超临界流体萃取
超临界流体萃取法名词解释

超临界流体萃取法名词解释一、什么是超临界流体萃取法1、超临界流体萃取法(superconductiv):利用具有临界压力和温度的液态或气态物质作为萃取剂,使其在临界压力下进行萃取。
超临界萃取可使一些难溶于有机溶剂的物质如萜类、生物碱等以萃取相析出而达到分离提纯的目的,也可以从矿物质中萃取有用元素,如萃取铅、锌、金等。
2、超临界流体的特性:⑴密度大,黏度小。
⑵沸点高,临界温度高。
⑶具有非活性性质,无毒。
⑷密度与组成的关系为:密度ρ比黏度(mPa·s),其数值与超临界流体种类有关。
⑸对非极性或弱极性化合物(如极性或非极性植物油)能显示很好的萃取效果。
⑹在水溶液中易于与其他物质混合均匀。
⑺在一定条件下可发生相变。
二、超临界流体萃取的原理1、超临界流体的特性:⑴密度大,黏度小。
⑵沸点高,临界温度高。
⑶具有非活性性质,无毒。
⑷密度与组成的关系为:密度ρ比黏度(mPa·s),其数值与超临界流体种类有关。
⑸对非极性或弱极性化合物(如极性或非极性植物油)能显示很好的萃取效果。
⑹在水溶液中易于与其他物质混合均匀。
⑺在一定条件下可发生相变。
三、超临界流体萃取的装置简介2、超临界流体萃取机理:分散在液体中的固体颗粒与水接触,将溶解度极低的溶质微粒子吸附在固体颗粒表面上形成吸附层,再经分离回收其他产品。
一般认为超临界状态下溶质微粒间的相互作用主要是静电作用。
由于超临界流体具有独特的物理化学性质,所以在萃取过程中一般情况下,溶质被包容在固体颗粒周围,形成类似于海绵状结构,超临界流体中的溶质粒子就象海绵吸水一样吸附了水分子,使溶质以自由流动的形式移动到萃取相。
四、超临界流体萃取技术应用:通过萃取精油,合成高纯度单方或复方精油;从天然植物中提取维生素、氨基酸等营养保健品;萃取香料中有用成分,制备具有特殊香气的精油;从海洋生物中提取活性物质,制取生物药物等。
超临界流体萃取

超临界流体萃取一、超临界流体萃取的原理和流程超临界流体萃取技术(supercritical fluid extraction, SFE)是20世纪80年月兴起的一种以超临界流体作为流淌相的新型分别提取技术。
超临界流体(SCF )是温度与压力均在其临界点之上的流体,性质介于气体和液体之间,有与液体相临近的密度,与气体相临近的黏度及高的蔓延系数,故具有很高的溶解能力及好的流淌、传递性能。
超临界流体的表面张力几乎为零,因此具有较高的蔓延性能,可以和样品充分混合、接触,最大限度地发挥其溶解能力。
在萃取分别过程中,溶解样品在气相和液相之间经过延续的多次的分配交换,从而达到分别的目的。
可以作为超临界流体的溶剂有、、、和水等,其中是首选的萃取剂,超临界作为萃取剂有以下特点:①临界压力适中,临界温度31.6℃,分别过程可在临近室温条件下举行,相宜分别热敏性和易氧化的产物;②密度大,溶解性能强;③价廉,无毒,惰性,易精制,极易从萃取产物中分别。
超临界CO2的极性小,相宜非极性或极性较小物质的提取,为了提取极性化合物,需要在超临界CO2中加入一定量的极性成分—夹带剂,以转变超临界流体的极性,目前常用的夹带剂有、和水等。
超临界流体萃取的原理是:按照相像相溶原理,在高于临界温度和临界压力的条件下,利用超临界流体的特性,从样品中萃取目标物,当复原到常压和常温时,溶解在CO2流体中的成分立刻以溶于汲取液的液体状态与气态CO2分开,从而达到萃取目的。
超临界流体萃取流程暗示图见图8-25, 1,2,3,4,5为超临界流体提供系统(10,2提供改性剂);7为萃取器;8,5,9为萃取物收集系统。
转变压力和温度,可以转变超临界流体的溶解能力,针对被萃取溶质的极性和分子大小,可以得到适当溶解能力的超临界流体,建立挑选性比较高的萃取办法。
二、超临界流体萃取的应用超临界流体萃取技术因为其独特的优点,使其在医药、食品、化妆品及香料、环境、化学工业等各领域得到了广泛的应用。
第三章 超临界流体萃取技术

四、超临界流体在食品工业中的应用
1、植物油的提取 压榨法 溶剂萃取法 超临界萃取
2、咖啡豆和茶叶中咖啡碱的提取
3、处理食品原料 去除粗脂肪
4、去除烟草中的尼古丁 5、香料的提取 6、生化制品:氨基酸、蛋白质、酶、多 肽、柠檬油、胡椒碱等
思考题
1、临界状态及临界温度、临界压力和临 界密度的概念。 2、超临界流体及其特性。 3、超临界流体萃取的原理、特点及典型 的工艺流程。
医学资料
• 仅供参考,用药方面谨遵医嘱
见图3-1
3、超临界流体萃取的特征
效率高 工艺条件容易控制 溶剂不易造成污染 适用于热敏性或易氧化的成分 需要高压设备
4、超临界流体的选择
(1) 操作温度与临界温度接近 (2) 萃取剂与待分离组分的化学性质相 似。 等等。
CO2作为萃取剂的优点:
临界温度、 临界压力、 化学性质、 无污染、 防氧化和抑制好气性微生物、 易得。
此过程中温度的上升引致热膨胀,使液相的密度减 小;而压力的上升则将气相压缩,使其密度加大。 在临界点上,两相的密度相等,气相与液相的分界 消失,这时物质就成为超临界流体。当物质超过临 界温度时,不会发生冷凝和蒸发的现象,而只以流 动的形式存在在临界区内:常态下的气体物质会表 现出液体一样的密度和随压力增大而显著增长的溶 解能力。
三、超临界流体的工艺
热 交 换 器
热交换器 压缩机或泵 过滤器
CO2
图2 超临界CO 2萃取的基本流程
超临界流体萃取的基本流程
三、超临界流体的工艺流程
1、等温变压法:整个过程温度基本不变,
压力变化,如图所示。此流程易于操作,应用 最为广泛,而且适于对温度有严格限制的物质 的萃取过程,但因萃取过程有不断的加减压步 骤,能耗较高。
超临界流体萃取

超临界流体萃取超临界流体萃取是一种在化学和化工领域被广泛应用的技术,在物理和化学特性上介于气体和液体之间的超临界流体作为溶剂,可以有效地提取出目标物质。
超临界流体萃取不仅具有高效、环保、无残留等优点,还可以对被提取物进行选择性的分离和富集。
超临界流体萃取的溶剂是指处于超临界状态下的物质,即超临界流体。
超临界流体的特点是密度和粘度较低,扩散性好,可逆性强,具有良好的传质特性。
常用的超临界流体有二氧化碳、乙烯、丙烯等。
超临界流体的选择取决于被提取物质的性质以及实际应用需求。
超临界流体萃取的工作原理是利用超临界流体的溶解力差异,通过温度、压力的调节来实现对目标物质的分离和富集。
在超临界条件下,溶剂与物质之间的相互作用力会发生变化,导致物质在超临界流体中的溶解度发生变化。
通过适当调节温度和压力,可以实现对目标物质的选择性萃取。
超临界流体萃取在食品、医药、化工等领域具有广泛的应用前景。
在食品工业中,超临界流体萃取可以用于提取植物原料中的营养成分、天然色素等;在医药领域,超临界流体萃取可以用于药物的提取、分离和纯化;在化工领域,超临界流体萃取可以用于分离混合物、回收溶剂等。
相比传统的溶剂萃取方法,超临界流体萃取具有许多显著的优点。
首先,超临界流体具有较低的粘度和表面张力,使其能够渗透到微观孔隙中,提高了质量传递速率。
其次,超临界流体的物理性质可以通过改变温度和压力来调节,从而实现对溶剂-物质相互作用的控制。
再次,超临界流体具有较低的表面张力,溶解度可以在较宽的范围内调节,从而实现对目标物质的选择性分离。
最后,超临界流体萃取过程中不使用有机溶剂,减少了有机排放和环境污染。
然而,超临界流体萃取技术也存在一些挑战和限制。
首先,由于超临界流体的物理性质受温度和压力的影响较大,操作条件较为苛刻。
其次,超临界流体的设备和操作成本较高,限制了其在工业生产中的应用。
此外,超临界流体萃取的工艺参数和操作条件的选择需要经验和专业知识的支持。
超临界流体萃取

7.3.4 在化工方面的应用
在美国超临界技术还用来制备液体燃料。 以甲苯为萃取剂,在Pc=100atm,Tc=400~ 440℃条件下进行萃取,在SCF溶剂分子的扩散 作用下,促进煤有机质发生深度的热分解,能使 三分之一的有机质转化为液体产物。此外,从 煤炭中还可以萃取硫等化工产品。美国最近研 制成功用超临界二氧化碳既作反应剂又作萃取 剂的新型乙酸制造工艺。俄罗斯、德国还把 SFE法用于油料脱沥青技术。
47
8.2 SFE-SFC联用
SFE-SFC直接联用在大分子分析中较 具优势,在环境有机污染物和其它方面 也很有发展前途。
48
8.3 SFE-HPLC、SFE-TLC联用
SFE-HPLC具有高选择性、高灵敏度、 自动化程度高等特点。
29
七、超临界流体萃取技术的应用
7.1
超临界CO2萃取技术在中药开
发方面的应用
7.2 超临界流体技术在其他方面的应用
30
7.1超临界CO2萃取技术在中药开发方面的应用
在超临界流体技术中,超临界流体萃取技术 与天然药物现代化关系密切。SFE对非极性和中 等极性成分的萃取,可克服传统的萃取方法中因 回收溶剂而致样品损失和对环境的污染,尤其适 用于对温热不稳定的挥发性化合物提取;对于极 性偏大的化合物,可采用加入极性的夹带剂如乙 醇、甲醇等,改变其萃取范围提高抽提率。因此 其在中草药的提取方面具有着广泛的应用。
好,廉价易得等优点。
12
2.2 超临界流体萃取
溶质在SCF中的溶解度大致可认为随SCF的密度 增大而增大。
SCF的密度随流体压力和温度的改变而发生十分 明显的变化。
在较高压力下,使溶质溶解于SCF中,然后使 SCF溶液的压力降低,或温度升高,这时溶解 于SCF中的溶质就会因SCF的密度下降,溶解 度降低而析出。
超临界流体萃取技术

超临界流体萃取技术概述超临界流体萃取技术是一种利用超临界流体作为溶剂的分离技术。
超临界流体是介于气体和液体之间的一种物质状态,在超临界状态下具有较高的溶解能力和扩散性能,因此被广泛应用于化工、制药、食品等领域的分离与提纯过程中。
本文将介绍超临界流体的基本概念、特点以及在萃取过程中的应用。
同时,还将探讨超临界流体萃取技术的优点和局限性,并结合实际案例进行分析。
超临界流体的基本概念超临界流体指的是在临界点之上的高压高温条件下,流体达到临界状态。
在超临界状态下,物质的密度和粘度等性质与传统液体和气体有明显差异,具有较高的溶解能力和扩散性能。
常用的超临界流体包括二氧化碳、水蒸汽、乙烯等。
与传统的有机溶剂相比,超临界流体作为溶剂具有以下优点:•高溶解能力:超临界流体的溶解能力比传统有机溶剂高,可以溶解更多的物质。
•可控性强:通过调节温度和压力等条件,可以控制溶解度和提取速度。
•萃取效率高:超临界流体在溶解物质后,可以通过调节温度或者减压来实现溶剂的快速脱失,从而提高萃取效率。
•环保可持续:超临界流体一般是可再生的,可以循环利用。
超临界流体萃取技术的应用超临界流体萃取技术在许多领域都得到了广泛的应用,以下是一些常见的应用场景:化工领域超临界流体萃取技术在化工领域用于分离和纯化特定化合物,常见的应用包括:•油脂提取:利用超临界流体(常用的是二氧化碳)可以高效地从植物油中提取脂肪酸、甘油等有机成分,用于制备食用油或者化妆品等产品。
相比传统的溶剂提取方法,超临界流体提取技术更加环保,不会产生有机溶剂残留。
•天然色素提取:超临界流体提取技术也可以应用于从天然植物中提取色素,用于食品、化妆品和纺织品等行业。
•聚合物分离:超临界流体还可以用于聚合物的分离和纯化,提高聚合物的纯度和质量。
制药领域在制药领域,超临界流体萃取技术被广泛应用于药物分离、纯化和微粒制备等方面,常见的应用包括:•天然药物提取:超临界流体提取技术可以高效地从天然植物中提取药物成分,用于药物生产和研发。
超临界萃取

超临界萃取的特点及工业应用
特点:
4.超临界萃取一般选用化学稳定,无毒无害 的物质作为萃取剂。
5.萃取工艺流程简单。
工业化应用:
例如:用SFE从咖啡、茶中脱咖啡因;啤酒 花萃取;从植物中萃取风味物质;从各种 动植物中萃取各种脂肪酸、提取色素;从 奶油和鸡蛋中去除胆固醇等。
从植物中萃取风味物质; 溶剂
溶剂
萃
萃
萃
取
萃
取
余
产
余
产
相
物
相
物
改变压力和温度的超临界萃取流程
超临界萃取三种经典流程
图2-26 超临界流体萃取的三种基本流程
(a)等温法 T1=T2 p1>p2 1—萃取釜;2—减压阀;3—分离釜;4—压缩机 (b)等压法 T1<T2 p1=p2 1—萃取釜;2—加热器;3—分离釜;4—高压泵;
流程主要分为两部分:
① 在超临界状态下,溶剂气体与原料接触进行萃取获得萃取相;
液、气两相呈平衡状态的点叫临界点。
从植物中萃取风味物质;
(a)②等温将法 T萃1=T取2 p1相>p2进1—行萃取分釜;离,脱除溶质,再生溶剂。
三相呈平衡态共存的点叫三相点。
② 将萃取相进行分离,脱除溶质,再生溶剂。
在临界改点时变的温压度和力压力或称为温临界度温度的和临超界压临力。界萃取流程
什么是超临界:
任何一种物质都存在三种相态----气相、液 相、固相。三相呈平衡态共存的点叫三相 点。液、气两相呈平衡状态的点叫临界点。 在临界点时的温度和压力称为临界温度和 临界压力。不同的物质其临界点所要求的 压力和温度各不相同。超临界流体(SCF)是 指在临界温度(Tc)和临界压力(Pv)以上的 流体。高于临界温度和临界压力而接近临 界点的状态称为超临界状态。
超临界萃取

超临界萃取1. 引言超临界萃取是一种利用超临界流体作为萃取介质的分离技术。
超临界流体是指在超过其临界点(临界温度和临界压力)的条件下存在的物质状态,表现出独特的物理和化学性质。
这种技术已经在化学、食品、制药和环境保护等领域得到广泛应用。
本文将介绍超临界萃取的原理、应用和优缺点。
2. 超临界萃取原理超临界萃取的原理基于超临界流体的特殊性质。
在超临界条件下,流体的密度和溶解性都显著增强,从而增强了其对目标物质的溶解能力。
超临界萃取可以选择性地提取目标物质,同时不引入有毒或有害的溶剂。
超临界萃取的基本步骤包括: - 原料准备:选择合适的原料,通常为植物或动物组织。
- 超临界流体的选择:根据目标物质的特性选择合适的超临界流体,常用的有二氧化碳和乙醇。
- 超临界萃取设备:使用高压容器和恒温器来实现超临界条件。
- 萃取过程:将原料置于超临界流体中,通过参数控制溶解和分离的过程。
- 分离和回收:通过减压和蒸发等方法将目标物质从超临界流体中分离提取,并回收使用。
3. 超临界萃取的应用3.1 化学领域超临界萃取在化学合成中的应用越来越广泛。
它可以用于分离和纯化有机化合物,提取天然产物和制备新型材料。
由于超临界流体可调节的溶解能力,可以选择性地提取目标物质,避免了传统方法中使用大量有机溶剂带来的环境问题。
3.2 食品工业在食品工业中,超临界萃取被广泛用于营养成分的提取,如咖啡因从咖啡中的提取,花青素从葡萄皮中的提取等。
超临界萃取不仅能够提取目标物质,还可以保留原料的营养成分,提高产品的质量。
3.3 制药领域超临界萃取在制药领域中也有重要的应用。
它可以用于药物的分离和提纯,提高药物的纯度和效果。
此外,超临界萃取还可以用于药物的微粒化和载药体系的制备,提高药物的生物利用度和稳定性。
4. 超临界萃取的优缺点4.1 优点•高效:超临界流体具有较高的扩散速度和溶解能力,能够在较短时间内完成目标物质的提取。
•环保:超临界流体通常采用二氧化碳等无毒无害的物质,不会对环境和人体健康造成危害。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以超临界流体对许多组分具有很强的 选择性和溶解能力,又具有气体易扩散 的特性,使传质速率大大高于溶剂萃取, 可以实现物质的高效率分离提纯。 部分超临界流体溶剂: CO2,氨,甲
烷,氧……
选择萃取剂时要考虑溶解度,选择性, 临界点数据,化学反应的可能性等因素。
3.溶剂化效应 有机化合物在超 临界流体中的溶解度 与压力关系:
2.超临界萃取原理
1.几个重要概念 ①临界点 ②临界温度(tc) ③临界压力(pc) ④超临界流体区域(即 阴影部分)
2.超临界流体特性 物质处于临界温度和临界压力以上 状态时,向该状态气体加压,气体不会 液化,只是密度增大,具有类似液态性 质,同时还保留气体性能,这种状态的 流体称为超临界流体。 密度:比气体大数百倍 粘度:仍接近于气体 扩散系数:介于气体与液体之间
在中草药研究与开发中的应用: 提取萜类与挥发油;提取生物碱;提取 香豆素和木脂素;提取黄酮类化合物等 等。 在医药工业中的应用: 超临界干燥和造粒;超临界除杂,灭菌; 超临界重结晶。 在高分子科学中的应用:超临界CO2协助 渗透技术;超临界CO2溶胀聚合技术……
6.超临界流体萃取技术的展望
当今,天然食品,“绿色食品”不断发 展,人们对食品管理卫生也有日趋严格 的趋势。但传统的天然产物分离,精制 加工的工艺手段往往会造成天然产品中 某些成分在加工过程中被破坏,改变了 天然食品独特的风味和营养。而且加工 过程溶剂残留物的污染也是不可避免的。 超临界流体萃取技术有可能解决这一系 列的问题。
Ⅰ:表示45℃下萘在超临 界CO2中溶解度与压力的 关系. Ⅱ:表示25℃下对氯碘苯 在超临界乙烯中的溶解 度.
上述结果表明:在超临界状态下, 流体具有溶剂性质,又称为溶剂化效应。
同时,上述曲线也表明:超临界流 体的溶解能力将受到溶剂性质,流体压 力和温度等因素的影响。
也就是说:在临界点附近,压力和 温度的微小变化,都会引起流体的 密度有很大的变化,溶解度也相应 地变化。所以,可以利用压力,温 度的变化来实现萃取和分离的过程。 这就是超临界流体萃取的原理。
4.超临界流体萃取技术的特点
具有广泛的适应性。 萃取效率高,过程易于调节。 分离工艺流程简单。 分离过程有可能在接近室温下完成,特 别适用于热敏性天然物质。 必须在高压下操作,设备及工艺技术要 求高,投资比较大。
5.超临界萃取在各方面的应用
在天然香料工业上的应用: 提取植物芳香成分;萃取和浓缩水果蔬 菜香气成分;提取鲜花芳香成分。 在食品方面的应用: 脱咖啡因;萃取啤酒花的有效成分;萃 取植物油脂(小麦胚芽油,沙棘油,大 豆油) ;从鱼油中分离提取高度不饱和 脂肪酸;分离提纯磷脂;分离辣椒红色 素和辣素。
近年来超临界流体技术正迅速向萃取分 离以外的领域发展。国际上每三年召开 一次超临界流体学术会议。 超临界流体技术已发展成包括萃取分离, 材料制备,化学反应和环境保护等多项 领域的综合技术,并存在着非萃取应用 研究越来越受到重视的趋势。
谢谢!
超临界CO2的简单 介绍 1.优点(书P432) tc=31.05℃ pc =7.32MPa 溶解度…… 2.CO2的压力与温 度、密度的关系
3.萘在超临界CO2中的溶解度与压力的关系
综上所述,超临界CO2有一系列的优点, 所以绝大部分超临界流体萃取都以CO2 为溶剂。 另外,超临界轻质烷烃(C3~C5)和水, 它们各具特点,在超临界流体技术上也 占有一定地位。
3.超临界流体萃取基本流程
依据分离方法的不同,可分为三种:
以超临界CO2萃取工艺过程为例经热交换器冷凝成液体,用加压泵4把压力提 升到工艺过程所需的压力(高于CO2的临界压力), 同时调节温度,使其成为超临界CO2流体。 3.CO2流体从萃取釜1底部进入,与被萃取物料充分接触, 选择性溶解出所需的化学成分。 4.含溶解萃取物的高压CO2流体经减压阀2降压到低于 CO2临界压力以下,进入分离釜。 5.CO2溶解度急剧下降而析出溶质,自动分离成溶质和 CO2气体两部分。产品定期从分离釜3底部放出,CO2 气体经热交换器冷凝成CO2液体再循环使用。
超临界流体萃取
1.超临界萃取的历史
超临界萃取是以处于临界温度和临 界压力以上的超临界流体作为萃取 剂,提纯分离与纯化液体或固体中 的有效成分的一种单元操作。 超临界萃取是近二十多年来发展起 来的一种新型分离技术。
1978年联邦德国建成从咖啡豆脱除 咖啡因的超临界CO2萃取工业化装置。 生产出能保持咖啡原有色香味的脱 咖啡因咖啡。 我国超临界萃取研究始于20世纪80 年代初,从基础数据,工艺流程和 实验设备等方面逐步发展。现在已 逐步走向工业化,有多种产品进入 市场。其发展方兴未艾。