傅里叶变换在图像处理中的应用研究
傅里叶变换在图像去噪中的应用优化探讨

傅里叶变换在图像去噪中的应用优化探讨图像去噪是数字图像处理领域中的一个重要问题,目的是通过消除图像中的噪声,恢复图像的清晰度和细节。
傅里叶变换作为一种有效的信号处理工具,在图像去噪中被广泛应用。
本文将探讨傅里叶变换在图像去噪中的应用优化方法。
一、傅里叶变换的基本原理傅里叶变换是将一个时域函数转化为其频域表示的一种数学变换方法。
在图像处理中,傅里叶变换可以将图像分解为一系列频率成分。
其基本公式如下:F(u, v) = ∬f(x, y)e^(-i2π(ux+vy))dxdy其中F(u, v)表示频域中的图像,f(x, y)表示时域中的图像。
傅里叶变换将图像从空间域转换到频域,使得频域中不同频率成分的信息可以更清晰地被提取和处理。
二、傅里叶变换在图像去噪中的应用图像去噪是通过去除图像中的噪声来提高图像质量的过程。
传统的图像去噪方法包括均值滤波、中值滤波等。
然而,这些方法往往会模糊图像细节,因此需要一种更加有效的方法来保持图像的清晰度。
傅里叶变换在图像去噪中的应用主要体现在频域滤波上。
通过将图像从空间域转换到频域,可以很容易地对图像进行频域滤波操作。
常见的频域滤波方法包括低通滤波和高通滤波。
低通滤波可以滤除图像中高频成分,从而去除图像中的噪声;高通滤波可以强调图像中的高频成分,使得图像的细节更加清晰。
三、傅里叶变换在图像去噪中的优化方法尽管傅里叶变换在图像去噪中具有广泛应用,但是它也存在一些问题,例如频谱泄漏、边缘模糊等。
为了优化傅里叶变换在图像去噪中的效果,研究人员提出了一些改进方法。
1. 加窗函数加窗函数可以有效缓解频谱泄漏问题。
常见的窗函数包括汉宁窗、汉明窗等。
通过在时域中对图像进行窗函数处理,可以减小傅里叶变换中的泄漏现象,从而提高去噪效果。
2. 频域滤波器设计传统的频域滤波器设计方法主要包括理想滤波器和巴特沃斯滤波器。
然而,这些方法会引入一些额外的问题,如振铃和削波等。
为了解决这些问题,研究人员提出了更加复杂的滤波器设计方法,如维纳滤波器和自适应滤波器。
基于傅里叶变换的图像融合算法研究

基于傅里叶变换的图像融合算法研究图像融合是一种将多幅图像进行融合,以获得更加细节丰富和信息完整的图像的技术。
它在计算机视觉、图像处理和模式识别等领域中扮演着重要角色。
基于傅里叶变换的图像融合算法在图像处理领域得到了广泛应用,并取得了一定的研究结果。
本文将对基于傅里叶变换的图像融合算法进行深入研究,探讨其优势、局限性以及未来发展方向。
傅里叶变换是用来分析信号的频域特性的重要数学工具,其本质是将一个信号分解为各个频率的正弦函数和余弦函数的线性组合。
基于傅里叶变换的图像融合算法主要利用了图像在频域上的特性,将不同图像的频率信息进行融合,从而得到融合后的图像。
首先,基于傅里叶变换的图像融合算法具有良好的频域特性分析能力。
通过傅里叶变换,可以将图像从空域转换到频域,从而更好地分析图像的频率特性。
基于傅里叶变换的图像融合算法可以对图像的低频和高频信息进行分析和提取,从而更好地捕捉图像的细节和边缘特征。
其次,基于傅里叶变换的图像融合算法可以实现图像的无损融合。
由于傅里叶变换的线性性质,图像的频域信息可以进行加权融合,从而实现图像的无损融合。
这样,在融合后的图像中,可以同时呈现原始图像的所有细节和特征,增强了图像的信息量和可读性。
然而,基于傅里叶变换的图像融合算法也存在一些局限性。
首先,傅里叶变换无法处理非平稳信号,而图像中的某些区域可能是非平稳的,例如边缘和纹理等。
这就导致基于傅里叶变换的图像融合算法在处理这些区域时可能会出现信息丢失或者伪影的问题。
其次,基于傅里叶变换的图像融合算法对图像分辨率的要求较高。
基于傅里叶变换的图像融合算法需要对原始图像进行频率域的分解和融合,这就要求原始图像的分辨率较高,以保证融合后的图像仍然能够保留较好的细节和特征。
所以,未来基于傅里叶变换的图像融合算法需要在以下几个方面进行改进和发展。
首先,可以结合其他图像处理技术,例如小波变换和局部对比度增强,进一步提升融合算法对非平稳信号的处理能力,以减少信息丢失和伪影的问题。
【数字图像处理】傅里叶变换在图像处理中的应用

【数字图像处理】傅⾥叶变换在图像处理中的应⽤1.理解⼆维傅⾥叶变换的定义1.1⼆维傅⾥叶变换1.2⼆维离散傅⾥叶变换1.3⽤FFT计算⼆维离散傅⾥叶变换1.3图像傅⾥叶变换的物理意义2.⼆维傅⾥叶变换有哪些性质?2.1⼆维离散傅⾥叶变换的性质2.2⼆维离散傅⾥叶变换图像性质3.任给⼀幅图像,对其进⾏⼆维傅⾥叶变换和逆变换4.附录 94.1matlab代码4.2参考⽂献⽬录1.理解⼆维傅⾥叶变换的定义1.1⼆维傅⾥叶变换⼆维Fourier变换:逆变换:1.2⼆维离散傅⾥叶变换⼀个图像尺⼨为M×N的函数的离散傅⾥叶变换由以下等式给出:其中和。
其中变量u和v⽤于确定它们的频率,频域系统是由所张成的坐标系,其中和⽤做(频率)变量。
空间域是由f(x,y)所张成的坐标系。
可以得到频谱系统在频谱图四⾓处沿和⽅向的频谱分量均为0。
离散傅⾥叶逆变换由下式给出:令R和I分别表⽰F的实部和需部,则傅⾥叶频谱,相位⾓,功率谱(幅度)定义如下:1.3⽤FFT计算⼆维离散傅⾥叶变换⼆维离散傅⾥叶变换的定义为:⼆维离散傅⾥叶变换可通过两次⼀维离散傅⾥叶变换来实现:1)作⼀维N点DFT(对每个m做⼀次,共M次)2)作M点的DFT(对每个k做⼀次,共N次)这两次离散傅⾥叶变换都可以⽤快速算法求得,若M和N都是2的幂,则可使⽤基⼆FFT算法,所需要乘法次数为⽽直接计算⼆维离散傅⾥叶变换所需的乘法次数为(M+N)MN,当M和N⽐较⼤时⽤⽤FFT运算,可节约很多运算量。
1.3图像傅⾥叶变换的物理意义图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平⾯空间上的梯度。
如:⼤⾯积的沙漠在图像中是⼀⽚灰度变化缓慢的区域,对应的频率值很低;⽽对于地表属性变换剧烈的边缘区域在图像中是⼀⽚灰度变化剧烈的区域,对应的频率值较⾼。
傅⾥叶变换在实际中有⾮常明显的物理意义,设f是⼀个能量有限的模拟信号,则其傅⾥叶变换就表⽰f的频谱。
从纯粹的数学意义上看,傅⾥叶变换是将⼀个函数转换为⼀系列周期函数来处理的。
关于傅里叶变换的毕业论文

关于傅里叶变换的毕业论文傅里叶变换是数学中的一种重要工具,它可以将一个函数分解成若干个不同频率的正弦和余弦函数的叠加。
傅里叶变换具有广泛的应用领域,包括信号处理、图像处理、通信等。
本文将介绍傅里叶变换的基本原理和应用,并探讨其在图像处理中的具体应用。
首先,我们来介绍傅里叶变换的基本原理。
傅里叶变换是将一个函数从时域转换到频域的过程。
具体而言,对于一个连续函数f(t),其傅里叶变换F(ω)定义为:F(ω) = ∫f(t)e^(-jωt) dt其中,e^(-jωt)表示复指数函数,ω为角频率。
傅里叶变换可以将函数f(t)分解成若干个不同频率的正弦和余弦函数的叠加,F(ω)即是每个频率分量的幅度和相位。
傅里叶变换可以用于信号处理中的频谱分析。
对于一个信号,它可以看作是由不同频率的波形叠加而成。
利用傅里叶变换,我们可以将信号分解成各个频率分量,并分析每个频率分量的贡献。
这对于了解信号的特征和处理信号具有重要意义。
傅里叶变换还可以用于图像处理中的频域滤波。
在图像处理中,我们常常需要对图像进行降噪、增强或者去除某些频率分量等操作。
利用傅里叶变换,我们可以将图像转换到频域,然后对频域图像进行操作,最后再将频域图像转换回时域,得到处理后的图像。
这种频域滤波的方法可以更好地处理一些特定问题,比直接在时域进行图像处理要有效。
本文将主要研究傅里叶变换在图像处理中的应用。
首先,我们将介绍离散傅里叶变换(DFT)的算法和实现方法。
然后,我们将探讨图像的频谱分析和频域滤波方法,并通过实验验证其效果。
最后,我们将讨论傅里叶变换在图像压缩和图像识别中的应用,并对其进行探讨和分析。
在实验部分,我们将选取一些常见的图像进行频谱分析和频域滤波。
首先,我们将通过傅里叶变换将图像转换到频域,并绘制出图像的频谱图。
然后,我们将对频域图像进行滤波操作,例如去除高频分量或者增强低频分量。
最后,我们将将处理后的频域图像转换回时域,并与原始图像进行对比和分析。
傅里叶变换在数字图像处理中的应用课件

• 由欧拉公 式
f (t)
F (n1 )e jn1t
• 其中 n
F (0) a0
F (n1 )
1 2
(an
jbn )
引入了负频率
F (n1 )
1 2
(an
jbn )
10
非周期信号的频谱分析
当周期信号的周期T1无限大时,就演变成 了非周期信号的单脉冲信号
T1
频率也变成连续变量
1
2
T1
0 d
n1
11
非周期函数傅立叶变换分析式
F (w) f (t )e jwt dt f(t) Nhomakorabea1
2
F ().e jtd
频谱演变的定性观察
1
2
T1
F (n1)
-T/2
T/2
F (n1) 1
F (n1 )
-T/2
T/2
1
2
2
13
三.从物理意义来讨论FT
(a) F(ω)是一个密度函数的概念 (b) F(ω)是一个连续谱 (c) F(ω)包含了从零到无限高
傅里叶变换
连续时间信号 的傅里叶变换
号周 期 性 信
信非 号周
期 性
离散时间信号 的傅里叶变换
号周 期 性 信
信非 号周
期
性
连续函数的 傅立叶变换
一、三角函数的傅里叶级数:
f1(t) a0 (an cos n1t bn sin n1t) n1
直流 分量
基波分量 n =1
谐波分量 n>1
N 1
j 2 mn
X (m) x(n)e N , m 0,1, 2,3, 4,...N 1
图像处理中的傅里叶变换

FFT是DFT的一种高效实现,它广 泛应用于信号处理、图像处理等 领域。
频域和时域的关系
频域
频域是描述信号频率特性的区域,通过傅里叶变换可以将 时域信号转换为频域信号。在频域中,信号的频率成分可 以被分析和处理。
时域
时域是描述信号时间变化的区域,即信号随时间的变化情 况。在时域中,信号的幅度和时间信息可以被分析和处理。
其中n和k都是整数。
计算公式
X(k) = ∑_{n=0}^{N-1} x(n) * W_N^k * n,其中W_N=exp(-
2πi/N)是N次单位根。
性质
DFT是可逆的,即可以通过DFT 的反变换将频域信号转换回时域
信号。
快速傅里叶变换(FFT)
定义
快速傅里叶变换(FFT)是一种高 效计算DFT的算法,它可以将DFT 的计算复杂度从O(N^2)降低到 O(NlogN)。
通过傅里叶变换,我们可以方便地实现图像的滤波操作,去除噪声或突出某些特 征。同时,傅里叶变换还可以用于图像压缩,通过去除高频成分来减小图像数据 量。此外,傅里叶变换还可以用于图像增强和图像识别,提高图像质量和识别准 确率。
PART 02
傅里叶变换的基本原理
离散傅里叶变换(DFT)
定义
离散傅里叶变换(DFT)是一种 将时域信号转换为频域信号的方 法。它将一个有限长度的离散信 号x(n)转换为一个复数序列X(k),
傅里叶变换的物理意义是将图像中的每个像素点的灰度值表 示为一系列正弦波和余弦波的叠加。这些正弦波和余弦波的 频率和幅度可以通过傅里叶变换得到。
通过傅里叶变换,我们可以将图像中的边缘、纹理等高频成 分和背景、平滑区域等低频成分分离出来,从而更好地理解 和处理图像。
傅里叶变换在图像处理中的应用

傅里叶变换在图像处理中的应用摘要傅里叶变换是一种重要的信号分析工具,在平稳信号的分析方面具有十分重要的地位,线性系统中,常利用傅里叶变换进行分析和处理。
本文对傅里叶变换和数字图像处理的相关概念进行了介绍,并主要针对傅里叶变换在数字图像处理中的应用进行分析和研究,对图像处理领域的学习很有帮助。
关键词傅里叶变换;信号分析;平稳信号;数字图像处理前言随着信号处理领域的不断发展,越来越多信号分析工具得到了相关学者的研究。
傅里叶变换于19世纪就已经被研究人员提出,在之后的研究和应用中,傅里叶变换也一直是重要的信号处理工具[1-2]。
信息时代的到来使数字图像处理技术也开始飞速进步,它与信号处理等技术息息相关,因此傅里叶变换在图像处理中也得到了重要的应用[3]。
传统的处理方式往往适合在时域对图像进行处理分析,而与傅里叶变换相结合便使图像处理技术得以在频域进行,傅里叶变换常用于线性系统中的处理,因此,可以很好地和图像处理领域相联系,有效提高数字图像处理的效率和精度[4]。
1 傅里叶变换的概述最早在1807年,法国工程师傅里叶首先提出了有关傅里叶级数这一理论,首次提到可以將一个周期性的信号展开成多个复正弦信号相加的形式,这一理论引起了学者们的注意。
十几年之后,傅里叶正式提出了傅里叶变换的概念。
通过傅里叶变换,我们可以将一个信号由时域转换到频域进行信号处理和分析,并且通过傅里叶变换的提出才加深了人们对于频率这个概念的理解。
因此,在傅里叶变换被提出之后,在信号分析领域提出了从频域进行分析这个新思路,使人们对信号的特性进行了一些新的方面的研究。
很多对信号的处理问题以往通过时域分析很难真的得到充分的解释,傅里叶变换这个思路使很多问题变得显而易见。
对于傅里叶变换之后的研究中,出现了关于傅里叶变换的快速算法,使得傅里叶变换更加具有实际应用价值,也对处理离散的数字信号起了重要的作用。
2 基于傅里叶变换的图像处理在对图像进行处理的过程中,图像中包含许多线性变化的元素,而其中的频率便是十分重要的物理量,而这种包含频率信息的元素正适合应用傅里叶变换进行处理,因此,傅里叶变换在图像处理领域得到了广泛的应用。
fft快速傅里叶变换应用场景

fft快速傅里叶变换应用场景一、引言傅里叶变换是信号处理中常用的基本工具之一,它可以将时域信号转化为频域信号,从而对信号进行频谱分析。
但是,传统的傅里叶变换算法计算复杂度较高,对于实时性要求较高的应用场景不太适合。
因此,快速傅里叶变换(FFT)应运而生。
本文将介绍FFT快速傅里叶变换在各种应用场景中的具体应用。
二、图像处理1. 图像压缩图像压缩是指通过某种算法将图像数据压缩到更小的存储空间中,以减少存储空间和传输带宽。
FFT快速傅里叶变换可以将图像从时域转化为频域,然后对频域信息进行压缩。
这样做的好处是可以去除一些高频成分和低频成分,从而减少冗余数据。
2. 图像滤波图像滤波是指通过某种算法对图像进行降噪或增强处理。
FFT快速傅里叶变换可以将图像从时域转化为频域,在频域中进行滤波操作。
例如,在高通滤波器中,可以将低频成分滤除,从而增强图像的高频细节。
三、音频处理1. 音频压缩音频压缩是指通过某种算法将音频数据压缩到更小的存储空间中,以减少存储空间和传输带宽。
FFT快速傅里叶变换可以将音频从时域转化为频域,然后对频域信息进行压缩。
这样做的好处是可以去除一些高频成分和低频成分,从而减少冗余数据。
2. 音乐合成音乐合成是指通过某种算法将多个声音信号合并为一个复合声音信号。
FFT快速傅里叶变换可以将多个声音信号从时域转化为频域,在频域中进行加和操作。
这样做的好处是可以避免在时域中信号相加时出现相位问题。
四、通信领域1. 无线电通信在无线电通信中,FFT快速傅里叶变换被广泛应用于OFDM(正交分组多路复用)调制技术中。
OFDM技术利用FFT技术将高速数据流分割成多个低速子载波,在每个子载波上进行调制和解调,从而提高了无线电信号的传输速率和抗干扰能力。
2. 有线通信在有线通信中,FFT快速傅里叶变换被广泛应用于数字信号处理中。
例如,在数字电视中,FFT技术可以将视频和音频数据分离出来,从而实现高清晰度的视频和清晰的声音。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章
2.1
所谓的傅立叶变换就是以时间为自变量的 “信号”和以频率为自变量的 “频谱“函数之间的某种变换关系。这种变换同样可以用在其他有关数学和物理的各种问题之中,并可以采用其他形式的变量。当自变量 “时间”或 “频率”取连续时间形式和离散时间形式的不同组合,就可以形成各种不同的傅立叶变换对。傅立叶变换家族中的变换很多,主要包括:连续傅立叶变换,拉普拉斯变换,离散傅立叶变换,序列傅立叶变换,Z变换和离散傅立叶变换。连续傅立叶变换,连续傅立叶级数变换,连续拉普拉斯变换适用于连续时间信号的情形。离散傅立叶级数变换,序列傅立叶变换,Z变换和离散傅立叶变换适用于离散时间信号的情形。
工
作
计
划
2012.10.14----2012.10.17搜集关于数字全息广场的相关资料;
2012.10.18----2012.10.27运用MATLIB软件模拟全息广场;
2012.10.28----2012.11.3在老师的指导下,参阅相关资料,进行论文的撰写;
2012.11. 4-----2012.11.6进行论文的修改,完成论文;
1.2
数字图像处理(digital image processing)是用计算机对图像信息进行处理的一门技术,使利用计算机对图像进行各种处理的技术和方法。
20世纪20年代,图像处理首次得到应用。20世纪60年代中期,随电子计算机的发展得到普遍应用。60年代末,图像处理技术不断完善,逐渐成为一个新兴的学科。利用数字图像处理主要是为了修改图形,改善图像质量,或是从图像中提起有效信息,还有利用数字图像处理可以对图像进行体积压缩,便于传输和保存。数字图像处理主要研究以下内容:傅立叶变换、小波变换等各种图像变换;对图像进行编码和压缩;采用各种方法对图像进行复原和增强;对图像进行分割、描述和识别等。随着技术的发展,数字图像处理主要应用于通讯技术、宇宙探索遥感技术和生物工程等领域。
关键字:傅里叶变换 数字图像处理 图像压缩 图像恢复
Abstract
Fourier transform in digital image processing is widely used in spectral analysis, Fourier transform is linear system analysis of a powerful tool, it enables us to quantitatively analysis such as digital system, sampling point, electronic amplifier, convolution filter, noise, display point, action (effect). Fourier transform (FT) is the basis of digital image processing techniques, the through in time-space domain and frequency domain switching back and forth image, the image information features extraction and analysis, simplify the calculation workload, is becoming description image information of the second kind of language, which are widely used in image transform, image coding and compression, image segmentation, image reconstruction, etc. Therefore, the workers involved in digital image processing, in-depth study and master Fourier transform and its expanded form characteristics, is very worthy.
尽管在信号处理领域分数傅里叶变换具有潜在的用途,但是由于缺乏有效的物理解释和快速算法,使得分数傅里叶变换在信号处理领域迟迟未得到应有的认识。直到1993年Almeida指出分数傅里叶变换可以理解为时频平面的旋转,1996年Ozaktas等提出了一种计算量与FFT相当的离散算法后,分数阶Fourier变换才吸引了越来越多信号处理领域学者的注意。
燕山大学
课程设计
题目:数字图像的傅里叶变换程序设计
学院(系):理学院
年级专业:09 光信息科学
学 号:090108030026
学生姓名:徐庆明
指导教师:侯岩雪
教师职称:硕导
燕山大学课程设计(论文)任务书
院(系):理学院 基层教学单位:09应用物理
学 号
080108030004
学生姓名
徐庆明
专业(班级)
傅里叶变换(Fourier Transformation,FT)是一种常用的数学工具,在数学、物理及工程技术领域都得到了广泛的应用。但随着研究对象和研究范围的不断扩展,也逐渐暴露了傅里叶变换在研究某些问题的局限性。这种局限性主要体现在:它是一种全局性变换,得到的是信号的整体频谱,因而无法表述信号的时频局部特性,为了分析和处理非平稳信号,人们在傅里叶变换理论基础上提出了一种广义化的傅里叶变换—分数傅里叶变换(Fractional Fourier Transformation,FRFT),提供了傅里叶变换所不具备的某些特点。分数傅里叶变换是对给定信号的Wigner分布的旋转操作,也称旋转傅里叶变换或角度化傅里叶变换,它保留傅里叶变换的所有特性,在所有的傅里叶变换应用领域,FRFT具有极大的改进潜力。
在1937年,Condon提出了分数傅里叶变换的初步概念。1961年,Bargmann又进一步发展了这一概念,他认为FRFT可以分别用厄米多项式和积分变换加以定义,而这两种定义实质上是相同的。在1980年, Namias从特征值和特征函数的角度完整地提出了分数傅里叶变换的数字定义和性质。1987年McBride和Kerr采用积分定义形式,从纯数学角度又进一步研究了FRFT,把FRFT看作是充分光滑的函数构成的向量空间中的算子,并且建立了分数傅里叶变换的完整而严谨的理论系统,为其后从光学角度提出分数傅里叶变换的概念奠定了基础。直到20世纪90年代,光学界的科学家和工程师才开始关注分数傅里叶变换与光学的关系。1993年,Ozaktas和Mendlovic给出了分数傅里叶变换的光学实现,提出用平方折射率光波导(GRIN)来实现分数傅里叶变换,并将其应用于光学信息处理。Lohmann和Bernardo等用透镜系统成功地实现了分数傅里叶变换,Lohmann还设计了阶次连续可变的光学分数傅里叶变换系统。1995年,Mendlovic等人进一步讨论用分数傅里叶变换来表征信号的新方法。Dorsch,Bernardo等人分别提出了用光学系统来实现任意级傅里叶变换的方案。Ozaktas等人还研究了分数傅里叶变换和小波变换的关系。Pellat-Finet探讨了菲涅耳衍射和分数傅里叶变换的关系。至此,分数傅里叶变换在光学信息领域已受到充分的重视。由于分数傅里叶变换采用光学设备容易实现, 所以在光学领域很快便得到了广泛应用。
FRFT与光学成像系统有着紧密的联系,它最早应用于光学领域的光信息处理系统。传统的光学仅在空域中研究光学现象,现代信息光学将研究方法扩展到空间频率,对光学成像系统进行空间频谱分析。1873年,阿贝在显微镜成像原理的论述中,首次提出了空间频率和空间频谱以及两次衍射成像的概念,并用傅里叶变换来阐明显微镜成像的物理机制。阿贝成像过程可以理解为光线经过二次衍射实现了对频谱的分解和综合作用。
2012.11.7提交论文。
参
考
资Hale Waihona Puke 料[1]余成波数字图像处理及MATLAB实现 重庆大学出版社2003
[2]王家文MATLAB 6.5图形图像处理 国防工业出版社
[3]郝文化MATLAB图形图像处理应用教程 中国水利水电出版社2004
指导教师签字
基层教学单位主任签字
说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。
Keyword:Fouriertransform,digital image processing,imagecompression,image restoration.
第1章
1.1
今年来,随着电子技术、图像处理方法和信号理论的迅猛发展,数字图像处理技术得到飞速发展,它广泛应用于几乎与成像有关的领域。传统的光学系统在信号处理时,存有它自身很难克服的不足:第一,它对空间频谱平面的处理很难,尤其在低频和甚低频时,即使可通过大量仪器来实现,但代价往往很高;第二,光学处理由于采样孔径(即传感单元)太窄而不能起到抗混叠作用,不能除去高频信息。而傅里叶变换和线性移不变系统有紧密联系,它有一个很好的理论背景来知道它在图像处理的左右,可以方便有效地克服上述不足,使其在数字图像处理中占有一席之地。
傅里叶变换(Fourier Transformation,FT)是一种常用的数学工具,在数学、物理及工程技术领域都得到了广泛的应用。但随着研究对象和研究范围的不断扩展,也逐渐暴露了傅里叶变换在研究某些问题的局限性。这种局限性主要体现在:它是一种全局性变换,得到的是信号的整体频谱,因而无法表述信号的时频局部特性,为了分析和处理非平稳信号,人们在傅里叶变换理论基础上提出了一种广义化的傅里叶变换—分数傅里叶变换(Fractional Fourier Transformation,FRFT),提供了傅里叶变换所不具备的某些特点。分数傅里叶变换是对给定信号的Wigner分布的旋转操作,也称旋转傅里叶变换或角度化傅里叶变换,它保留傅里叶变换的所有特性,在所有的傅里叶变换应用领域,FRFT具有极大的改进潜力。