ldo电源设计原理与应用
LDO原理与应用

LDO原理与应用1.工作原理LDO是阻性电源产品,通过内部MOSFET的开关,只能进行降压输出,输出电压一定比输入电压要低。
如图LDO基本电路,主要由MOSFET、反馈分压电阻Rs和Rf、误差比较放大器组成。
通过此误差放大器向输出晶体管提供必要的门极电压,控制MOS管的通断。
基本工作原理是这样的:系统加电,如果使能脚处于高电平时,电路开始启动,恒流源电路给整个电路提供偏置,基准源电压快速建立,输出随着输入不断上升,当输出即将达到规定值时,由反馈网络得到的输出反馈电压也接近于基准电压值,此时误差放大器将输出反馈电压和基准电压之间的误差小信号进行放大,再经调整管放大到输出,从而形成负反馈,保证了输出电压稳定在规定值上;同理如果输入电压变化或输出电流变化,这个闭环回路将使输出电压保持不变,即:V OUT =(Rf+Rs)/Rs * Vref产生压差的主要原因是,在调整元件中有一个P沟道的MOS管。
当LDO工作时MOS管道通等效为一个电阻,RDS(ON),V dropout= V IN - V OUT = R DS(ON) x I OUTR.由此得出低压差线性稳压器(LDO)的一个重要特性,在输入电压大于最小工作电压和输出电压其标称值范围内,负载电流为零时,输出电压随输入电压的变化而变化,这就是LDO的跟随特性,待输出电压达到其标称值后不随输入而变化,从而达到稳压的目的,这就是LDO的稳压特性。
具体负反馈实现过程:取样电压加在比较器A的同相输入端,与加在反相输入端的基准电压Uref相比较,两者的差值经放大器A放大后,控制MOSFET的压降,从而稳定输出电压。
当输出电压Uout降低时,基准电压与取样电压的差值增加,比较放大器的输出就控制MOSFET的导通程度变大,所以MOS管上压降减小,从而使输出电压升高。
相反,若输出电压Uout超过所需要的设定值,比较放大器的输出控制MOSFET的导通程度变小,MOS管上压降减大,从而使输出电压降低。
LDO的内部原理,工作过程及其应用

S2
S4
CVOUT
Cout
VREF
+ -
通过反馈控制 电容Cfly的充放 电时间,实现 调节输出电压 的目的
GND
DC-DC (inductor)
原理框图
电子 开关
VIN
V’O
整流滤 波电路 比较 电路
VREF
VO
R1
占空比控 制电路
R2
DC-DC
Step Down “Buck” Converter V in
注意:一个极点只能增加- 90°的相移,所以最少需 要两个极点来到达-180° (不稳定点)。
零点(ZEROS)
零点(Zero)定义为在增益曲线中斜度为+ 20dB/十倍频程的点。零点产生的相移为0到 +90°,在曲线上有+45°角的转变。必须 清楚零点就是“反极点” (Anti-pole),它在增益 和相位上的效果与极点 恰恰相反。在LDO稳压 器的回路中添加零点可 以抵消极点。
5. VF与VREF之差趋于0,个系统恢复了平衡。
LDO频率补偿
所有稳压器都使用反馈回路(Feedback Loop)以保持输出电压的稳定。 反馈信号 在通过回路后都会在增益和相位上有所改变, 通过在单位增益(Unity Gain,0dB)频率下 的相位偏移总量来确定回路的稳定性。 引入反馈的电路必须考虑回路稳定性问题。 负反馈越深,也容易自激振荡。为了提高放 大器在深度负反馈条件下的工作稳定性,一 般采用的消振方法为频率补偿(相位补偿)
I CIN
+ CFLY
S2
S1
+ CFLY
S4
S3
S4
S3
VOUT COUT
介绍LDO的工作原理

介绍LDO的工作原理低压差放大器(LDO)是一种电源管理器件,广泛用于电源管理系统中。
它是一种线性稳压器,用于在输入电压只比输出电压高很少的情况下提供稳定的输出电压。
LDO通常用于低功耗应用,提供稳定的电源电压给各种电子设备,如便携式电子设备、传感器和微控制器等。
LDO工作原理LDO的工作原理基于负反馈控制。
它的基本工作原理如下:1.输入电压经过一个电感器,并通过电流限制器进入LDO芯片的输入引脚。
2.在芯片内部,输入电压经过一个差动放大器进行放大,并与参考电压进行比较。
3.放大器的输出结果通过错误放大器进行放大,并通过一个偏置电源进行加偏。
4.错误放大器的输出被输入到一个电流控制环路中,这个环路通过控制输出晶体管的基极电流来控制输出电压。
5.输出电压被分压,并进行采样,与参考电压相比较。
6.放大器的输出信号通过一个比例值进行放大,并通过一个错误放大器进行放大。
7.错误放大器的输出信号被输入到电流控制环路中,控制晶体管的基极电流,使输出电压达到设定值。
8.输出电压从输出引脚提供给负载。
LDO的关键组件包括:1.偏置电源:提供适当的电位作为偏置点,以确保输出电压的稳定性。
2.电感器:用于滤除输入电源中的高频噪声。
3.差动放大器:用于对输入电压进行放大和比较。
4.错误放大器:用于放大放大器的输出,并将其转换为适当的控制信号。
5.电流控制环路:控制输出晶体管的基极电流,以维持输出电压的稳定。
6.输出电压分压器:将输出电压降低到合适的比例进行采样和比较。
LDO的工作原理的关键是负反馈控制。
当输出电压下降时,放大器的输出增加,导致输出晶体管的基极电流增加,进而提高输出电压。
同样地,当输出电压升高时,放大器的输出减少,导致输出晶体管的基极电流减小,从而降低输出电压。
这种闭环反馈控制机制能够使得LDO输出电压保持稳定。
LDO的优点和缺点LDO具有以下优点:1.稳定性好:由于负反馈机制,输出电压能够稳定在设定值,对输入电压波动的抑制能力优秀。
LDO

要:本文论述了低压差线性稳压器(LDO)的基本原理和主要参数,并介绍LDO的典型应用和国内发展概况。
引言便携电子设备不管是由交流市电经过整流(或交流适配器)后供电,还是由蓄电池组供电,工作过程中,电源电压都将在很大范围内变化。
比如单体锂离子电池充足电时的电压为4.2V,放完电后的电压为2.3V,变化范围很大。
各种整流器的输出电压不仅受市电电压变化的影响,还受负载变化的影响。
为了保证供电电压稳定不变,几乎所有的电子设备都采用稳压器供电。
小型精密电子设备还要求电源非常干净(无纹波、无噪声),以免影响电子设备正常工作。
为了满足精密电子设备的要求,应在电源的输入端加入线性稳压器,以保证电源电压恒定和实现有源噪声滤波[1]。
一.LDO的基本原理低压差线性稳压器(LDO)的基本电路如图1-1所示,该电路由串联调整管VT、取样电阻R1和R2、比较放大器A组成。
取样电压加在比较器A的同相输入端,与加在反相输入端的基准电压Uref相比较,两者的差值经放大器A放大后,控制串联调整管的压降,从而稳定输出电压。
当输出电压Uout降低时,基准电压与取样电压的差值增加,比较放大器输出的驱动电流增加,串联调整管压降减小,从而使输出电压升高。
相反,若输出电压Uout超过所需要的设定值,比较放大器输出的前图1-1 低压差线性稳压器基本电路驱动电流减小,从而使输出电压降低。
供电过程中,输出电压校正连续进行,调整时间只受比较放大器和输出晶体管回路反应速度的限制。
应当说明,实际的线性稳压器还应当具有许多其它的功能,比如负载短路保护、过压关断、过热关断、反接保护等,而且串联调整管也可以采用MOSFET。
二.低压差线性稳压器的主要参数1.输出电压(Output Voltage)输出电压是低压差线性稳压器最重要的参数,也是电子设备设计者选用稳压器时首先应考虑的参数。
低压差线性稳压器有固定输出电压和可调输出电压两种类型。
固定输出电压稳压器使用比较方便,而且由于输出电压是经过厂家精密调整的,所以稳压器精度很高。
LDO电源设计原理和应用

4
Introduction of LDO
为解决压差过大(功耗过大)而不适合用在低电压转换的 问题,出现了LDO(Low Dropout Linear Regulator ). 低压差线性稳压器也存在压差,具有线性电源的优点和缺 点。其转换效率近似等于输出电压除以输入电压的值。例 如,如果一个LDO输入电源是3.6V,在电流为200mA时 输出1.8V电压,那么转换效仅为50%。虽然就较大的输 入与输出电压差而言,确实存在这些缺点,但是当电压差 较小时,情况就不同了。例如,如果电压从1.5V降至1.2V, 效率就变成了80%。 在LDO中,产生压差的主要原因是在调整元件中有一个P 沟道的MOS管。当LDO工作时MOS管道通等效为一个电 阻,Rds(on), Vdropout = Vin - Vout = Rds(on) x Iout (式A)
8. 基准电压(Reference Voltage) 基准模块是线性稳压器的一个核心部分,基准的大小直接 决定了稳压器输出的大小,它是影响稳压器精度的最主要 因素。
11
Flows in Application
1、确定电路需要的电压类型是正电压还是负电压。 2、确定电路的输出电压、负载电流和输入电压(注意输 入电压和负载电流都需要降额80%考虑) 3、确定电路的最大、最小输入-输出电压差;电路的最 大、最小输入-输出电压差应该满足器件要求; 4、单板PCB、结构尺寸和生产线对封装形式的要求; 5、确定电路的电性能指标要求(如静态电流、精度、纹 波、效率等);器件的指标应该满足电路指标的要求,并 且考虑温度对各种性能指标的影响; 6、确定器件的输出电容以及ESR值,如果器件对输出电 容以及ESR有特殊要求,考虑公司现有器件是否满足要求; 7、其他要求(如电路是否需要使能控制端、价格因素 等)。
ldo的原理和应用

LDO的原理和应用1. 什么是LDO?LDO(Low Dropout)是一种低压差稳压器件,用于将高电压转换为较低电压。
它能够在输入电压与输出电压之间产生非常低的压降,并提供稳定的输出电压。
2. LDO的工作原理LDO的核心部分是差分放大器和功率晶体管。
差分放大器用于控制功率晶体管的导通和截断,通过调整功率晶体管的开启程度来控制输出电压的稳定性。
当输入电压高于输出电压时,差分放大器将关闭功率晶体管,以防止输出电压过高。
当输入电压接近输出电压时,差分放大器打开功率晶体管,以保持输出电压稳定。
3. LDO的优点•低压差: LDO具有非常低的压降,因此能够提供准确且稳定的输出电压。
•低噪音: LDO的设计使其能够提供较低的输出噪音水平,适用于对噪音敏感的应用。
•简单可靠: LDO是一种相对简单的稳压器件,具备较高的可靠性和稳定性。
•快速响应: LDO能够快速响应输入电压的变化,并迅速调整输出电压以保持稳定。
4. LDO的应用LDO在各种电子设备中广泛应用,以下是一些常见的应用场景:4.1 手机和平板电脑LDO在手机和平板电脑中用于稳定供电给各个部件,如处理器、存储器和无线通信模块。
其低噪音和快速响应特性使得手机和平板电脑能够提供高质量的信号处理和数据传输。
4.2 电源管理LDO用于电源管理系统,例如将高电压降至适合模拟和数字电路的工作电压。
其低压差和稳定性使用于各种应用,如笔记本电脑、服务器和工业自动化设备等。
4.3 汽车电子LDO在汽车电子系统中用于稳定供电给各个电子模块,如发动机控制单元(ECU)、信息娱乐系统和驾驶辅助系统。
其可靠性和稳定性使LDO成为在恶劣环境下可靠工作的理想选择。
4.4 照明和LED驱动LDO用于照明和LED驱动应用中,通过稳定的电压提供可靠的光照和控制。
其低噪音特性对于要求高质量光照的应用非常重要。
5. 总结LDO是一种常见且有广泛应用的稳压器件。
它具有低压差、低噪音、快速响应和可靠性等优点。
ldo电压范围

ldo电压范围(原创实用版)目录1.LDO 电压范围的定义与重要性2.LDO 的工作原理3.LDO 电压范围的分类4.LDO 电压范围的选择方法5.应用案例与未来发展趋势正文1.LDO 电压范围的定义与重要性LDO(Low Dropout Voltage)电压范围,即低压差电压范围,是指在输出电流变化时,输出电压保持稳定的最小电压差。
LDO 作为电源管理芯片中的一种,广泛应用于各类电子产品中,对于保证设备的稳定运行具有重要意义。
2.LDO 的工作原理LDO 的工作原理主要基于其内部的参考电压源和调整电阻。
当输出电压因负载电流变化而产生波动时,LDO 会自动调整内部电阻,使输出电压保持稳定。
这种调整方式具有响应速度快、输出电压噪声低等优点。
3.LDO 电压范围的分类根据不同的应用场景,LDO 电压范围可以分为以下几类:(1)低压差 LDO:其电压范围在 0.5V 至 1V 之间,适用于对电压稳定性要求较高的场景,如模拟电路、射频电路等。
(2)中压差 LDO:其电压范围在 1V 至 3V 之间,适用于一般电子产品,如数字电路、通信设备等。
(3)高压差 LDO:其电压范围在 3V 以上,适用于高电压、大电流应用场景,如电源适配器、工业控制设备等。
4.LDO 电压范围的选择方法在选择 LDO 电压范围时,需要考虑以下几个因素:(1)负载电流:根据负载电流的大小,选择合适的 LDO 电压范围,以保证输出电压的稳定性。
(2)电源电压:根据电源电压的变化范围,选择适应性强的 LDO 电压范围。
(3)应用场景:根据不同的应用场景,选择具有针对性的 LDO 电压范围。
5.应用案例与未来发展趋势随着科技的发展,LDO 的应用领域不断拓宽,涵盖了通信、计算机、消费电子等多个行业。
在未来,随着物联网、5G 等技术的发展,对电源管理芯片的性能要求将更高。
ldo的原理及应用

LDO的原理及应用1. LDO是什么?LDO(Low Dropout)是指低压降稳压器,是一种常见的电子元件,用于提供稳定的电压输出。
与其他稳压器相比,LDO的特点是在输出电压接近输入电压时具有低压降。
LDO通常被用于电子设备中,例如电源管理模块、手机、笔记本电脑等。
2. LDO的工作原理LDO的工作原理基于一个基本的电路结构:差分放大器、误差放大器、功率传输阶段、反馈回路和稳压器。
•差分放大器:这个部分接收输入电压和标准参考电压,并产生一个误差信号,反映了输出电压与标准参考电压之间的差异。
•误差放大器:误差放大器将差分放大器输出的误差信号放大,并通过反馈回路将其传递给功率传输阶段。
•功率传输阶段:功率传输阶段将误差放大器放大的误差信号与输入电压相加,以生成稳定的输出电压。
•反馈回路:反馈回路将输出电压与标准参考电压进行比较,并调整功率传输阶段的工作以保持输出电压稳定。
•稳压器:稳压器是LDO的核心部分,它通过调整功率传输阶段的输出,以确保LDO的输出电压始终在标准参考电压的附近。
3. LDO的应用LDO由于其低压降和稳定的输出电压特性,广泛应用于各种电子设备中。
以下是一些LDO的常见应用:3.1 电源管理模块LDO在电源管理模块中扮演着重要的角色。
电源管理模块通常用于为其他部件提供稳定的电源电压。
LDO的低压降可以确保在输入电压波动时输出电压的稳定性,从而保护其他电子组件不受电压变化的影响。
3.2 手机和笔记本电脑在手机和笔记本电脑等便携设备中,稳定的电源电压是关键。
LDO被用于提供各种电压级别,如CPU、内存和外围设备的电源电压。
LDO的低压降可以减少电池能量的浪费,同时确保设备的正常运行。
3.3 高精度仪器在需要高精度的仪器中,稳定的电源电压至关重要。
LDO的精确稳定性和低噪声特性使其成为高精度仪器中常用的稳压器。
例如,光学仪器、测量设备和医疗设备等。
3.4 汽车电子在汽车电子中,LDO被广泛应用于提供稳定的电源电压,包括车载电脑、音频设备、导航系统和传感器等。