高考理科数学必考考点大全

合集下载

高考数学理科知识点总结归纳

高考数学理科知识点总结归纳

高考数学理科知识点总结归纳一、代数与函数1.1 基本代数运算法则1.1.1 加法与减法法则1.1.2 乘法与除法法则1.1.3 幂运算法则1.1.4 开方与根号法则1.2 一次函数与二次函数1.2.1 一次函数的定义与性质1.2.2 二次函数的定义与性质1.2.3 一次函数与二次函数的图像特征1.2.4 一次函数与二次函数的应用1.3 指数与对数1.3.1 指数的定义与性质1.3.2 对数的定义与性质1.3.3 指数方程与对数方程的解法1.3.4 指数模型与对数模型的应用1.4 不等式与绝对值1.4.1 不等式的定义与性质1.4.2 一元一次不等式的解法1.4.3 一元一次绝对值不等式的解法1.4.4 二次不等式与绝对值不等式的解法二、几何与空间2.1 平面几何2.1.1 直线、线段与射线的定义与性质 2.1.2 角的定义与性质2.1.3 三角形的性质与判定定理2.1.4 一些重要的平面几何定理与问题2.2 空间几何2.2.1 基本空间几何对象的定义与性质 2.2.2 直线与平面的关系2.2.3 空间中的角与面的性质2.2.4 空间几何的应用2.3 立体几何2.3.1 立体图形的分类与性质2.3.2 体积与表面积的计算2.3.3 空间向量与几何问题的解决2.3.4 立体几何的应用三、概率与统计3.1 随机事件与概率3.1.1 随机事件的定义与性质3.1.2 概率的基本性质与计算方法3.1.3 互斥事件与相关事件的概率计算 3.1.4 概率模型与概率分布的应用3.2 统计与统计图3.2.1 数据的收集与处理3.2.2 统计图的绘制与分析3.2.3 随机变量与概率分布的描述3.2.4 统计与概率的应用于问题的解决3.3 抽样与推断3.3.1 抽样与抽样误差的定义与性质3.3.2 点估计与区间估计的方法与应用3.3.3 假设检验与均值差的检验3.3.4 统计推断在现实问题中的应用结语:通过对高考数学理科知识点的总结与归纳,我们可以清晰地掌握重点知识,提高解题能力。

高三数学理科必背知识点

高三数学理科必背知识点

高三数学理科必背知识点数学作为理科中的一门重要学科,无疑对于高三学生来说占据了重要地位。

在备战高考的过程中,理科学生们需要掌握一定量的数学知识点,以应对各类考题。

本文将为大家汇总整理高三数学理科必背知识点,帮助同学们在备考过程中有的放矢,更好地提升数学成绩。

一、函数及其性质1. 函数的定义:函数是一个对应关系,将自变量的每一个取值,对应到一个唯一的因变量的取值上。

2. 函数的性质:奇偶性、周期性、单调性、有界性等。

3. 函数的图像及其性质:拐点、渐近线、极值点等。

二、导数与微分1. 导数的定义与求法:函数在某一点处的导数表示函数曲线在该点处切线的斜率。

2. 导数的性质:可导与连续的关系、导数的四则运算法则等。

3. 高阶导数与泰勒公式:高阶导数的定义与求法,泰勒级数的展开与应用等。

三、极限与数列1. 极限的概念及性质:数列极限、函数极限的定义与运算法则,极限存在准则等。

2. 数列的性质及收敛与发散的判定:数列的单调性、有界性,收敛数列与发散数列的判定等。

3. 函数的极限:无穷极限、间断点的极限等。

四、不等式与方程1. 一次方程与一次不等式:一次方程与一次不等式的定义、解法及应用。

2. 二次方程与二次不等式:二次方程与二次不等式的定义、解法、判别式及根的性质等。

3. 高次方程与高次不等式:高次方程与高次不等式的定义、解法、根与系数之间的关系等。

五、三角学1. 三角函数的基本关系:正弦定理、余弦定理、正切定理等。

2. 三角函数的性质:周期性、奇偶性、单调性等。

3. 三角函数的图像与应用:角度制与弧度制的换算、三角函数图像的绘制与性质等。

六、概率与统计1. 概率的基础概念:事件、样本空间、等可能性原理等。

2. 概率的计算方法:古典概型、排列组合、条件概率等。

3. 统计的基本概念与应用:样本与总体、参数与统计量、样本调查与数据分析等。

七、向量与坐标系1. 向量的定义与运算:向量的表示方法、向量的长度、向量的加法与减法等。

高考数学理科必考知识点归纳总结

高考数学理科必考知识点归纳总结

高考数学理科必考知识点归纳总结数学作为高考必考科目之一,是同学们备战高考的关键科目之一。

理科数学的考试难度较大,需要同学们对各个知识点进行深入理解和掌握。

为了帮助同学们更好地备考数学理科,本文将对高考数学理科必考知识点进行归纳总结。

本文将按照数学的不同单元和知识点进行阐述,帮助同学们有针对性地复习备考。

一、函数与方程1. 一元二次函数:同学们要掌握一元二次函数的定义与性质,包括函数图象、顶点、对称轴、判别式等相关概念。

并且要熟练掌握解一元二次方程的方法,包括因式分解、配方法、公式法等。

2. 三角函数:要掌握正弦、余弦、正切等三角函数的定义与性质,熟练掌握正弦定理、余弦定理等相关定理的应用。

3. 指数与对数:要熟练掌握指数与对数的定义与性质,包括指数函数、对数函数的图像、性质等。

同时还要熟悉指数方程与对数方程的解法,掌握换底公式等相关技巧。

二、数列与数学归纳法1. 等差数列与等比数列:要理解等差数列与等比数列的定义与性质,能够求解相关问题,包括求首项、公差、通项等。

同时要掌握等差数列与等比数列的求和公式。

2. 递推数列:要掌握递推数列的定义与性质,掌握递推数列的通项公式、求和公式等。

并能够应用递推数列进行问题求解。

3. 数学归纳法:要熟悉数学归纳法的基本思想与应用方法,能够灵活运用数学归纳法解决相关问题。

三、几何与三角1. 三角形:要理解三角形的性质,包括内角和、外角和、三边关系等。

熟悉三角形的共线定理、全等定理、相似定理等,并能够应用相关定理解决相关问题。

2. 圆与圆周角:要掌握圆与圆周角的定义与性质,熟练掌握圆周角的计算方法,并能够应用圆与圆周角的相关定理解决问题。

3. 向量:要理解向量的定义与性质,包括向量的加法、减法、数量积、向量积等运算法则。

并能够应用向量进行问题求解,熟练掌握平面向量的相关定理与方法。

四、概率与统计1. 概率:要理解概率的基本概念与性质,包括事件、样本空间、基本事件等。

理科高考数学必考知识点

理科高考数学必考知识点

理科高考数学必考知识点数学作为理科高考的一项重要科目,是考生们需要重点关注和准备的科目之一。

本文将介绍理科高考数学中的一些必考知识点,帮助考生们更好地备考和应对考试。

一、函数与方程函数与方程是数学中的基础概念,也是高考数学中常见的考点。

考生需要熟悉函数的定义、性质以及方程的解的求法。

函数的定义:函数是一种对应关系,每个自变量对应唯一的因变量。

函数可以用图象、公式或者表格来表示。

函数的性质:函数包括奇偶性、周期性、单调性、零点、极值点等性质,考生需要了解这些性质的定义和判定条件。

方程的解的求法:方程求解的方法包括代数方法和几何方法。

代数方法主要有因式分解、配方法、根号消去法、二次平方根公式等;几何方法主要有图象法、解方程组法、代入法等。

二、数列与数列极限数列是一系列按照一定规律排列的数,数列极限是指当项数趋于无穷大时,数列的趋势。

通项公式:数列的通项公式是指能够用一个公式表示出每一项的公式。

假如数列的第一项为a1,公差或公比为d(等差数列)或q(等比数列),那么数列的通项公式可以表示为an=a1+(n-1)d(等差数列)或an=a1*q^(n-1)(等比数列)。

数列极限:数列极限是指在项数趋于无穷大时,数列的趋势。

数列极限分为有界数列极限和无穷数列极限。

有界数列极限是指数列的值在一个有限的范围内波动;无穷数列极限是指数列的值趋近于正无穷或负无穷。

三、平面向量和坐标系平面向量是研究平面中的力、速度、位移和几何图形等问题的重要工具,而坐标系是数学中描述点或者向量的位置的一种方法。

平面向量:平面向量是指具有大小和方向的量,可用一个带箭头的线段来表示。

平面向量可以进行加法、减法和数乘等运算,并且有对应的几何意义。

坐标系:坐标系是指为了描述平面上的点的位置而建立的一种数学工具。

常见的坐标系有直角坐标系、极坐标系和参数方程等。

四、数学建模和统计思维数学建模是一种将实际问题转化为数学模型,通过分析模型来解决问题的过程。

高考数学常考知识点理科

高考数学常考知识点理科

高考数学常考知识点理科数学是理科领域的重要学科之一,也是高考中不可忽视的科目。

考生在备战高考时,需要掌握数学中的常见知识点,扎实掌握解题方法和技巧。

本文将介绍一些高考数学常考的知识点,帮助考生在考试中取得好成绩。

一、函数与方程在高考数学中,函数与方程是一个重要的内容,常常涉及到一元函数、二次函数、指数函数、对数函数等。

考生需要熟悉这些函数的性质,如定义域、值域、单调性等。

同时,对于方程的解法也需要了解,如一元一次方程、一元二次方程的求解方法,以及如何利用因式分解、配方法等技巧来解方程。

二、平面几何平面几何是高考数学中的重点内容之一,涉及到直线、三角形、四边形、圆等。

考生需要熟练掌握各种图形的性质与定理,如线段分割定理、同位角定理、正弦定理、余弦定理等。

掌握这些定理可以帮助考生解题时分析图形,并且应用正确的定理进行推导和计算。

三、空间几何空间几何是平面几何的延伸,常见的内容包括立体图形的体积、表面积计算,平行四边形与平面的关系,直线与平面的关系等。

考生需要熟练掌握各种几何体的特征与性质,并能够运用相应的公式进行计算。

在解决立体图形问题时,应该注意空间中各种图形的投影关系以及体积计算的方法。

四、概率与统计概率与统计是高考数学中的一项重要内容,包括事件的概率计算、随机变量的期望与方差计算,以及样本调查与总体统计等。

考生需要了解基本的概率计算方法,掌握常见的统计方法,如频率分布表、直方图、折线图、饼图等。

在解决概率与统计问题时,需要注意题目中给出的条件,运用相应的公式和技巧进行计算与推导。

五、数列与数列极限数列与数列极限是高考数学中的一项常考内容,考生需要熟悉等差数列、等比数列的性质与公式,了解数列极限的定义与计算方法。

在解题时,要注意数列的通项公式与计算公式的运用,掌握等差数列与等比数列的性质以及数列极限的计算方法可以帮助考生更好地解题。

六、向量与坐标系向量与坐标系是高考数学中的一项基础知识,其应用广泛。

数学高考必考知识点理科

数学高考必考知识点理科

数学高考必考知识点理科数学作为理科的重要学科,对于考生来说,无疑是一门不可或缺的科目。

在高考中,数学被赋予了重要的地位,而理科生更是需要熟练掌握数学知识才能有望获得优异的成绩。

下面将为大家整理一些数学高考必考的知识点,供大家参考。

一、集合与函数集合与函数是数学基础中的基础,也是高考数学的重点内容之一。

在集合与函数中,集合的概念和运算是必考内容,考生需要清楚集合的含义,能够进行集合的求交、求并等操作。

而函数作为数学中的一种重要关系,也是高考数学中的重点知识点。

考生需要掌握函数的定义与性质,包括函数的定义域、值域、单调性等基本概念。

二、数列与数学归纳法数列是数学中重要的概念之一,也是高考中必考的数学知识点。

高考中常出现的数列有等差数列、等比数列等。

考生需要熟练掌握数列的定义、通项公式等内容,并能够根据已知条件求解数列相关问题。

而数学归纳法是数学中的一种证明方法,也是高考中需要运用的重要工具。

考生需要了解数学归纳法的基本思想和步骤,并能够灵活运用于解决问题。

三、平面向量与坐标系平面向量是高考数学中的重点内容之一,也是解析几何的基础知识。

考生需要熟练掌握平面向量的基本运算法则,包括向量的加减、数量积、向量积等。

此外,坐标系也是高考中必考的内容,包括一、二、三维坐标系的表示方法,以及直线、平面的方程等。

考生需要熟悉坐标系的相关知识,并能够运用于解决几何问题。

四、导数与微分导数与微分是高等数学的重要知识点,也是高考数学的难点内容之一。

在高考中,考生需要掌握导数的定义与性质,包括导数的基本四则运算法则、常用函数的导数等。

此外,微分的概念和应用也是必考内容,考生需要能够将微分运用于求解最值问题、近似计算等。

导数与微分是数学分析的重要内容,考生需要投入较多的时间和精力进行学习和理解。

五、常用的数学公式和定理在高考中,有一些常用的数学公式和定理是必考的,考生需要熟练掌握这些公式和定理,并能够灵活应用于解决问题。

例如,勾股定理、正弦定理、余弦定理等在几何中经常被使用;在三角函数中,考生需要熟悉正弦、余弦、正切等的基本关系和性质。

高考数学(理)考前必记的60个知识点含公式推理推论总结及提醒

高考数学(理)考前必记的60个知识点含公式推理推论总结及提醒

高考理科数学考前必记的60个知识点集合(1)集合之间关系的判断方法①A真含于B⇔A⊆B且A≠B,类比于a<b⇔a≤b且a≠b.②A⊆B⇔A真含于B或A=B,类比于a≤b⇔a<b或a=b.③A=B⇔A⊆B且A⊇B,类比于a=b⇔a≤b且a≥b.(2)集合间关系的两个重要结论①A⊆B包含A=B和A B两种情况,两者必居其一,若存在x∈B且x∉A,说明A≠B ,只能是A B.②集合相等的两层含义:若A⊆B且B⊆A,则A=B;若A=B,则A⊆B且B⊆A.[提醒]1任何一个集合是它本身的子集,即A⊆A.2对于集合A,B,C,如果A⊆B且B⊆C,则有A⊆C.3含有n个元素的集合有2n个子集,有2n-1个真子集,有2n-2个非空真子集.4集合中元素的三大特性:确定性、互异性、无序性.常见关键词及其否定形式关键词等于大于小于是一定是都是至少有一个至多有一个存在否定词不等于不大于不小于不是不一定是不都是一个也没有至少有两个不存在命题(1)四种命题间的相互关系(2)四种命题的真假性原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假[提醒]1两个命题互为逆否命题,它们有相同的真假性.2两个命题为互逆命题或互否命题,它们的真假性没有关系.3在判断一些命题的真假时,如果不容易直接判断,则可以判断其逆否命题的真假.(3)含有一个量词的命题的否定全称命题的否定是特称命题,特称命题的否定是全称命题,如下所述:命题命题的否定∀x∈M,p(x)∃x0∈M,非p(x0)∃x0∈M,p(x0)∀x∈M非p(x) 充分、必要条件(1)充分条件与必要条件的相关概念①如果p⇒q,那么p是q的充分条件,同时q是p的必要条件.②如果p⇒q,但q⇒/ p,那么p是q的充分不必要条件.③如果p⇒q,且q⇒p,那么p是q的充要条件.④如果q⇒p,且p⇒/ q,那么p是q的必要不充分条件.⑤如果p⇒/ q,且q⇒/ p,那么p是q的既不充分也不必要条件.(2)充分、必要条件与集合的对应关系从逻辑观点看从集合观点看p是q的充分条件(p⇒q)A⊆Bp是q的必要条件(q⇒p)A⊇Bp是q的充分不必要条件(p⇒q,q⇒/ p)A真含于Bp是q的必要不充分条件(q⇒p,p⇒/ q)A真包含Bp是q的充要条件(p⇔q)A=B函数的定义域及相关的6个结论(1)如果f(x)是整式函数,那么函数的定义域是R.(2)如果f(x)是分式函数,那么函数的定义域是使分母不等于0的实数的集合.(3)如果f(x)是偶次根式函数,那么函数的定义域是使被开方数大于或等于0的实数的集合.(4)如果f(x)是对数函数,那么函数的定义域是使真数大于0的实数的集合.(5)如果f(x)是由几个代数式构成的,那么函数的定义域是使各式子都有意义的实数的集合.(6)如果f(x)是从实际问题中得出的函数,则要结合实际情况考虑函数的定义域.函数的值域求函数值域常用的7种方法(1)配方法:二次函数及能通过换元法转化为二次函数的函数类型.(2)判别式法:分子、分母中含有二次项的函数类型,此函数经过变形后可以化为x2A(y)+xB(y)+C(y)=0的形式,再利用判别式加以判断.(3)换元法:无理函数、三角函数(用三角代换)等,如求函数y=2x-3+13-4x的值域.(4)数形结合法:函数和其几何意义相联系的函数类型,如求函数y=3-sin x2-cos x的值域.(5)不等式法:利用几个重要不等式及推论求最值,如a2+b2≥2ab,a+b≥2ab(a,b为正实数).(6)有界性法:一般用于三角函数类型,即利用sin x∈[-1,1],cos x∈[-1,1]等.(7)分离常数法:适用于解析式为分式形式的函数,如求y=x+1x-1的值域.指数函数与对数函数(1)指数函数与对数函数的对比区分表解析式y=a x(a>0且a≠1)y=log a x(a>0且a≠1)定义域R(0,+∞)值域(0,+∞)R图象关系指数函数对数函数奇偶性非奇非偶非奇非偶单调性0<a<1时,在R上是减函数;0<a<1时,在(0,+∞)上是减函数;a>1时,在R上是增函数a>1时,在(0,+∞)上是增函数[提醒]直线x=1与所给指数函数图象的交点的纵坐标即底数,直线y=1与所给对数函数图象的交点的横坐标即底数.(2)比较幂值大小的方法①若指数相同,底数不同,则考虑幂函数.②若指数不同,底数相同,则考虑指数函数.③若指数与底数都不同,则考虑借助中间量,这个中间量的底数与所比较的一个数的底数相同,指数与另一个数的指数相同,那么这个数就介于所比较的两数之间,进而比较大小.(3)常见抽象函数的性质与对应的特殊函数模型的对照表抽象函数的性质特殊函数模型①f(x+y)=f(x)+f(y)(x∈R,y∈R);②f(x-y)=f(x)-f(y)(x∈R,y∈R)正比例函数f(x)=kx(k≠0)①f (x )f (y )=f (x +y )(x ,y ∈R ); ②f (x )f (y )=f (x -y )(x ,y ∈R ,f (y )≠0) 指数函数f (x ) =a x (a >0,a ≠1)①f (xy )=f (x )+f (y )(x >0,y >0);②f (xy)=f (x )-f (y )(x >0,y >0)对数函数f (x )=log a x (a >0,a ≠1)①f (xy )=f (x )f (y )(x ,y ∈R ); ②f (x y )=f (x )f (y )(x ,y ∈R ,y ≠0)幂函数f (x )=x n函数零点的判断方法(1)利用零点存在定理判断法:如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0.这个c 也就是方程f (x )=0的根.口诀:函数零点方程根,数形本是同根生,函数零点端点判,图象连续不能忘.(2)代数法:求方程f (x )=0的实数根.(3)几何法:对于不能用求根公式的方程,可以将它与函数y =f (x )的图象联系起来,并利用函数的性质找出零点. 导数(1)基本初等函数的导数公式①(sin x )′=cos x ,(cos x )′=-sin x .②(ln x )′=1x (x >0),(log a x )′=1x ln a(x >0,a >0,且a ≠1).③(e x )′=e x ,(a x )′=a x ln a (a >0,且a ≠1). (2)导数的四则运算法则 ①(u ±v )′=u ′±v ′⇒[f 1(x )+f 2(x )+…+f n (x )]′ =f ′1(x )+f ′2(x )+…+f ′n (x ).②(u v )′=v u ′+v ′u ⇒(c v )′=c ′v +c v ′=c v ′(c 为常数). ③⎝⎛⎭⎫u v ′=v u ′-v ′u v 2(v ≠0).[提醒] 1若两个函数可导,则它们的和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.2利用公式求导时,一定要注意公式的适用范围及符号,如(x n )′=nx n -1中n ∈Q *,(cos x )′=-sin x . 3注意公式不要用混,如(a x )′=a x ln a ,而不是(a x )′=xa x -1.4导数的加法与减法法则,可由两个可导函数推广到任意有限个可导函数的情形,即[u (x )±v (x )±…±w (x )]′=u ′(x )±v ′(x )±…±w ′(x ).5一般情况下,[f (x )g (x )]′≠f ′(x )g ′(x ),[f (x )·g (x )]′≠f ′(x )+g ′(x ),⎣⎢⎡⎦⎥⎤f (x )g (x )′≠f ′(x )g ′(x ),⎣⎢⎡⎦⎥⎤f (x )g (x )′≠f ′(x )-g ′(x ).6。

高考 理数知识点

高考 理数知识点

高考理数知识点在高考中,理科数学是不可或缺的一部分。

理科数学主要包括数学分析和几何学两大领域。

为了帮助同学们更好地备考,本文将介绍高考理数的一些重要知识点。

一、数学分析1. 函数与方程- 基本函数:线性函数、二次函数、指数函数、对数函数等。

要熟练掌握它们的性质、图像和变换规律。

- 方程与不等式:一元一次方程、一元二次方程、绝对值方程、绝对值不等式等。

要了解解的存在性、唯一性,以及求解的方法。

2. 三角函数- 基本概念:正弦、余弦、正切等三角函数的定义、性质和图像。

- 三角函数的性质:如奇偶性、周期性、单调性等。

- 三角函数的基本关系式:如诱导公式、和差化积公式等。

3. 数列与数列极限- 数列的基本概念:通项、公式、求和等。

- 数列的收敛性与发散性:如严格单调有界数列的收敛性、发散性等。

- 数列极限的相关概念与性质:如夹逼定理、单调有界原理等。

4. 导数与微分- 导数的概念:极限、变化率等。

- 导数的性质:如可导的必然连续等。

- 基本函数的导数:如常数函数、幂函数、指数函数、对数函数等的导数公式。

5. 不定积分与定积分- 不定积分的概念:原函数、不定积分等。

- 不定积分的方法:如换元积分法、分部积分法、有理函数的积分等。

- 定积分的概念与性质:如黎曼积分的定义、性质等。

二、几何学1. 平面几何- 各种图形的性质:如三角形、四边形、圆等的特点。

- 平面向量的基本概念:向量的模、方向、平行、垂直等。

- 向量的运算:如向量的加减法、数量积、向量积等。

2. 空间几何- 空间中点、直线、平面的位置关系:如点到直线的距离、点到平面的距离等。

- 空间直线与平面的交角:如直线与直线的夹角、直线与平面的夹角等。

- 空间中的立体图形:如棱柱、棱锥、球等的特点、体积和表面积公式。

3. 三角函数在几何中的应用- 直角三角形的性质:如勾股定理、正弦定理、余弦定理等。

- 一般三角形的解析法:如海伦公式等。

- 三角函数在解决几何问题中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学(理)必考考点自查清单
核心考点(必考+高频):根据2017年全国普通高校招生考试说明的精神及近3—5年全国高考考试题、2016年高考新课标全国卷1试题
公众号:小升初数学压轴题天天练
公众号:小升初数学压轴题天天练
公众号:小升初数学压轴题天天练
备注:掌握程度I 、II ——对知识内容要求掌握的程度分为I 和II 两个层次。

Ⅰ.对所列知识要知道其内容及含义,并能在有关问题中识别和直接使用,与课程标准中的“了解”和“认识” 相当。

Ⅱ.对所列知识要理解其确切含义及与其他知识的联系,能够进行叙述和解释,并能在实际问题的分析、综合、推理和判断等过程中运用。

与课程标准中的“理解”和“应用”相当。

圆锥曲线 35、椭圆、双曲线、抛物线定义,标准方程与性质
36、直线与圆锥曲线的位置关系
I III 1)曲线标准方程和性质的求解
2) 直线与圆锥曲线的综合问题(弦长、参数
范围、最值、定点定值、向量等) 概率 统计
计数原理 37、两个原理、排列组合 38、二项式定理 II I 1)两个原理与排列组合解决简单的实际问题 2)二项式定理解决二项展开式
概率
39、概型及事件
40、离散型随机变量分布列 41、期望与方差性质 42、正态分布
II III 1) 区别古典概型、几何概型、条件概型、独立、
重复试验等概型
2)区别互斥、对立、独立事件
3)求离散型随机变量的分布列,计算均值、方差 4)正态分布的概率密度曲线及性质 统计
43、三种抽样 44、用样本估计总体
45、变量的相关性与独立性检验 I 1)分层抽样和系统抽样的过程 2)频率分布直方图及数字特征 3)回归分析和独立性检验
算法 归纳推理
46、程序框图,数学归纳法, 归纳推理
I
1)程序框图的逻辑结构 2)用归纳类比进行简单的推理。

相关文档
最新文档