水力学第四版课后答案
水力学第四版课后答案

水力学第四版课后答案第一章1.1 布利涅公式的一般形式布利涅公式的一般形式为:Q = A * C * H^n其中,Q 表示流量,A 表示管道截面积,C 表示水的流量系数,H 表示管道的水头,n 表示摩擦系数。
1.2 基本液压方程基本液压方程为:dh/dl = -(f/2g) * (V^2/U^2)其中,dh/dl 表示水头损失,f 表示摩擦系数,g 表示重力加速度,V 表示流速,U 表示平均流速。
1.3 曼宁-斯特里克勒公式曼宁-斯特里克勒公式为:V = (1/n) * R^(2/3) * S^(1/2)其中,V 表示流速,n 表示河道粗糙系数,R 表示水力半径,S 表示比降。
第二章2.1 管道水头损失公式管道水头损失公式为:h = f * (L/D) * (V^2/2g)其中,h 表示水头损失,f 表示摩擦系数,L 表示管道长度,D 表示管径,V 表示流速,g 表示重力加速度。
2.2 泵的基本类型及其性能参数泵的基本类型包括离心泵、轴向流泵、混流泵等。
性能参数则包括扬程、流量、效率等。
3.1 布托机理论布托机理论是指在已知叶轮出口宽度和叶轮进口宽度的情况下,计算轴流泵扬程的理论模型。
3.2 应力校核和变形校核的计算公式应力校核的计算公式为:σ = P / (π * R^2 - π * r^2)变形校核的计算公式为:Δ = (P * R * L) / (2E * t)其中,σ 表示应力,P 表示压力,R 和 r 分别表示外径和内径,L 表示长度,E表示弹性模量,t 表示壳体厚度,Δ 表示变形。
第四章4.1 水轮机的基本原理及类型水轮机的基本原理为水流作用于叶片上,推动转子转动,而叶片上的力则取决于水流的速度和叶片角度。
水轮机的主要类型包括斜流式水轮机、反向式水轮机、螺旋式水轮机等。
4.2 涡轮叶轮选型涡轮叶轮的选型需考虑流量、水头和效率等因素。
根据涡轮的类型和具体情况,选定合适的叶轮。
第五章5.1 喷水推进器的基本原理喷水推进器的基本原理为通过喷出来自推进器后部的高速水流,利用牛顿第三定律获得推力,从而推动船只前进。
水力学课后答案

1 2 6 11答案在作业本2.12 (注:书中求绝对压强)用多管水银测压计测压,图中标高的单位为m ,试求水面的压强0p 。
解: ()04 3.0 1.4p p g ρ=--265.00a p =+(kPa )答:水面的压强0p 265.00=kPa 。
2-12形平板闸门AB ,一侧挡水,已知长l =2m ,宽b =1m ,形心点水深c h =2m ,倾角α=︒45,闸门上缘A 处设有转轴,忽略闸门自重及门轴摩擦力,试求开启闸门所需拉力T 。
解:(1)解析法。
10009.80721239.228C C P p A h g bl ρ=⋅=⋅=⨯⨯⨯⨯=(kN )2-13矩形闸门高h =3m ,宽b =2m ,上游水深1h =6m ,下游水深2h =,试求:(1)作用在闸门上的静水总压力;(2)压力中心的位置。
解:(1)图解法。
压强分布如图所示:∵ ()()12p h h h h g ρ=---⎡⎤⎣⎦14.71=(kPa )14.713288.263P p h b =⋅⋅=⨯⨯=(kN ) 合力作用位置:在闸门的几何中心,即距地面(1.5m,)2b 处。
(2)解析法。
()()111 1.56 1.5980732264.789P p A g h hb ρ==-⋅=-⨯⨯⨯=(kN )()120.250.75 4.6674.5=⨯+=(m ) ()222 1.539.80732176.526P p A g h hb ρ==-⋅=⨯⨯⨯=(kN )()22211111130.75 3.253C CD C C C C I I y y y y A y A ⎛⎫=+=+=+= ⎪⎝⎭(m ) 合力:1288.263P P P =-=(kN )合力作用位置(对闸门与渠底接触点取矩):1.499=(m )答:(1)作用在闸门上的静水总压力88.263kN ;(2)压力中心的位置在闸门的几何中心,即距地面(1.5m,)2b 处。
水力学课后习题答案 (2)

水力学课后习题答案问题1分析:根据题目所给条件,可以得出以下信息: - 原水泵的扬程为15米; - 新水泵的额定功率为0.8千瓦,效率为0.9; - 新水泵的扬程为20米; - 单位时间内水的流量不变。
要求:求原水泵的额定功率。
解答:设原水泵的额定功率为P1(单位:千瓦)。
由题目可知,P1 = H1*Q1/η1,其中H1为原水泵的扬程,Q1为单位时间内水的流量,η1为原水泵的效率。
根据题目可知,H1 = 15米,Q1不变。
则有 P1 =15*Q1/η1。
又,由于单位时间内水的流量Q1不变,所以新水泵的流量Q2也不变。
即Q1 = Q2。
因此,新水泵的额定功率P2(单位:千瓦)可以表示为 P2 = H2*Q2/η2,其中H2为新水泵的扬程,η2为新水泵的效率。
根据题目可知,P2 = 0.8千瓦,H2 = 20米,η2 = 0.9。
则有 0.8 = 20*Q2/0.9。
将上式整理,得到 Q2 = 0.8*0.9/20 = 0.036立方米/秒。
由于Q1 = Q2,所以Q1 = 0.036立方米/秒。
将Q1 = 0.036代入P1 = 15Q1/η1,可得 P1 = 150.036/η1。
因此,原水泵的额定功率P1等于15*0.036/η1。
问题2分析:根据题目所给条件,可以得出以下信息: - 水泵的扬程为12米; - 水泵的额定功率为3.2千瓦; - 水泵的效率为0.85;- 单位时间内水的流量不变。
要求:求单位时间内水的流量。
设单位时间内水的流量为Q(单位:立方米/秒),根据题目可知,P = H*Q/η,其中P为水泵的额定功率,H为水泵的扬程,η为水泵的效率。
根据题目可知,P = 3.2千瓦,H = 12米,η = 0.85。
则有3.2 = 12*Q/0.85。
将上式整理,得到 Q = 3.2*0.85/12 = 0.2267立方米/秒。
因此,单位时间内水的流量为0.2267立方米/秒。
问题3分析:根据题目所给条件,可以得出以下信息: - 水泵的额定功率为2.5千瓦;- 水泵的效率为0.75;- 水泵的扬程为15米。
水力学第四版课后答案

第一章绪论1-2.20℃的水2.5m3,当温度升至80℃时,其体积增加多少?[解] 温度转变前后质量守恒,即又20℃时,水的密度80℃时,水的密度那么增加的体积为1-4.一封锁容器盛有水或油,在地球上静止时,其单位质量力为假设干?当封锁容器从空中自由下落时,其单位质量力又为假设干?[解] 在地球上静止时:自由下落时:第二章流体静力学2-1.一密闭盛水容器如下图,U形测压计液面高于容器内液面h=1.5m,求容器液面的相对压强。
[解]2-3.密闭水箱,压力表测得压强为4900Pa。
压力表中心比A点高0.5m,A点在液面下1.5m。
求液面的绝对压强和相对压强。
[解]绘制题图中面上的压强散布图。
Bh 1h 2A Bh 2h 1hAB解:Bρgh 1ρgh 1ρgh 1ρgh 2AB ρgh2-14.矩形平板闸门AB一侧挡水。
已知长l=2m,宽b=1m,形心点水深h c=2m,倾角=45,闸门上缘A处设有转轴,忽略闸门自重及门轴摩擦力。
试求开启闸门所需拉力。
[解] 作用在闸门上的总压力:作用点位置:2-15.平面闸门AB 倾斜放置,已知α=45°,门宽b =1m ,水深H 1=3m ,H 2=2m ,求闸门所受水静压力的大小及作用点。
45°h 1h 2BA[解] 闸门左侧水压力:作用点:闸门右边水压力:作用点:总压力大小:对B 点取矩:2-13.如下图盛水U 形管,静止时,两支管水面距离管口均为h ,当U 形管绕OZ 轴以等角速度ω旋转时,求维持液体不溢出管口的最大角速度ωmax 。
[解] 由液体质量守恒知,I 管液体上升高度与 II 管液体下降高度应相等,且二者液面同在一等压面上,知足等压面方程:液体不溢出,要求, 以别离代入等压面方程得2-16.如图,,上部油深h1=1.0m,下部水深h2=2.0m,油的重度=m3,求:平板ab单位宽度上的流体静压力及其作用点。
[解] 合力作用点:一弧形闸门,宽2m,圆心角=,半径=3m,闸门转轴与水平齐平,试求作用在闸门上的静水总压力的大小和方向。
水力学第四版课后问题详解

第一章 绪论1-2.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-4.一封闭容器盛有水或油,在地球上静止时,其单位质量力为若干?当封闭容器从空中自由下落时,其单位质量力又为若干? [解] 在地球上静止时:g f f f z y x -===;0自由下落时:00=+-===g g f f f z y x ;第二章 流体静力学2-1.一密闭盛水容器如图所示,U 形测压计液面高于容器内液面h=1.5m ,求容器液面的相对压强。
[解] gh p p a ρ+=0kPa gh p p p a e 7.145.1807.910000=⨯⨯==-=∴ρ2-3.密闭水箱,压力表测得压强为4900Pa 。
压力表中心比A 点高0.5m ,A 点在液面下1.5m 。
求液面的绝对压强和相对压强。
[解] g p p A ρ5.0+=表Pa g p g p p A 49008.9100049005.10-=⨯-=-=-=ρρ表 Pa p p p a 9310098000490000=+-=+=' 2.8绘制题图中AB 面上的压强分布图。
解:2AB ρgh2-14.矩形平板闸门AB 一侧挡水。
已知长l =2m ,宽b =1m ,形心点水深h c =2m ,倾角α=45,闸门上缘A 处设有转轴,忽略闸门自重及门轴摩擦力。
试求开启闸门所需拉力。
[解] 作用在闸门上的总压力:N A gh A p P c c 392001228.91000=⨯⨯⨯⨯=⋅==ρ作用点位置:m A y J y y c c c D 946.21245sin 22112145sin 23=⨯⨯⨯⨯+=+=m l h y c A 828.12245sin 22sin =-=-= α)(45cos A D y y P l T -=⨯∴kN b gh P 74.27145sin 28.910002sin 2222=⨯⨯⨯⨯⨯=⋅=αρ 作用点:m h h 943.045sin 32sin 32'2===α 总压力大小:kN P P P 67.3474.2741.6221=-=-=对B 点取矩:'D '22'11Ph h P h P =-'D 67.34943.074.27414.141.62h =⨯-⨯m h 79.1'D =2-13.如图所示盛水U 形管,静止时,两支管水面距离管口均为h ,当U 形管绕OZ 轴以等角速度ω旋转时,求保持液体不溢出管口的最大角速度ωmax 。
最新水力学第四版课后答案

第一章 绪论1-2.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-4.一封闭容器盛有水或油,在地球上静止时,其单位质量力为若干?当封闭容器从空中自由下落时,其单位质量力又为若干? [解] 在地球上静止时:g f f f z y x -===;0自由下落时:00=+-===g g f f f z y x ;第二章 流体静力学2-1.一密闭盛水容器如图所示,U 形测压计液面高于容器内液面h=1.5m ,求容器液面的相对压强。
[解] gh p p a ρ+=0kPa gh p p p a e 7.145.1807.910000=⨯⨯==-=∴ρ2-3.密闭水箱,压力表测得压强为4900Pa 。
压力表中心比A 点高0.5m ,A 点在液面下1.5m 。
求液面的绝对压强和相对压强。
[解] g p p A ρ5.0+=表Pa g p g p p A 49008.9100049005.10-=⨯-=-=-=ρρ表 Pa p p p a 9310098000490000=+-=+=' 2.8绘制题图中AB 面上的压强分布图。
h 1h 2A Bh 2h 1hAB解:Bρgh 1ρgh 1ρgh 1ρgh 2AB ρg(h2-h1)ρg(h2-h1)Bρgh2-14.矩形平板闸门AB一侧挡水。
已知长l=2m,宽b=1m,形心点水深h c=2m,倾角α=45,闸门上缘A处设有转轴,忽略闸门自重及门轴摩擦力。
试求开启闸门所需拉力。
[解] 作用在闸门上的总压力:NAghApPcc392001228.91000=⨯⨯⨯⨯=⋅==ρ作用点位置:mAyJyycccD946.21245sin22112145sin23=⨯⨯⨯⨯+=+=mlhy cA828.12245sin22sin=-=-=α)(45cosADyyPlT-=⨯∴kN b gh P 74.27145sin 28.910002sin 2222=⨯⨯⨯⨯⨯=⋅=αρ 作用点:m h h 943.045sin 32sin 32'2===α 总压力大小:kN P P P 67.3474.2741.6221=-=-=对B 点取矩:'D '22'11Ph h P h P =-'D 67.34943.074.27414.141.62h =⨯-⨯m h 79.1'D =2-13.如图所示盛水U 形管,静止时,两支管水面距离管口均为h ,当U 形管绕OZ 轴以等角速度ω旋转时,求保持液体不溢出管口的最大角速度ωmax 。
水力学课后习题答案 (3)

水力学课后习题答案本文档是对水力学课程中的一些习题的答案进行解答和分析。
下面给出了每个问题的答案和详细的解题步骤。
1. 问题一问题描述:一个水库有两个出水口,分别为A和B。
A口的出水速度为10 m/s,水流方向与水平方向成30度角。
B口的出水速度为8 m/s,水流方向与水平方向成45度角。
求A 口和B口的水流量和水流方向。
答案:首先,根据题目中给出的信息,我们可以得到A口的出水速度为10 m/s,与水平方向成30度角,B口的出水速度为8 m/s,与水平方向成45度角。
A口的水流量可以通过以下公式计算:流量 = 速度 × 面积A口的水流量为:流量A = 10 m/s × 面积A同样地,我们可以得到B口的水流量为:流量B = 8 m/s × 面积B根据题目中所提供的信息,我们无法得到A口和B口的面积。
因此,我们需要更多的信息才能准确计算出水流量。
2. 问题二问题描述:一个长方形水槽,长L为20 m,宽H为5 m,高度为10 m。
求水槽底部所受的水压力和总压力。
答案:水槽底部所受的水压力可以通过以下公式计算:压力 = 密度 × 重力加速度 × 水深 × 基本面积其中,密度为水的密度,一般取值为1000 kg/m³,重力加速度为9.8 m/s²,水深为水面到底部的高度。
水槽底部所受的水压力为:压力底部 = 1000 kg/m³ × 9.8 m/s² × 10 m × 20 m²总压力可以通过以下公式计算:总压力 = 压力底部 + 大气压力其中,大气压力一般取标准大气压101325 Pa。
3. 问题三问题描述:一个高度为15 m的垂直圆柱形水槽,底部直径为10 m。
在水槽上部开了一个小孔,小孔离水面的高度为6 m。
求小孔的流速和流量。
答案:小孔的流速可以通过托利压定理计算。
《水力学课后习题答案第四版(吴持恭)

水力学课后习题答案0 绪论0.1 ρ=816.33kg/m 3 0.2 当y =0.25H 时Hu dy dum 058.1≈ 当y=0.5H 时Hu dy dum 84.0≈ 0.4 f = g0.5 h 的量纲为[L] 0.6 F f =184N0.7 K=1.96×108N/m 2 dp=1.96×105N/m 21 水静力学1.1 Pc=107.4KN/m 2 h=0.959m1.2 P B -P A =0.52KN/m 2 P AK =5.89KN/m 2 P BK =5.37KN/m 21.3 h 1=2.86m h 2=2.14m 内侧测压管内油面与桶底的垂距为5m ,外侧测压管内油面与桶底的垂距为4.28m 。
1.4 Pc=27.439KN/m 2 1.5 P M =750.68h KN/m 2 1.6 P 2-p 1=218.05N/m 21.7 γ=BA Br A r B A ++1.8 P=29.53KN 方向向下垂直底板 P =0 1.9 W=34.3rad/s W max =48.5rad/s1.10 a=Lh H g )(2-1.12 当下游无水 P ξ=3312.4KN(→) P 2=862.4KN(↓)当下游有水 P ξ=3136KN(→) P 2=950.6KN(↓) 1.13 T=142.9KN1.14 当h 3=0时T=131.56KN 当h 3=h 2=1.73m 时 T =63.7KN 1.15 0-0转轴距闸底的距离应为1.2m1.16 P=4.33KN L D =2.256m(压力中心距水面的距离) 1.17 P=567.24KN1.19 P =45.54KN 总压力与水平方向夹角φ=14º28´ 1.20 P ξ=353KN P ζ=46.18KN 方向向下 1.21 H=3m 1.22 δ=1.0cm 1.23 F=25.87KN (←)2 液体运动的流束理论2.1 Q=211.95cm 3/s V =7.5cm/s 2.2 h w =3.16m 2.3γ2p =2.35m2.4 P K 1=63.8KN/m 2 2.5 Q=0.00393m 3/s 2.6 Q=0.0611m 3/s 2.7 μ=0.985 2.8 Q=0.058m 3/s2.9 S 点相对压强为-4.9N /cm 2,绝对压强为4.9N/cm 2 2.10 V 3=9.9m/s Q=0.396m 3/s 2.11 R ξ=391.715KN(→)2.12 R=3.567KN 合力与水平方向夹角β=37º8´ 2.13 R ξ=98.35KN(→) 2.14 R ξ=2988.27KN(→) 2.15 R ξ=1.017KN(←) 2.16 R ξ =153.26KN(→)2.17 α=2 34=β2.18 F=Rmv 22.19 Q=g 2μH 2.5 2.20 F=C d L222ρμ2.21 m p A44.2=γm p B44.4=γ2.22 Q 1=+1(2Q cos )α )c o s 1(22α-=QQ 2.23 R=2145KN α=54º68´ 2.24 m=3.12kg2.25 T 充=24分34秒 T 放=23分10秒3. 液流型态及水头损失3.1 d 增加,Re 减小 3.2 R e =198019.8>2000 紊流 3.3 R e =64554>500紊流 3.4 cm 0096.00=δ 3.5320=u v 当时v u x = h y m 577.0≈ 3.6 Q3min1654.0m =/s 20/24.33m N =τ3.7 当Q=5000cm 3/s 时,Re=19450紊流2.00=∆δ 光滑管区027.0=λ当Q =20000cm 3/s 时 Re=78200紊流775.00=∆δ 过渡粗糙区026.0=λ当Q =200000cm 3/s 时 Re=780000紊流1.70=∆δ 粗糙区 023.0=λ若l =100m 时Q =5000 cm 3/s 时 h f =0.006m Q=2000 cm 3/s 时 h f =0.09m Q =200000 cm 3/s 时 h f =7.85m 3.8 λ=0.042 3.9 n=0.011 3.10 ξ=0.29 3.11 Q=0.004m 3/s 3.12 ∆h=0.158m 3.13 Z=11.1m3.14 ξ=24.74 有压管中的恒定流4.1 当n=0.012时Q=6.51 m3/s 当n=0.013时Q=6.7m3/s当n=0.014时Q=6.3 m3/s4.2 当n=0.0125时Q=0.68 m3/s 当n=0.011时Q=0.74 m3/s当n=0.014时Q=0.62 m3/s=0.0268 m3/s Z=0.82m4.3 Qm ax4.4 当n=0.011时H=7.61 m 当n=0.012时H=7.0 m4.5 H t=30.331m=5.1m4.6 n取0.012 Q=0.5 m3/s hm axv=21.5m水柱高4.7 n取0.0125时HA4.8 Q1=29.3L/s Q2=30.7L/s ∇=135.21m4.9 H=0.9m4.10 Q2=0.17 m3/s Q3=0.468 m3/s4.11 Q1=0.7 m3/s Q2=0.37 m3/s Q3=0.33 m3/s4.12 H1=2.8m=10.57KN/m24.13 Q=0.0105 m3/s PB4.14 Q1=0.157 Q25 明渠恒定均匀流5.1 V=1.32m/s Q=0.65 m3/s5.2 Q=20.3 m3/s5.3 Q=241.3 m3/s5.4 h=2.34m5.5 h=1.25m5.6 b=3.2m5.7 b=71m V=1.5 m/s大于V不冲=1.41 m/s 故不满足不冲流速的要求5.8 当n=0.011时i=0.0026 ∇=51.76m当n=0.012时i=0.0031 当n=0.013时i=0.0036当n=0.014时i=0.00425.9 i=1/3000 V=1.63m/s<V允满足通航要求5.10 n=0.02 V=1.25m/s5.11 当n=0.025时b=7.28m h=1.46m当n=0.017时b=6.3m h=1.26m当n=0.03时b=7.8m h=1.56m5.12 h f=1m5.13 Q=4.6 m3/s5.14 Q=178.2m3/s5.15 h m=2.18m b m=1.32m i=0.000365.162∇=119.87m Q1=45.16m3/s Q2=354.84 m3/s6 明渠恒定非均匀流6.1 V w=4.2m/s Fr=0.212 缓流6.2 h k1=0.47m h k2=0.73m h01=0.56m> h k1缓流h02=0.8m> h k2缓流6.3 h k=1.56m V k=3.34m/s V w=5.86m/s h k > h0缓流V w>V缓流6.5 i K=0.00344> i缓坡6.7 L很长时,水面由线为C0、b0 b2型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 绪论1-2.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-4.一封闭容器盛有水或油,在地球上静止时,其单位质量力为若干?当封闭容器从空中自由下落时,其单位质量力又为若干? [解] 在地球上静止时:g f f f z y x -===;0自由下落时:00=+-===g g f f f z y x ;第二章 流体静力学2-1.一密闭盛水容器如图所示,U 形测压计液面高于容器内液面h=1.5m ,求容器液面的相对压强。
[解] gh p p a ρ+=0kPa gh p p p a e 7.145.1807.910000=⨯⨯==-=∴ρ2-3.密闭水箱,压力表测得压强为4900Pa 。
压力表中心比A 点高0.5m ,A 点在液面下1.5m 。
求液面的绝对压强和相对压强。
[解] g p p A ρ5.0+=表Pa g p g p p A 49008.9100049005.10-=⨯-=-=-=ρρ表 Pa p p p a 9310098000490000=+-=+=' 绘制题图中AB 面上的压强分布图。
解:2B ρgh2-14.矩形平板闸门AB 一侧挡水。
已知长l =2m ,宽b =1m ,形心点水深h c =2m ,倾角α=45,闸门上缘A 处设有转轴,忽略闸门自重及门轴摩擦力。
试求开启闸门所需拉力。
[解] 作用在闸门上的总压力:N A gh A p P c c 392001228.91000=⨯⨯⨯⨯=⋅==ρ作用点位置:m A y J y y c c c D 946.21245sin 22112145sin 23=⨯⨯⨯⨯+=+=m l h y c A 828.12245sin 22sin =-=-= α)(45cos A D y y P l T -=⨯∴kN l y y P T A D 99.3045cos 2)828.1946.2(3920045cos )(=⨯-⨯=-=2-15.平面闸门AB 倾斜放置,已知α=45°,门宽b =1m ,水深H 1=3m ,H 2=2m ,求闸门所受水静压力的大小及作用点。
[解] 闸门左侧水压力:kN b h gh P 41.62145sin 33807.9100021sin 21111=⨯⨯⨯⨯⨯=⋅=αρ 作用点:m h h 414.145sin 33sin 31'1===α 闸门右侧水压力:kN b h gh P 74.27145sin 228.9100021sin 21222=⨯⨯⨯⨯⨯=⋅=αρ 作用点:m h h 943.045sin 32sin 32'2===α 总压力大小:kN P P P 67.3474.2741.6221=-=-=对B 点取矩:'D '22'11Ph h P h P =-'D 67.34943.074.27414.141.62h =⨯-⨯m h 79.1'D =2-13.如图所示盛水U 形管,静止时,两支管水面距离管口均为h ,当U 形管绕OZ 轴以等角速度ω旋转时,求保持液体不溢出管口的最大角速度ωmax 。
[解] 由液体质量守恒知,I 管液体上升高度与 II 管液体下降高度应相等,且两者液面同在一等压面上,满足等压面方程:C z gr =-222ω液体不溢出,要求h z z 2II I ≤-, 以b r a r ==21,分别代入等压面方程得:222b a gh-≤ω22max 2b a gh-=∴ω2-16.如图,060=α,上部油深h 1=1.0m ,下部水深h 2=2.0m ,油的重度γ=m 3,求:平板ab 单位宽度上的流体静压力及其作用点。
[解] 合力kN2.4660sin 60sin 2160sin 21021022011=+油水油h h h h h h b P γγγ+=Ω= 作用点:mh kN h h P 69.262.460sin 21'10111===油γ mh kN h h P 77.009.2360sin 21'20222===水γ m h kNh h P 155.148.1860sin '30213===油γ mh h mh Ph h P h P h P D D D 03.260sin 3115.1B 0'''D '33'22'11=-===++点取矩:对一弧形闸门,宽2m ,圆心角α=︒30,半径R =3m ,闸门转轴与水平齐平,试求作用在闸门上的静水总压力的大小和方向。
解:(1)水平压力:()()223sin 30sin 29.80722x R P g b αρ⨯=⋅=⨯⨯22.066=(kN ) (→)(2)垂向压力:211sin cos 122z P V g g R R R ρρπαα⎛⎫==⋅-⋅ ⎪⎝⎭22339.807sin 30cos302122π⎛⎫⨯=⨯-⨯ ⎪⎝⎭7.996=(kN ) (↑)合力:23.470P ===(kN )arctan19.92zxP P θ==答:作用在闸门上的静水总压力23.470P =kN ,19.92θ=。
2-20.一扇形闸门如图所示,宽度b=1.0m ,圆心角α=45°,闸门挡水深h=3m ,试求水对闸门的作用力及方向[解] 水平分力:kN b h h g A gh F x c px 145.4432.381.910002=⨯⨯⨯=⋅⨯==ρρ压力体体积:322221629.1)45sin 3(8]321)345sin 3(3[)45sin (8]21)45sin ([m h h h h h V =-⨯+-⨯=-+-=ππ 铅垂分力:kN gV F pz 41.111629.181.91000=⨯⨯==ρ合力:kN F F F pz px p 595.4541.11145.442222=+=+=方向:5.14145.4441.11arctanarctan===pxpz F F θ第三章 水动力学基础3-1.在如图所示的管流中,过流断面上各点流速按抛物线方程:])(1[2max r r u u -=对称分布,式中管道半径r 0=3cm ,管轴上最大流速u max =0.15m/s ,试求总流量Q 与断面平均流速v 。
[解] 总流量:⎰⎰-==020max 2])(1[r Ardr r ru udA Q πs m r u /1012.203.015.02234220max -⨯=⨯⨯==ππ断面平均流速:s m u r r u r Q v /075.022max2020max 20====πππ 3-3.利用皮托管原理测量输水管中的流量如图所示。
已知输水管直径d =200mm ,测得水银差压计读书h p =60mm ,若此时断面平均流速v =,这里u max 为皮托管前管轴上未受扰动水流的流速,问输水管中的流量Q 为多大?(3.85m/s )[解] gp g u g p A A ρρ=+22p p A A h h g p g p g u 6.12)1(22=-'=-=∴ρρρρ s m h g u p A /85.306.06.12807.926.122=⨯⨯⨯=⨯= s m v d Q /102.085.384.02.044322=⨯⨯⨯==ππ3-4.图示管路由两根不同直径的管子与一渐变连接管组成。
已知d A =200mm ,d B =400mm ,A 点相对压强p A =,B 点相对压强p B =,B 点的断面平均流速v B =1m/s ,A 、B 两点高差△z=1.2m 。
试判断流动方向,并计算两断面间的水头损失h w 。
[解] B B A A v d v d 2244ππ=s m v d d v B A B A /41)200400(222=⨯==∴假定流动方向为A →B ,则根据伯努利方程w BB B B A A A A h gv g p z g v g p z +++=++2222αραρ其中z z z A B ∆=-,取0.1≈=B A ααz gv v g p p h BA B A w ∆--+-=∴222ρ2.1807.92149807392006860022-⨯-+-=056.2>=m故假定正确。
3-5.为了测量石油管道的流量,安装文丘里流量计,管道直径d 1=200mm ,流量计喉管直径d 2=100mm ,石油密度ρ=850kg/m 3,流量计流量系数μ=。
现测得水银压差计读数h p =150mm 。
问此时管中流量Q 多大?[解] 根据文丘里流量计公式得036.0873.3139.01)1.02.0(807.9242.014.31)(244242121==-⨯⨯=-=d d g d K π sL s m h K q p V /3.51/0513.015.0)185.06.13(036.095.0)1(3==⨯-⨯⨯=-'=ρρμ 3-10 水箱中的水从一扩散短管流到大气中,直径d 1=100mm ,该处绝对压强p 1=,直径d 2=150mm ,水头损失忽略不计,求水头H 。
(H=1.27m )解:3-12.已知图示水平管路中的流量q V =2.5L/s ,直径d 1=50mm ,d 2=25mm ,,压力表读数为9807Pa ,若水头损失忽略不计,试求连接于该管收缩断面上的水管可将水从容器内吸上的高度h 。
[解]s m d q v s m d q v v d v d q V V V /093.5025.014.3105.244/273.105.014.3105.244442322223211222121=⨯⨯⨯===⨯⨯⨯==⇒==--ππππO mH g g p g v v g p p gv v g p p p g v p p g vg p a a a 2221212222122212222112398.0807.9100098072273.1093.522)(2g 020=⨯--=--=-⇒-=-+⇒+-+=++ρρρρρO mH gp p h p gh p a a 2222398.0=-=⇒=+ρρ 3-13.离心式通风机用集流器A 从大气中吸入空气。
直径d =200mm 处,接一根细玻璃管,管的下端插入水槽中。