开关电源基本工作原理

合集下载

开关电源工作原理

开关电源工作原理

开关电源工作原理开关电源是一种常见的电源供应装置,其工作原理是将输入电压通过开关器件进行高频开关,经过变压、整流、滤波等电路处理后,得到稳定的输出电压。

开关电源具有高效率、小体积、重量轻等优点,广泛应用于各种电子设备中。

一、开关电源的基本构成开关电源由输入端、输出端和控制电路组成。

1. 输入端:输入端主要包括输入电源和输入电路。

输入电源为交流电源,输入电路包括输入滤波电路和整流电路。

其中,输入滤波电路用于滤除输入电源中的杂波和干扰,保证输入电源的稳定性;整流电路将交流电源转换为直流电源。

2. 输出端:输出端主要包括输出电路和输出滤波电路。

输出电路通过开关器件进行高频开关,将整流后的直流电源转换为高频脉冲信号,经过输出滤波电路后得到稳定的直流输出电压。

3. 控制电路:控制电路主要包括开关控制电路和保护电路。

开关控制电路用于控制开关器件的开关频率和占空比,保证输出电压的稳定性和精度;保护电路用于监测输入输出电流电压,当超过设定值时进行过载保护。

二、开关电源的工作原理开关电源的工作原理可分为两个过程:变频过程和整流滤波过程。

1. 变频过程:变频过程即将输入电压通过开关器件进行高频开关,形成高频脉冲信号。

开关器件通常采用开关管或晶闸管进行控制,高频开关频率通常在几十kHz至几MHz之间。

当开关器件导通时,输入电源的能量通过开关管传导至输出端,形成电流;当开关器件断开时,输出端的电感储能元件将电能通过二极管进行放电,形成负电流。

通过不断的开关导通-断开操作,输入电压的能量被转换为高频脉冲信号。

2. 整流滤波过程:经过变频过程的高频脉冲信号需要通过变压、整流和滤波电路进行进一步处理。

首先,高频脉冲信号经过变压电路进行降压变换,得到适合输出电压的信号。

然后,经过整流电路将高频信号转换为直流信号,通过二极管进行单向导通。

最后,通过滤波电路对直流信号进行滤波,去除残余脉动和高频噪声,得到稳定的输出电压。

三、开关电源的工作模式开关电源的工作模式主要有两种:连续导通模式和断续导通模式。

开关电源工作原理超详细解析

开关电源工作原理超详细解析

开关电源工作原理超详细解析开关电源(Switching Power Supply)是一种先将输入交流电转换为直流电,再通过变换器和开关元件进行调制和控制,最终输出所需电压和电流的电源装置。

它可以高效地进行能量转换,减少功耗,适用于各种电子设备。

下面将详细解析开关电源的工作原理。

1.开关电源的基本组成开关电源由输入滤波器、整流器、脉宽调制器、变压器、输出滤波器和反馈电路组成。

-输入滤波器:用于滤除输入电源中的干扰信号,并平滑输送到整流器。

-整流器:将交流电转换为直流电,常用的整流方式有全波整流和半波整流。

-脉宽调制器:根据反馈信号调整开关管的导通时间,控制开关元件的开关频率和占空比。

-变压器:将输入电压转换为所需的输出电压,并通过与脉宽调制器协调工作来控制输出电压的稳定性。

-输出滤波器:用于平滑输出电压,减少纹波幅度,并滤波输出电流。

-反馈电路:通过采样输出电压并与目标电压进行比较,产生反馈信号控制脉宽调制器的输出。

2.工作原理-输入滤波:交流电经过输入滤波器后,去除干扰信号,并保持电压稳定。

输入滤波器通常由电容和电感组成,它们通过电压和电流的交替变化,将输入电源趋于稳定。

-变压:通过变压器将输入电压进行转换,以获得需要的输出电压。

变压器一般由磁性材料、绕线、磁心等组成,通过众多的绕线匝数比实现输入电压于输出电压的变化。

-输出滤波:经过变压器的输出信号包含较多的纹波幅度,通过输出滤波器将纹波幅度减小到可以忽略不计的程度。

输出滤波器通常包括电感和电容,通过滤除高频杂波和平滑输出电流。

3.脉宽调制脉宽调制器是开关电源中至关重要的一个部件,负责控制开关元件(如晶体管或MOSFET)的开关频率和占空比,以调节输出电压的稳定性。

- 控制开关频率:脉宽调制器根据输出电压的需求,采用不同的控制方式,例如固定频率PWM(Pulse-Width Modulation)、可变频率PWM和电流模式控制。

通过调整开关频率,可以实现对输出电压的精确控制。

开关电源工作原理及维修技巧

开关电源工作原理及维修技巧

开关电源工作原理及维修技巧开关电源是一种将交流电转换为稳定直流电的电子设备,广泛应用于各种电子设备和系统中。

了解开关电源的工作原理,对于工程技术人员和维修人员来说至关重要。

本文将介绍开关电源的工作原理,并提供一些常见问题的维修技巧。

一、开关电源的工作原理开关电源通过使用电子器件(如开关管、二极管和电感等)将交流电转换为高频脉冲电流,再通过滤波和稳压电路得到稳定的直流电。

下面将详细介绍开关电源的主要工作原理。

1. 输入滤波:开关电源的输入端会接入交流电源,而交流电源会带有各种干扰信号。

为了保证开关电源的正常工作,需要通过输入滤波电路来滤除这些干扰信号。

输入滤波电路一般由电容器和电感器组成,能够有效地滤除高频和低频的干扰信号。

2. 整流和滤波:经过输入滤波后,交流电会被整流电路转换为直流电。

整流电路通常使用二极管桥整流器来实现。

然后,通过输出滤波电路对整流后的直流电进行滤波处理,以去除直流电中的纹波电压,得到相对稳定的直流电。

3. 高频开关转换:直流电经过滤波后,会进入开关电源的核心部件——开关电路。

开关电路由开关管(如MOSFET、IGBT等)组成,通过快速开关操作将直流电转换为高频脉冲电流。

4. 变压器:高频脉冲电流进一步经过变压器的转换,得到所需的电压大小。

通过变压器的变换比例,可以实现升压、降压或保持电压稳定的功能。

5. 输出调节和稳压:经过变压器转换后的电流会进入稳压电路,稳压电路通常由反馈电路、误差放大器和控制开关管等组成。

利用反馈电路监测输出电压的变化情况,并与设定的参考电压进行比较,在误差放大器和控制开关管的调节下,保持输出电压稳定在设定值。

二、开关电源的常见故障和维修技巧1. 电源无输出或输出电压波动大:可能原因:- 输入端电源线异常,如插头松动或电源线破损。

- 滤波电容故障,需要检查滤波电容是否损坏或漏电。

- 开关管故障,开关管可能损坏或短路,需要更换。

- 控制电路故障,检查反馈电路和误差放大器是否正常工作。

开关电源工作详细原理讲解

开关电源工作详细原理讲解

开关电源工作详细原理讲解
开关电源是一种将输入电源转换为需要的输出电源的电子装置。

它主要由变压器、整流电路、滤波电路、功率开关器件、控制电路等组成。

以下是开关电源的工作原理的详细讲解。

1. 变压器:开关电源采用高频工作,输入的交流电压经过变压器降压,得到适合的工作电压。

2. 整流电路:变压器输出的交流电压经过整流电路,将其变为直流电压。

常用的整流电路包括单相半波整流电路、单相全波整流电路和三相全波整流电路。

3. 滤波电路:直流电压经过整流后还带有较大的纹波,需要通过滤波电路进行滤波,减小纹波。

常见的滤波电路有电容滤波电路和电感滤波电路。

4. 功率开关器件:开关电源使用功率开关器件(如MOSFET
或IGBT)来控制电流的开关状态。

通过控制开关的导通和关
断时间,可以调整输出电压和电流。

5. 控制电路:控制电路是开关电源的核心部分,它根据输出电压的反馈信号,实时调整功率开关器件的开关状态,确保输出电压稳定。

6. 反馈回路:开关电源会通过反馈回路感知输出电压情况,并将这一信息传递给控制电路。

当输出电压偏离设定值时,控制电路将校正功率开关器件的开关状态,维持输出电压的稳定性。

综上所述,开关电源通过变压器对输入电源进行降压,然后经过整流、滤波、功率开关器件和控制电路的协同作用,将输入的交流电源转换为稳定的直流输出电源。

控制电路通过反馈回路不断调整功率开关器件的开关状态,以维持输出电压的稳定性。

开关电源具有高效率、小体积、重量轻等优点,广泛应用于各种电子设备中。

开关电源工作原理

开关电源工作原理

开关电源工作原理
开关电源,又称开关式电源,是一种将电能有源转换为高效直流电能供应的电源系统。

其工作原理可以分为以下几个主要部分:
1. 输入滤波:交流电从电源输入端进入开关电源时,首先经过一个电源输入滤波器。

该滤波器的作用是去除电源输入端的电源干扰,包括高频噪声和电源波动等。

滤波后的电源信号会进一步被送入下一个模块。

2. 整流和滤波:经过输入滤波的电源信号进入整流桥。

整流桥通过将交流电转换为脉冲直流电,使得电源信号的方向一致。

然后,通过滤波电容对这些脉冲进行平滑,去除脉冲部分,得到较为平稳的直流电源信号。

3. 交流直流变换:经过整流和滤波的直流电源信号进入交流直流变换器。

这个变换器使用高频开关器件(如MOSFET)来控制电源信号的开关转换,将直流电源信号转换为高频脉冲电流。

通过变压器的电感和电容滤波,将高频脉冲电流转换为平稳的低频直流电源。

4. 输出调整:经过交流直流变换后,得到所需电压和电流水平的直流电源信号。

然后,经过输出调整电路,如电压稳压器或电流限制器等,保证电源输出的稳定性和可靠性。

5. 反馈控制:为了保持输出电压稳定,开关电源通常会采用反馈控制机制。

在输出端引入一个反馈回路,监测输出电压,并
将监测结果与设定值进行比较。

然后,通过控制开关器件的开关状态来调整电源输出,使输出电压维持在设定值范围内。

需要注意的是,开关电源工作原理中的各个部分相互关联,通过精细的控制和调节,实现高效、稳定的电能转换。

这种工作原理使得开关电源在电子设备、计算机等领域得到广泛应用,并取代了传统的线性电源。

开关电源工作原理详解

开关电源工作原理详解

开关电源工作原理详解
开关电源是一种将直流电转换为高频交流电,然后通过变压器进行变压、整流和滤波得到稳定的直流电输出的电源。

开关电源的工作原理主要包括以下几个步骤:
1. 输入电压调整:开关电源首先对输入电压进行调整,通常使用一个电压反馈回路来实现电压稳定。

具体方式是通过一个采样电阻将一部分输入电压反馈给一个比较器,与内置的参考电压进行比较并调整。

2. 脉冲宽度调制:为了将输入电压转换为高频交流电,开关电源使用脉冲宽度调制(PWM)技术。

通过调整一个脉冲调制器中的比较器输入电压来控制开关管的开关时间,从而调整输出电压。

3. 开关管控制:开关电源中的主要元件为开关管,通常使用MOSFET作为开关管。

通过控制开关管的导通和断开,可以将输入电压转换为高频的方波信号。

开关管的导通和断开通过PWM信号控制。

4. 变压器和整流:通过变压器将高频方波信号变换为适宜的电压,并进行整流。

变压器主要负责将输入电压变压到适合输出电压的比例,并通过整流电路将高频信号转换为直流信号。

5. 稳压和滤波:通过控制PWM信号的占空比和频率,可以调整输出电压的稳定性。

而后,通过滤波电容和电感器对输出直
流电进行滤波,减小输出电压波动。

6. 输出调节:将滤波后的直流电通过一个稳压稳流电路进行输出调节,确保输出电流和电压的稳定性和精度。

输出调节可以通过负载的变化来自动调整。

开关电源的工作原理利用了高频开关管的导通和断开来控制输出电压,通过变压器和整流电路将输入电压转换为稳定的直流电。

开关电源具有体积小、效率高、可调范围广等优点,被广泛应用于各种电子设备中。

开关电源电路原理

开关电源电路原理

开关电源电路原理开关电源电路是一种常用的电源供电方式。

相比线性电源,开关电源具有高效率、小体积、稳定性好等优点,因此在各个领域得到了广泛的应用。

了解开关电源的原理对于电子工程师和爱好者来说是非常重要的。

本文将介绍开关电源的基本原理以及其工作过程。

一、开关电源的基本原理开关电源的基本原理是通过控制开关管(也叫开关MOS管)的导通和截止来实现电源输出电压的调节。

开关电源主要由输入电流滤波电路、整流电路、PWM调制电路以及输出滤波电路等组成。

1. 输入电流滤波电路开关电源的输入电流滤波电路主要由输入滤波电容和输入滤波电感构成。

输入滤波电容能够对输入电流进行平滑,使得输入电流的波形更加接近直流。

而输入滤波电感可以起到滤除高频噪声的作用,从而保护后续电路。

2. 整流电路整流电路主要由整流二极管和输出滤波电容构成。

在开关电源中,通常采用整流二极管将输入电压的负半周截掉,从而得到一个单向的输出电压波形。

输出滤波电容的作用是进一步平滑输出电压,使得输出的直流电压更加稳定。

3. PWM调制电路PWM调制电路是开关电源的核心部分,其作用是通过调节开关管的导通和截止时间,改变输出电压的占空比。

一般采用固定频率的PWM调制方式,通过将输入电压转换成高频PWM信号,并且通过控制开关管的导通和截止时间来调节输出电压的大小。

4. 输出滤波电路输出滤波电路主要由输出滤波电感和输出滤波电容构成。

输出滤波电感可以滤除PWM调制带来的高频噪声,而输出滤波电容可以进一步平滑输出电压。

二、开关电源的工作过程开关电源的工作过程可以简单分为导通状态和截止状态两种情况。

1. 导通状态当PWM调制电路控制开关管导通时,电路中的电感会储存能量,同时输出电容开始向负载放电。

此时,输出电压会逐渐上升,直到达到设定值。

2. 截止状态当PWM调制电路控制开关管截止时,电路中的电感释放储存的能量,并将其传递给输出电容。

同时,输出电容会向负载供电,并且带动电流流向负载。

开关电源的基本原理

开关电源的基本原理

开关电源的基本原理
开关电源是一种电源,它可以将交流电转换成直流电,并且可以控制电流的大小。

它的基本原理是:将交流电通过变压器转换成高压直流电,然后将高压直流电经过滤波器过滤,再经过稳压电路调节,最后输出低压直流电。

开关电源的工作原理是:将交流电通过变压器转换成高压直流电,然后将高压
直流电经过滤波器过滤,再经过稳压电路调节,最后输出低压直流电。

变压器的作用是将交流电的电压转换成高压直流电,滤波器的作用是过滤掉交流电中的杂波,稳压电路的作用是将高压直流电调节成低压直流电,最后输出低压直流电。

开关电源的优点是:输出电压稳定,输出电流可控,效率高,可靠性高,可以
节省能源,可以满足不同的电压要求,可以满足不同的电流要求,可以满足不同的功率要求,可以满足不同的频率要求,可以满足不同的电压调节要求,可以满足不同的电流调节要求,可以满足不同的功率调节要求,可以满足不同的频率调节要求。

开关电源的缺点是:由于开关电源的工作原理是将交流电转换成直流电,所以
它会产生一定的电磁干扰,这种电磁干扰会影响周围的电子设备的正常工作,所以在使用开关电源时,应该注意防止电磁干扰。

总之,开关电源是一种非常有用的电源,它可以将交流电转换成直流电,并且
可以控制电流的大小,可以满足不同的电压、电流、功率和频率要求,但是也会产生一定的电磁干扰,所以在使用开关电源时,应该注意防止电磁干扰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 2.电容的充电平衡:稳态条件 下,电容电流在一个开关周期 内的平均值为零
ug
Ts
uL
DTs Ui –Uo
DTs
–Uo
t
t
iL t
–Uo/R
2010-7-12
20
三、 主电路工作原理(3)
¾ 基本的脉冲宽度调制波形 • 这些拓扑结构都与开关式电路有关。 • 基本的脉冲宽度调制波形定义如下:
TON TOFF
20~100W
小型仪器、仪表,家用电器等电源,自动化设备 中的控制电源
单端正激式变换 器(FORWARD)
50~200W
小型仪器、仪表,家用电器等电源,自动化设备 中的控制电源
推换式变换器 (PUSH-PULL) 半桥式变换器 (HALF BRIDGE) 全桥式变换器 (FULL BRIDGE)
100~500W
注意:BOOST电路工作于CCM时,D不能很接近1,工作于 D2C010M-7-时12 不能令负载开路,否则高压令电路元器件要损坏。26
三、 主电路工作原理(6)——BUCK-BOOST
¾ 升降压电路工作于DCM模式
2010-7-12
27
三、 主电路工作原理(5)——反激
¾ 反激式电路
2010-7-12
2010-7-12
36
三、 主电路工作原理(5)——反激
¾ 反激式电路工作于DCM工作模式时的特点
• 反激式电路中的变压器相当于多个绕组的耦合电感, 在输入和输出绕组中不会同时有电流流过,不存在磁 动势相互抵消的可能,因此变压器中磁心的磁通密度 取决于绕组中电流的大小。
16
二、开关电源电路拓扑的实用选择方法
• 升压或者降压:输入电压总是比输入电压低吗? • 占空比的实际限制:输出电压和输入电压是否相差5倍以上? • 多少组输出:是否多于1组,是否很多? • 隔离要求:如果需要隔离,就需要变压器 • EMI要求:EMI要求高,不适合采用输入电流不连续的拓扑。 • MOSFET还是双极性晶体管:功率大?开关频率高? • 电流连续还是电流断续:需要空载工作吗? • 同步整流:输出电压很低? • 电压模式控制和电流模式控制:如果输出电流很大,选用电压模
⎜⎝
i

U
O
⎟⎞ ⎟⎠
DTs
= Uo
×αTs
根据稳态时电容C的充电电流平均值为0
ug
Ts
uL DTs Ui –Uo
DTs
–Uo
iL
ΔIL
t
1 2
ΔI
L
(
D
+
α
)
=
Uo R

电感方程:
L
ΔI L DTs
= Ui
t
M = Uo = Ui
1+ 4K 2K
−1
,
ቤተ መጻሕፍቲ ባይዱ
其中K=
2L D2Ts
R
在电感电流断续的情况下,Uo=DUi不成立。
二、 开关电源中的电力电子电路(1)
¾ 电力电子电路分类
非隔离型电路
降压型电路(BUCK)
升压型电路(BOOST)
升降压型电路(BUCK-BOOST) CUK型电路
SPEIC型电路√
ZETA型电路√
隔离型电路
单管(双管)正激型电路(FORWARD) 反激电路(FLYBACK)
半桥型电路(HALF-BRIDGE) √ 全桥型电路(FULL-BRIDGE) √ 推挽型电路(PUSH-PULL) √
– 20世纪80年代开始:软开关技术的发展——开关频率不断得 到突破,100kHz,1Mhz,10MHz……。
– 20世纪90年代:功率因素矫正电路——绿色电源(对电网无 污染)
– 21世纪:不断的增加功率密度。
2010-7-12
8
一、什么是开关电源(6)
High f/Eff./Power Density Conversion
100~5000W
500W~ 30kW
控制设备,计算机等电源 焊机,超声电源,计算机电源等 焊机、高频感应加热,交换机等
这类电源的共同特点:具有高频变压器、直流稳压是从变压器次级 绕组的高频脉冲电压整流滤波而来。变压器原副边是隔离的,或是 部分隔离的,而输入电压是直接从交流市电整流得到的高压直流。
2010-7-12
D=0.6
0.6
D=0.4
0.4
RT s L
可见:
5
10
15
电感电流连续时 ,Uo/Ui=D; 电流断续时,总是有Uo/Ui>D,负载越小(负载电阻越大),则Uo越高。 输出空载时,Uo=Ui。
2010-7-12
25
三、 主电路工作原理(5)——BOOST
¾ BOOST电路工作于CCM和DCM
iD
22
三、 主电路工作原理(4)——BUCK
¾BUCK电路工作于CCM和DCM时的电感电流波形
M = Uo = D
2010-7-12
Ui
M = Uo = D Ui
M = Uo = ? Ui
23
三、 主电路工作原理(4)——BUCK
¾电感电流断续情况下的电压增益表达式
根据稳态时电感伏秒平衡原理:
U⎜⎛
思考:推导电压增益表达式M
2010-7-12
33
三、 主电路工作原理(5)——反激
• 电容充放电平衡:
Uo R
=
Io
=
1 2
ΔI
D
×
α
=
1 2
ΔI
L
2
×
α
• 变压器副边电感方程:
L ΔI L2
αTs
=Uo
α 2= 2L
RTs
• 变压器伏秒平衡:
N2 N1
Ui DTs
= UoαTs
2010-7-12
变压器等效电路
28
三、 主电路工作原理(5)——反激
开关管导通时的等效电路
开关管截止时的等效电路二
2010-7-12
(DCM)
开关管截止时的等效电路一
一个开关周期内,电感 能量已经降为零,则该 电路工作于DCM状态。
& & &反激变压器的原 副边并不同时流过电 流,只在开关瞬时符合 安匝平衡。
29
式控制比电流模式控制好。
2010-7-12
17
三、 开关电源主电路工作原理
• BUCK,BOOST • 反激,半桥 • 整流
三、 主电路工作原理(1)
¾开关电源CCM和DCM工作模式
• CCM: Continuous Conduction Mode,(电感电流)连续导通模式 • DCM: Discontinuous Conduction Mode,(电感电流)断续导通模式
– 调整管工作在线性放大状态 – 调整管损耗大 – 工频变压器体积大,重量重。
调整管
交流输入
电压给定
直流 输出
2010-7-12
5
一、什么是开关电源(3)
¾ 开关电源:泛指,电路中有电力电子器件工作在高 频开关状态的直流电源。
– 电力电子器件工作在开关状态,损耗很小 – 其隔离和电压变换的变压器T是高频变压器,体积大大缩小,重
第一节 开关电源基本工作原理
浙江大学电气工程学院 应用电子学系
二零一零年七月
本节内容
• 一、什么是开关电源 • 二、 开关电源中的电力电子电路 • 三、 主电路工作原理 • 四、电力电子器件 • 五、无源器件
2010-7-12
2
一、什么是开关电源
• 电源 • 线性电源 • 开关电源
一、什么是开关电源(1)
¾ 电源:提供电能的装置
• 把其他形式的能转换成电能的装置 叫做电源
– 发电机: • 机械能
电能
– 干电池: • 化学能
电能
– 计算机电源: • 交流电
直流电
– 太阳能电池 • 太阳能
电能
• 本书所指电源是:输入输出都是电 能的电能变换电源。
2010-7-12
4
一、什么是开关电源(2)
¾ 线性电源:
• 前面所述的各种开关电源,均可能工作于CCM或者DCM两种模式。 两种工作模式下,电压增益的表达式不一样。
• 开关电源工作于哪种工作模式,在开关电源的占空比不变的情况 下,与开关电源的负载大小以及电感的大小有关系。
2010-7-12
19
三、 主电路工作原理(2)
¾开关电源稳态分析的两个基本原理
• 1.电感的伏秒平衡:稳态条件 下,电感两端电压在一个开关 周期内的平均值为零
三、 主电路工作原理(5)——反激
iL1
开关管导通时的等效电路
iL2
iL2折算到原边
iL1折算到副边
2010-7-12
反激式变换器工作在CCM工作模式时的各个波形(1)
30
三、 主电路工作原理(5)——反激
iL1
开关管截止时的等效电路一
iL2
iL2折算到原边
iL1折算到副边
2010-7-12
反激式变换器工作在CCM工作模式时的各个波形(1)
¾ 开关电源设计的步骤 • 电路拓扑选择——《电力电子技术》 • 元器件选择——《电力电子器件》 • 控制系统反馈设计——《自动控制理论》 • 磁性元件设计——《电磁场理论》,《电力电子技术》
– 监控设计 – 热管理 – EMI控制 – ……
2010-7-12
12
二、 开关电源中的电力电子电路
• 分类 • 应用
2010-7-12
14
二、 开关电源中的电力电子电路(2)
buck
cuk
正激
相关文档
最新文档