人工神经网络是一种模仿人类神经系统建立的无监督神经网络模型,已被成功应用于电力负荷预测。
该模型可以进行非线性建模,模拟各种非线性因素对电力负荷的影响。
3. 基于物理模型的电力负荷预测物理模型是一种以电力系统的基本物理特性为基础的模型,主要包括负载特性、发电机特性和输电线路特性三个方面,目的是利用物理规律来对电力负荷进行预测。
4. 基于智能优化算法的电力负荷预测智能优化算法是一种基于进化计算理论、人工智能(AI)和机器学习等多学科知识的新型算法。
目前,包括遗传算法、模拟退火、粒子群算法等多种智能算法已被应用于电力负荷预测中。
三、电力负荷预测存在的问题和展望目前,电力负荷预测模型仍存在一些问题,包括模型的结构和参数设计、样本数据质量和数量、监控参数及变量设计等方面的不足。
针对这些问题,未来的研究主要可从大数据处理、机器学习、深度学习、人工智能等方面入手,精确的电力负荷预测模型将成为未来电力市场具有竞争力的关键。
电力系统中的负荷预测方法综述与展望

电力系统中的负荷预测方法综述与展望1. 引言电力系统的负荷预测是对未来一段时间内负荷需求的估计,对电力生产和供应的规划和调度起到至关重要的作用。
准确的负荷预测可以帮助电力公司合理安排发电计划,提高运行效率,降低成本,同时也对电力系统的稳定运行和供需平衡起到关键作用。
因此,负荷预测的准确性和精度一直是电力行业的重要关注点。
2. 传统的负荷预测方法2.1 统计方法统计方法是最常用的负荷预测方法之一,其基本思想是通过对历史负荷数据进行分析、拟合和预测。
常见的统计方法包括回归分析、时间序列分析和指数平滑法。
这些方法适用于长期和短期负荷预测,具有简单、易操作、计算速度快等特点。
然而,由于统计方法没有考虑负荷数据之间的相互关系和复杂的非线性因素,导致其预测精度较低,在面对突发事件或季节性变化时不够准确。
2.2 物理方法物理方法基于电力系统的运行机理和负荷分布规律,通过建立数学模型来预测负荷需求。
常见的物理方法包括灰色系统理论、神经网络方法和支持向量机。
这些方法可以考虑负荷数据之间的关联性和非线性因素,提高了预测精度。
然而,物理方法需要准确地描述电力系统的物理特性和运行机理,对数据要求较高,计算复杂度较大。
3. 基于机器学习的负荷预测方法近年来,随着机器学习技术的快速发展,基于机器学习的负荷预测方法逐渐受到关注。
机器学习方法通过对大量历史负荷数据的学习和训练,可以从数据中提取出负荷需求的规律和特征,进而进行准确的负荷预测。
常见的基于机器学习的负荷预测方法包括决策树、随机森林、支持向量回归和深度学习等。
3.1 决策树决策树是一种基于树状结构的机器学习方法,根据特征值将数据集划分为不同的类别。
对于负荷预测问题,可以将历史负荷数据作为输入特征,负荷需求作为输出类别,构建负荷预测模型。
决策树方法具有简单、易理解、易实现的特点,但在处理大量数据和复杂关系时预测效果较差。
3.2 随机森林随机森林是一种基于集成学习的机器学习方法,通过构建多个决策树模型并进行集成,提高了预测的准确性和鲁棒性。
电力系统负荷预测研究综述与发展方向的探讨

电力系统负荷预测研究综述与发展方向的探讨电力系统负荷预测是电力系统经济运行和调度的重要环节,其准确性直接影响着电力系统的安全稳定运行。
随着电力系统的发展和现代化,负荷预测技术也在不断革新和发展。
本文将对电力系统负荷预测的研究现状进行综述,并探讨其未来的发展方向。
一、负荷预测研究现状1. 传统负荷预测方法传统的负荷预测方法主要包括时间序列分析、回归分析和专家系统等。
时间序列分析是最常用的方法之一,通过对历史负荷数据进行分析得出未来的负荷趋势。
回归分析则是通过建立与负荷相关的指标来预测未来负荷。
专家系统则是利用专家知识和经验来进行负荷预测。
这些方法在一定程度上能够满足负荷预测的需求,但受限于模型的复杂性和准确性。
随着数据挖掘和机器学习技术的发展,基于统计模型的负荷预测方法逐渐成为主流。
这些方法包括支持向量机、神经网络、随机森林等。
这些方法能够通过对历史数据的学习和建模来进行负荷预测,能够适应不同的负荷变化规律和复杂性。
基于统计模型的负荷预测方法在预测精度和实用性上有了显著提升,成为当前电力系统负荷预测的主流方法。
3. 基于深度学习的负荷预测方法近年来,随着深度学习技术的发展,基于深度学习的负荷预测方法也逐渐受到关注。
深度学习技术能够通过对大量数据的学习和训练来提高模型的预测能力,具有适应复杂系统和非线性关系的优势。
基于深度学习的负荷预测方法在一些领域已经取得了较好的效果,并成为未来的发展趋势之一。
二、负荷预测的发展方向1. 数据驱动的方法未来的负荷预测方法将更加趋向于数据驱动,即通过大数据和机器学习技术来进行负荷预测。
这将需要更多的历史负荷数据和高效的数据处理技术,以适应电力系统的动态性和复杂性。
数据驱动的方法能够更准确地捕捉负荷的变化规律,提高预测的准确性和实用性。
2. 智能化技术的应用未来的负荷预测方法还将更加趋向于多源数据融合,即通过整合不同类型和来源的数据来进行负荷预测。
这将包括历史负荷数据、天气数据、经济数据等,通过多源数据的融合来提高负荷预测的准确性和稳定性。
电力短期负荷预测方法综述

1.引言随着我国电力事业的发展,电网的管理日趋现代化,电力系统负荷预测问题的研究也越来越引起人们的注意,电力系统短期负荷预测是电力系统调度运营部门的一项重要的日常工作,对制定运行方式、维持电力系统安全和经济运行有重要作用,其预测精度的高低直接影响到电力系统运行的安全性、经济性和供电质量。
同时,电力负荷预测工作的水平已成为衡量一个电力企业的管理是否走向现代化的显著标志之一,尤其在我国电力事业空前发展的今天,用电管理走向市场,电力负荷预测问题的解决已经成为我们面临的重要而艰巨的任务。
短期负荷预测是能量管理系统(EMS)的一个重要模块,他所提供的未来的负荷数据,对电力系统近期输变电建设、运行和计划都非常重要。
短期负荷除具有明显的周期性外,还受到各种环境因素的影响,如天气因素、季节变换、电力市场、重大事件等,使得负荷的时间序列变化呈现出非平稳的随机过程。
由于短期负荷的随机因素太多,非线性极强,一些传统预测理论和方法常存在一定的局限性,新理论和新技术的发展推动着短期负荷预测不断发展,新的预测方法不断涌现。
本文在分析短期负荷特点和影响因素的基础上,对短期负荷预测方法进行综述和总结,指出短期负荷预测方面可能的研究方向。
2.电力负荷预测特点电力系统负荷一般可以分为城市民用负荷、商业负荷、农村负荷、工业负荷以及其他负荷等,不同类型的负荷具有不同的特点和规律。
总的来说,电力负荷的特点是经常变化的,如按小时变、日变、周变和年变,同时负荷又是以天为单位不断起伏的,具有较大的周期性,负荷变化是一个连续的过程,一般不会出现大的跃变,但电力负荷对季节、温度、天气、作息时间等是敏感的,不同的季节,不同地区的气候,以及温度的变化都会对负荷造成明显的影响。
因此,电力负荷的特点决定了电力总负荷由以下四部分组成:基本正常负荷分量、天气敏感负荷分量、特别事件负荷分量和随机负荷分量。
因此,根据电力负荷的影响因素和变化规律,负荷的预测特点有以下几个方面[]]:(1) 不准确性电力负荷的发展是不确定的,会受到电力市场、天气状况等因素的影响,而且各种影响因素也是发展变化的。
短期负荷预测方法综述

• 109•ELECTRONICS WORLD・探索与观察短期负荷预测方法综述国网鄂州供电公司 胡函武 杨 英 魏 晗 耿红杰负荷预测的精度直接关系到电网的供需平衡,影响着电网运营成本,因此短期负荷预测的准确性十分重要。
目前国内外负荷预测方法主要包括经典预测方法、传统预测方法以及人工智能预测方法三大类,本文就一些主流方法进行了分析和概述。
引言:从1866年德国人西门子制成世界上第一台工业用发电机至今已有150余年。
在这100多年来,电力经历了从理论到应用,从工用到民用,从火电到水电再到核电等一系列的转变,为社会的经济、政治、文化等各方面的飞速发展起到了极大的推动作用。
作为国民经济建设中不可取代的重要能源,电能如今已经渗入各个行业及领域。
近几十年来,国内外的专家学者们针对负荷预测问题进行了长期的深入研究,提出了很多卓有成效的预测模型。
然而短期负荷具有随机性和不确定性的特点,容易受到天气变化、社会活动以及节日类型等各种复杂的环境因素的影响,因此想要得到十分精确的预测结果仍然是一件非常困难的事情。
到目前为止还没有哪种方法适用于任何地区的电力系统,也没有哪种方法可以提供绝对精确的负荷结果。
根据负荷预测技术的发展历程,可以大致将其分为三大类:经典预测方法、传统预测方法以及人工智能预测方法。
1.短期负荷预测经典方法1.1 回归预测法回归分析预测方法是根据以往的负荷历史数据的变化规律以及影响负荷变化的因素来寻找自变量与因变量之间的相关关系,从而建立可以进行数学分析的模型,以此来预测未来的负荷。
它的特点就是将预测目标的因素当作了自变量,而将待预测目标作为了因变量。
在回归分析预测方法中,自变量是随机变量,而因变量是非随机变量,通过使用给定的多组因变量和自变量的资料来研究各种变量之间存在的相关关系。
1.2 时间序列法时间序列法在电力系统短期负荷预测中是比较常见且应用最为广泛的一种方法。
电力负荷的历史数据是按照一定时间间隔进行采样并记录下来的有序集合,因此它是一个时间序列。
电力系统短期负荷预测方法综述

(上接 29 页)
[1]叶瑰昀,罗耀华,刘勇, 力系统短期负荷预测中的应用[J].中国电机工
等.基于 ARMA 模型的电力负荷预测方法研究 程学报,2004,24(1):24-29.
求较高,只适用于负荷变化比较均匀的短期预 丰富的经验、知识和高水平的技术,而且经验 的,尤其在环境因素和社会信息等变化较大的
测;没有考虑影响负荷变化的因素,对不确定 可以不断丰富和积累,不受时间和空间的限制 条件下,数据挖掘技术可以在错综复杂的庞大
性因素(如天气、节假日等)等考虑不足 [1]。
而广泛使用,永久保存。专家系统的不足之处 历史数中,剔除错误和无用的数据,挖掘出隐
指预报未来几小时、一天至几天的电力负荷。 据某个单一的指标进行预测,方法虽然简单, 择是短期负荷预测精度关键点,因此,根据各
短期负荷预测作用的大小主要取决于预 但比较笼统,且很难反映当今经济、政治和天 种算法的优点和不足,以及针对不同情况的预
测精度,针对目前的短期预测方法进行了综合 气等条件的影响。2.3 灰色预测法。灰色系统理 测精度的差异,将几种算法有机地结合起来,
于实际应用中难以估计出噪音的统计特性,例 忆、自主学习、知识推理和优化计算的特点,还 予的新内涵,而在实际应用中,应根据当地短
如,量测噪音和系统噪音方差等。2.2 指数平滑 有很强的计算能力、复杂映射能力、容错能力 期负荷的具体特征和各种影响因素进行灵活
法。指数平滑法采用电力系统负荷趋势外推预 及各种智能处理能力。人工神经网络预测方法 地选用预测模型。
节,高层建筑筏形基础的设计需满足冲切验算
和剪切验算等计算要求,并提出当柱荷载较大,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统短期负荷预测方法研究综述
发表时间:2018-12-25T16:14:08.417Z 来源:《电力设备》2018年第23期作者:尹强
[导读] 摘要:随着电力工业发展的不断市场化,在与社会经济效益息息相关的当下,系统负荷预测在电力行业中扮演着愈加重要的角色。
(国网四川省电力公司攀枝花供电公司四川攀枝花 617000)
摘要:随着电力工业发展的不断市场化,在与社会经济效益息息相关的当下,系统负荷预测在电力行业中扮演着愈加重要的角色。
而按照预测时间的长短,可将负荷预测模式分为长期,中期,短期和超短期。
其中,短期负荷预测是电力系统稳定经济运行的基础,其预测结果将直接影响着电力系统控制过程的优良。
因此关于短期负荷预测的精确性已逐步发展成为电力系统自动化领域中的一项重要研究课题。
关键词:电力系统;短期负荷;预测方法
一、负荷数据预处理
历史负荷数据由于多种原因可能会造成部分数据的丢失或者数据异常,异常的历史负荷数据会对短期负荷预测结果造成很大的影响。
因此,想要提高短期负荷预测结果的精确度,在进行预测前,需对负荷数据进行预处理。
传统的数据预处理方法包括插值法和纵向比较法等,为了提高预测的精确度又提出了双向比较法、滤波法、切比雪夫不等式法等多种数据预处理新方法。
文献提出了用Savitzky-Golay平滑滤波器去处理历史负荷数据,与其它平均方法相比,本方法保留了原始数据的分布特性。
文献利用粗糙集理论的属性,在保证历史负荷和气象因数等属性的情况下,推导出的预测负荷值满足一定的精确度,剔除属性集中的冗余信息,简化了判断规则,并利用遗传算法的全局搜索能力,挖掘得到相对预测量的最小约简属性集作为预测模型的输入变量。
二、短期电力负荷预测
短期电力负荷预测的特点。
电力负荷预测是根据电力负荷和其影响因素的历史数据,结合实际情况建立相关的模型,对未来用电负荷量进行科学预测。
短期负荷更是具有以下明显的特点:预测结果的不确定性和随机性;由于各类负荷预测都是在特定的环境和具体的条件下进行的,因此其具有条件性;短期负荷预测在时间上都有一定的限制,所以具有时间性;由于预测结果的不准确性和条件性,加上外部因素的不确定性,因此预测结果具有多方案性。
影响电力负荷预测精度的因素。
在电力系统负荷预测的过程中,预测精度是最具有影响力的一个指标。
过预测或欠预测均会对系统生产运行配送造成较为严重的后果。
影响负荷的因素有很多,首要便是天气因素。
而作为可估计的随机事件,气象预报本身不准确又会形成双重误差。
再者,我国人口数量众多,贫富差距较大,因此随机负荷部分并非平稳的随机序列,反而有较大的不确定性。
另外,一些特殊事件的随机发生也会使反映负荷的周期曲线产生较大的波动,使实际数据与影响因素之间的关系样本数难以确定。
三、智能预测方法
(一)专家系统法
专家系统法是根据某一领域的专家知识和专家经验建立的一个计算机系统,并且该系统能够运用这些知识和经验对未来进行合理的预测。
知识库、推理机、知识获取部分和解释部分是一个完整专家系统的主要组成部分。
通过该系统,运行人员能够识别预测日的类型,考虑天气对负荷预测的影响。
专家系统法的优点是能够综合考虑多个影响因素,由于是一个计算机系统,该系统具有较好的透明性和交互性,对所得出的结论,能解释其依据,便于运行人员检查和修改,而且预测结果的精确度很高,能很好的反映负荷实际情况。
不足之处就是需要大量的历史负荷数据,而数据量增多会导致运算速度慢;同时该算法不具有自主学习能力和利用模糊知识处理相关问题的能力;并且该算法拥有很强的规则性,而规则本身不具有普遍适应性,所以该预测方法不具备普遍适用性。
(二)人工神经网络法
人工神经网络是模仿人脑神经网络进行学习和处理问题的非线性系统。
它由若干个具有并行运算功能的神经元节点及连接它们的相应的权值构成,通过激励函数实现输入变量到输出变量之间的非线性映射。
用历史负荷作为训练样本去建立适宜的网络结构,当训练的网络结构达到预测要求后,就用此网络作为负荷预测的预测模型。
人工神经网络的优点是对预测模型的要求不高,对高度非线性对象非常适用,具有很强的鲁棒性、记忆能力、非线性映射能力以及强大的自学习能力,拥有的特点是其它算法所不具备的。
不足之处是有很慢的学习收敛速度,也有可能结果收敛到局部最小点,并且没有很好的知识表达能力,对调度人员经验中存在的模糊知识没有得到充分的利用,依据主观经验确定网络层数和神经元个数。
把人工神经网络方法运用于风电功率短期预测中,以数值天气预报为基础,拥有良好的人机交互界面,与能量管理系统实现了完美的连接,预测结果拥有良好的精确度。
组合的预测方法,把人工神经网络法和经验模式分解相结合,用经验模式分解的自适应性,分别对各个分量进行分析,准确的把握负荷变化特性和环境因素影响,最后采用与分量相匹配的人工神经网络法进行预测。
用人工神经网络去预测负荷模型的方法,用人工神经网络对最大、最小负荷时刻的负荷模型参数进行预测,分析了负荷模型与预测结果之间的灵敏度,以便了解它们之间的影响程度,去寻找提高精确度的方法。
四、支持向量机
支持向量机与神经网络类似,都是学习型的机制,但与神经网络不同,SVM使用的是数学方法和优化技术。
其中支持向量是指那些在间隔区边缘的训练样本点,该方法给定一组训练样本,每个标记为属于两类,一个SVM训练算法建立了一个模型,分配新的实例为一类或其他类,使其成为非概率二元线性分类。
应用SVM进行电力系统负荷预测具有精度高、速度快等优点,不足之处在于存贮需求量大,编程困难,实际应用较难。
五、灰色模型法
灰色模型法是一种针对含有未知且不确定因素的系统进行预测的方法。
通过对部分已知信息的开发,生成并提取有用信息,从而对系统运行行为和其演化规律进行正确且有效的描述和监控。
该方法可在数据缺失的情况下找出某个时间段内数据变化的规律,以此建立负荷预测模型。
灰色模型法分为普通灰色系统模型和最优化灰色模型两种。
普通灰色预测模型是一种指数增长模型,当电力负荷严格按指数规律持续增长时,此方法的优势得以凸显———其预测精度高、所需样本少、人工耗时短且计算量小,所得预测结果还可以进行检验。
缺点是对于具有波动性较大的电力负荷预测误差较大,因此并不适用于实际情况。
但最优化灰色模型可以把波动幅度较大的原始数据序列变换成规律性较强的成指数递增变化的序列,以此来适应灰色模型法所需条件,大大增加了适用范围和预测精度。
灰色模型法能很好的适用于
短期负荷预测。
该方法要求负荷样本数据少、不用考虑分布规律和变化趋势、计算简便、在短期内有着很高的预测精度。
但是所用样本数据离散程度越大———即数据灰度越大,预测精度也会明显下降,因此在选择数据样本上有着较为苛刻的局限性。
六、小波分析预测技术
小波分析法是一种时域—频域分析法,它可将局部的微弱信号以及图像中的任意细小部分准确捕捉,并且能够根据信号频率的高低自动调节采样的疏密程度。
小波分析预测技术还能对不同的频率成分采用更加精细的采样步长,从而采集到更加微弱或因特殊情况突变的信号并将其转化成对应的小波系数,以便能够完善地存储分析和处理所接收的信号。
这些优点决定了小波分析可以有效地应用于负荷预测问题的研究
结论
短期负荷预测影响着发电计划、交易计划、调度计划等,而负荷预测结果的精确度又影响着电力系统的运行。
本文根据负荷预测的流程,把负荷预测方法做了一个综合的分析和比较,简述了预测方法的优点和不足之处,最后对短期负荷预测未来研究的方向提出展望,可为今后短期负荷预测提供借鉴。
在实际的负荷预测中,应当根据当地的历史负荷数据特征和相关影响因素选择适宜的预测模型。
参考文献
[1]王奔,支持向量机在短期负荷预测中的应用概况[J].电力系统及其自动化学报,2017(08).
[2]谢开贵,李春燕,周家启.基于神经网络的负荷组合预测模型研究[J].中国电机工程学报,2017,(02).。