大学物理_刘果红_波动学基础

合集下载

电子科大大学物理第5章波动学基础PPT课件

电子科大大学物理第5章波动学基础PPT课件

V V(体应变)
P
(4)柔软的绳和弦上横波波速:
ut
T
式中: 为质量线密度; T为绳或弦线中张力。
8
§5-2、3 平面简谐行波的波动方程
1. 平面简谐波的运动学方程——波方程 波源和介质中的质点都作简谐振动, 这种波称之为简谐
波,波面为平面的简谐波即为平面简谐波。
设一平面简谐行波在均匀无耗媒质中沿x轴正方向传播, 波速u。用x表示各质点的平衡位置;y表示各质点对平衡位 置的位移。
的传播方向一致。
13
2.平面简谐波运动学方程的物理意义
yAcos(t[u x)0]
运动学方程中含有两个变量x和t,它即反映了媒质中各质点 的振动规律,又反映了振动状态的传播规律。
(1)当x=xo(确定值)时,位移y只是时间t的余弦函数:
y A c o t s x u o o A c o t s0 x u 0
线
波面
平面波
球面波
在各向同性均匀介质中,波线与波阵面垂直。
4
三.描述波动的解析参量
1.周期T:一个完整波形通过介质中的一点所需的时间=该 点处质元完成一次全振动的时间。
波的周期就是它所传播的振动的周期即波源的振动周期
2.波长: 波线上相位差为2π的两个点之间的距离。
波(振动状态)在一个周期内前进的距离就是一个波长 3. 波速u : 单位时间波(振动状态)所传播的距离。
2
注意! •质元并未“随波逐流” •各质元均在自己的平衡位置附近振动 •传播的是波源的振动状态或者说相位 •沿波传播的方向,各质元相位依次落后
总之, 波动(或行波)是振动状态的传播,是能量的传播, 而不是质点的传播。
2 . 纵波和横波 横波——振动方向与传播方向垂直,如绳中传播的波等。 横波只能在固体中传播,横波的特征是有凸凹的波峰、波谷。

第8章 波动学

第8章 波动学
波峰:由于波动某一任意确定时刻在媒质中具有最大位移的质点位置。
波谷:由于波动某一任意确定时刻在媒质中具有最小位移的质点位置。 在横波中,波长等于两相邻波峰或波谷之间的距离,在纵波中,波长等于两相邻 密集部分或稀疏部分的中心之间的距离。
波的周期:波传过一个波长的时间,或一个完整波通过波线上某点所需要的时间。 用T表示。
1.波的传播速度 波速就是一定振动状态(或相位)传播的速度,即单位时间内一定振 动位相在传播方向上所传播的距离,也称相速。波的传播速度决定于 媒质的特性。对于弹性介质波来说,波的传播速度决定于媒质的惯性 和弹性,具体的说,就是决定于媒质的密度和弹性模量。在均匀媒质 中,波速是一个恒量。 液体和气体只有容变弹性,在液体和气体内部只能传播与容变有关的 弹性纵波。在液体和气体中纵波的传播速度为
4
之间的
4
各点,振幅依次由0增加到2A,再由2A减小到0;在 N0, N1 间的点振
幅不同,但随时间变化的因子 cos(2 t) 是一样的。所以各点同
一时刻的振动位相都相同,即位移同时达到最大,同时过平衡位置向同
侧运动。
第八章 波动学基础
(2)对于在 为负 cos 2 y
N0 , N1
之间的各点, 2 y
1.机械波的产生
机械振动在弹性媒质中的传播过程称为机械波。就每一质点来 说,只是做振动,就全部媒质来说,振动传播形成机械波。产生机械 波的条件是:具有波源和弹性媒质。
2.横波和纵波
在波动中,如果质点的振动方向和波的传播方向相互垂直,这种 波称为横波。如果质点振动方向和波的传播方向相互平行,这种波称为 纵波。各种复杂的波都可分解为横波和纵波。在波动中真正传播的是振 动、波形和能量;波形传播是现象,振动传播是实质,能量传播是波动 的量度。

大学物理振动和波动第二章波动学基础

大学物理振动和波动第二章波动学基础

x
t
x u
y( x,t )
A cos[ ( t
x u
)
]
9
x ♠ 沿 轴正向传播的简谐波的波函数:
(已知平衡位置在 x 0 处质点振动方程 yx0 Acos(t ) )
y(x,t)
A cos[ ( t
x)]
u
Acos[2 ( t x ) ] T
Acos[(t kx) ]
波数:k 2
2
( c)驻波各点相位由 A' 的正负决定
43
驻波特点:
A. 有的点始终不动(干涉减弱)称波节;
有的点振幅最大(干涉加强)称波腹;
其余的点振幅在0与最大值之间。
B. 波形只变化不向前传
故称驻波。
驻波能量: 波形无走动、能量无流动
振动状态(位相)特点 同一段同相位 相邻段反相位
作业:2.15 2.16 2.17 2.18
2
2
o
y
A
t , 3
2
tt ,
作业:P108~109 2.2 2.3 2.5 2.6
23
练习.一沿X轴负向传播的平面简谐波在
t=2s时的波形曲线如图所示,写出质
点O的振动方程和平面简谐波的波动
方程。
y
u=1.00m/s
0.5
0
X
-1
1
2
3
y( x0)
0.5cos(
2
t
) 2
y 0.5cos[ (t x) ]
坐标 t
横轴为质点平
x 衡位置坐标
17
x( y)
振动曲线
y t
t t0
x
波形曲线(波形图)

2024年大学物理波动光学-(带目录)

2024年大学物理波动光学-(带目录)

大学物理波动光学-(带目录)大学物理波动光学摘要:波动光学是大学物理课程中重要的组成部分,主要研究光的波动性质及其在介质中的传播规律。

本文主要介绍了波动光学的基本概念、波动方程、干涉现象、衍射现象、偏振现象以及光学仪器等,旨在为读者提供系统的波动光学知识,为进一步学习和研究打下基础。

一、引言波动光学是研究光波在传播过程中所表现出的波动性质的科学。

光波是一种电磁波,具有波动性、粒子性和量子性。

波动光学主要关注光的波动性质,研究光波在介质中的传播、反射、折射、干涉、衍射、偏振等现象。

波动光学在科学技术、工程应用、日常生活等领域具有广泛的应用,如光纤通信、激光技术、光学仪器等。

二、波动方程波动方程是描述波动现象的基本方程。

光波在真空中的传播速度为c,介质中的传播速度为v。

波动方程可以表示为:∇^2E(1/c^2)∂^2E/∂t^2=0其中,E表示电场强度,∇^2表示拉普拉斯算子,t表示时间。

该方程描述了光波在空间和时间上的传播规律。

三、干涉现象1.极化干涉:当两束相干光波在空间某点相遇时,它们的电场矢量方向相同,相互加强,形成明条纹;当电场矢量方向相反,相互抵消,形成暗条纹。

2.非极化干涉:当两束相干光波在空间某点相遇时,它们的电场矢量方向垂直,相互叠加,形成干涉条纹。

四、衍射现象衍射现象是光波传播过程中遇到障碍物或通过狭缝时产生的现象。

衍射现象的本质是光波的传播方向发生改变,使得光波在空间中形成干涉图样。

衍射现象可以分为菲涅耳衍射和夫琅禾费衍射两种:1.菲涅耳衍射:当光波通过狭缝或障碍物时,光波在衍射角较小的情况下发生的衍射现象。

菲涅耳衍射的衍射图样与狭缝或障碍物的形状、大小以及光波的波长有关。

2.夫琅禾费衍射:当光波通过狭缝或障碍物时,光波在衍射角较大的情况下发生的衍射现象。

夫琅禾费衍射的衍射图样与狭缝或障碍物的形状、大小以及光波的波长有关。

五、偏振现象偏振现象是光波在传播过程中,电场矢量在空间某一方向上振动的现象。

第10篇波动学基础

第10篇波动学基础

波动过程的几何描述 波线 表示波传播方向的射线,波线恒与波面垂直。
波面 波动空间中振动相位相同的点所联成的面。
波前 在波传播方向上最前面的那个波面。(波阵面)
惠更斯原理
波所到达的每一点都可看作发射次级子波 的波源,新的波阵面就是这些次级子波波 阵面的包迹。
波前
平 面
波面
球 面

波线

6
习题 P312 10-4
说明质元此时位于 y 轴负向0.04m处,以速度0.92m/s的 速度向 y 轴正向运动。
17
(3) t1=1.0 s ,t2=1.5 s 此段时间内传播距离为:
x ut 2.50.5m 1.25m
已知 x1=0.2 m
x x1 x 1.45m
在t2=1.5 s时传到波线上1.45m处
18
x2 u
)
]
A cos[ (t1
t
x1
x u
)
]
x ut
说明波形以波速 u 向前传播,当t 和 x 均变时,波动方程 描绘出了波形不断向前推进的动态图景。
14
x ut 如果 t mT (m 为整数)
波线上每一质元完全重复 t 时刻的运动状态,这表明, 波动方程定量反映了任一质元运动的时间周期性,其时 间周期为 T 。
2
横波:质点的振动方向与波的传播方向垂直。(如软绳) 纵波:质点的振动方向与波的传播方向平行。(如软弹簧)
质点振动方向
软绳
波的传播方向 质点振动方向
软弹簧
波的传播方向
3
在机械波中,横波只能在固体中出现;纵波可在气体、液体 和固体中出现。空气中的声波是纵波。液体表面的波动情况 较复杂,不是单纯的纵波或横波。

第7章 波动学基础

第7章 波动学基础

(痛阈)
强到失去听 觉只有痛觉
听觉 强度范围甚宽,实用上需要以更方便的单位来表示。
声强级
人对声强的主观感觉即响度,用声强级数表示。 单位:分贝 (dB)
贝(B)
10
分贝(dB)
常用分贝(dB)为单位 1贝(B) =10分贝(dB), 好比 1米(m) =10分米(dm) 。
闻阈 正常呼吸 悄悄话 室内正常谈话 大声喊叫 重型卡车 电动切草机 摇滚乐 痛阈 伤害人体
平面波(波面为平面的波)
波线(波射线) 球面波(波面为球面的波)
波的传播方向。在各向同性媒质中, 波线恒与波面垂直。
正向波 反向波
正向波 反向波
若给定某点 P 的
,波函数变为 P 点处质点的
P点的
距原点为
处质点振动的初相
若给定 ,波动方程表示所给定的 时刻波线上各振动质 点相对各自平衡点的位置分布,即该时刻的
观察者测得的频率
观察者每秒接收到的整波数,即观察者测得的频率为
观察者测得的频率是波源的振动频率的
如果波源静止观察者背离波源运动,观察者测得的频率为
倍。
3. 观察者静止,波源(相对于媒质)向观察者运动。
先看一个普通现象
一列等间距的小石子,等时先后落入水中,
(点击鼠标) 它们所激起的水波的 波阵面分布是一系列偏心圆。
来自同一波源的入射波传播到带有小孔的屏时,通过小孔时,在 小孔的另一侧都产生以小孔作为点波源的前进波,可将其抽象为从 小孔处发出的一种次波或子波,其频率与入射波频率相同,在叠加区 域有相同的振动方向,且相位差恒定,它们是相干波.可以产生干涉.
A

A1
2
A2
2
2 A1 A2 cos (j20 当

大学物理第十七章波动光学A

大学物理第十七章波动光学A
4 1.46
例1: 波长为680 nm的平行光照射到L=12 cm长的两块
玻璃片上,两玻璃片的一边相互接触 ,另一边被厚度
D=0.048 mm的纸片隔开. 试问在这12 cm长度内会呈
现多少条暗条纹 ?
解 2d ( 2k 1 )
2
2
空气 n 1
k 0 ,1,2,


2D 2 ( 2km 1 ) 2
n1
nD
n1 L
2D
km

141.2 共有142条暗纹
b
共有141条明纹
讨论:
以明条纹条件为例
2n2e


2

k
两边取无穷小量 2n2e k
e k
2n2
当k 1 e
2n2
条纹级数改变一级某处厚度改变 2。条纹左移
r2 r1 0 由前式可知:
( r2 d nd ) r1
( n 1 )d 7
d 7 7 550 109 6 64 106 m
n 1 1 58 1
P619 17-3-2解: 光程差与干涉条纹位置的关系
r1
s1
s
r2
s2
n c u
c u '
介质中的波长 '
n
真空中的波长 介质的折射率
讨论: 分成的两个点光源S1,S2发出的光波在P点相遇
1.同一介质中相位差和波程差的关系


2
( r1

r2
)
2
r
S1
相位差
波程差
S2
r1
n

大学物理(波动光学知识点总结)

大学物理(波动光学知识点总结)

大学物理(波动光学知识点总结)contents•波动光学基本概念与原理•干涉理论与应用目录•衍射理论与应用•偏振光理论与应用•现代光学技术发展动态简介波动光学基本概念与原理01光波是一种电磁波,具有横波性质,其振动方向与传播方向垂直。

描述光波的物理量包括振幅、频率、波长、波速等,其中波长和频率决定了光的颜色。

光波的传播遵循波动方程,可以通过解波动方程得到光波在不同介质中的传播规律。

光波性质及描述方法干涉现象是指两列或多列光波在空间某些区域相遇时,相互叠加产生加强或减弱的现象。

产生干涉的条件包括:两列光波的频率相同、振动方向相同、相位差恒定。

常见的干涉现象有双缝干涉、薄膜干涉等,可以通过干涉条纹的形状和间距等信息来推断光源和介质的性质。

干涉现象及其条件衍射现象及其分类衍射现象是指光波在传播过程中遇到障碍物或小孔时,偏离直线传播的现象。

衍射现象可以分为菲涅尔衍射和夫琅禾费衍射两种类型,其中菲涅尔衍射适用于障碍物尺寸与波长相当或更小的情况,而夫琅禾费衍射适用于障碍物尺寸远大于波长的情况。

常见的衍射现象有单缝衍射、圆孔衍射等,可以通过衍射图案的形状和强度分布等信息来研究光波的传播规律和介质的性质。

偏振现象与双折射偏振现象是指光波在传播过程中,振动方向受到限制的现象。

根据振动方向的不同,光波可以分为横波和纵波两种类型,其中只有横波才能发生偏振现象。

双折射现象是指某些晶体在特定方向上对光波产生不同的折射率,使得入射光波被分解成两束振动方向相互垂直的偏振光的现象。

这种现象在光学器件如偏振片、偏振棱镜等中有重要应用。

通过研究偏振现象和双折射现象,可以深入了解光与物质相互作用的基本规律,以及开发新型光学器件和技术的可能性。

干涉理论与应用02杨氏双缝干涉实验原理及结果分析实验原理杨氏双缝干涉实验是基于光的波动性,通过双缝产生的相干光波在空间叠加形成明暗相间的干涉条纹。

结果分析实验结果表明,光波通过双缝后会在屏幕上产生明暗相间的干涉条纹,条纹间距与光波长、双缝间距及屏幕到双缝的距离有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

波动学基础前言:许多振动系统都不是孤立存在的,它们的周围常有其它物质。

当某个系统振动时,它将带动周围同它有一定联系的物体随之一起振动,于是该物体的振动就被周围的物质传播开来,形成波动过程。

即:波动是振动的传播过程。

波可分为两大类:机械波、电磁波。

这两类波虽本质不同,但都有波动的共同特征:具有一定的传播速度,都伴随着能量的传播,且都能产生反射、折射、干涉等现象一、机械波的产生与传播1、产生机械波的条件(1)、波源——是一个在一定条件下的振动系统,是波动能量的供给者。

(2)、弹性媒质——是一种用弹性力相互联系着的质点系,它是形成机械波、传播机械波所不可缺少的客观物质。

2、波动的形成过程首先有一振动系统——波源,在它周围有彼此以弹性力相联系的弹性媒质。

波动形成时有三个要点:A、波动的传播是由近及远的(相对于波源而言),即有先后次序。

B、传播的是振动状态或周相,质点本身不向前运动。

C、波动在传播时,具有空间周期性和时间周期性3、机械波与机械振动的关系波动是振动的传播过程,而振动是产生波动的根源,这是两者的联系。

振动研究的是振动质点离开平衡位置的位移是如何随时间作周期性变化的,即y =f (t);波动研究的是弹性媒质中不同位置彼此以弹性力相联系的质点群,它们的位移(相对自己的平衡位置)随时间作周期性变化的情况,即y =f (,t)。

对平面谐波而言,讨论的是波线上各质点的运动情况,故有y =f (x,t),这是两者的区别。

4、机械波的类型与波速波动按其振动方式的不同,可分为两大类:横波——波的传播方向与质点振动方向垂直。

其图象的外形特征是有突起的波峰和凹下的波谷。

各质点的振动情况形成一个具有波峰和波谷的正弦或余弦波形。

纵波——波的传播方向与质点振动方向相同。

其外形特征是具有稀疏和稠密的区域,即各质点的振动形成一个具有密集和稀疏相间的完整波。

若将纵波中各质点的位移逆时针转过90度,讨论情况就与纵波一致了。

横波主要在固体中传播,因为固体能承受切向力;纵波可在固、液、气体中传播,固、液、气体均能承受压力、拉力。

(1) 固体中的波速ρGu h = ,G 为切变弹性模量ρY u z = ,Y 为扬氏弹性模量(2) 液体中的波速ρBu z = ,B 为容变弹性模量(3) 气体中的波速 μγRTu q = ,μ为气体摩尔质量由此而知,波速只与媒质的性质有关。

5、波的几何描述由于波动是振动的传播过程,这个“过程”的实现是需要时间和占据空间的。

因此我们可以在某一时刻,在空间的某一位置处来考察波动。

即从几何的角度来描述波。

认定波源在某一时刻t 的振动位相(即波源在该时刻的状态),考察这一振动位相在媒质中是如何向各个方向传播的。

在t+t ∆时刻,这一振动位相正传达到波源周围的一些点上,由这些点所连成的面称波阵面。

即同一波阵面上各点的周相是相同的。

波阵面是在某一时刻振动所传播到各点的轨迹。

波阵面的形状视波源具体情况来定,如:太阳发出的光波,就整个太阳系来看,太阳可看作是点波源,太阳光传播时的波阵面是一系列球面,简称球面波。

但在地球表面上(就整个太阳系来说,这是个很小的区域)来看,波阵面则是一系列平面,简称平面波。

最前面的波阵面也称波前。

沿波的传播方向的直线,称为波线。

波线即是波的传播方向。

在点波源情况下,波线是垂直于球面沿径向向外的一系列直线;对平面波来说,波线是垂直于波阵面的一系列平行直线。

随着t 逐渐增加,于每一时刻相应的波阵面也在媒质中向前推进,这就是以波阵面的推进来阐述波的传播面貌。

二、 定量描述波动的几个物理量及其关系1、 波长λ——波动具有空间周期性和时间周期性,波长λ是描述空间周期性的物理量,可从不同角度来定义。

如:波长是一个完整波的长度,即同一波线上两相邻的周相差为π2的质点之间的距离。

速度t y ∂∂,u 与媒质的性质有关;t y∂∂由波源的性质而定。

3、 周期T ——周期是反映波动时间周期性的物理量,它是波传过一个波长的时间,一般情况下,就是质点完成一次全振动的时间。

νλλ==T u在讨论弹性波传播时,曾假设媒质是连续的。

因为当λ远大于媒质分子之间的距离时,媒质中一波长的距离内,有无数个分子在陆续振动,宏观上看来,媒质就象是连续的。

若λ小到等于或小于分子间距离的数量级时,相距约为一波长的两个分子之间,不再存在其它分子,我们就不能认为媒质是连续的了。

这时媒质再也不能传播弹性波了。

ν极高时,λ极小,因此,弹性波在给定媒质中的传播存在着一个频率上限。

如在真空中分子间距大,就不能传播声波。

三、 平面谐波的波动方程在波动过程中,媒质中各质点的位移都在随时间作周期性变化。

一般的说,媒质中各个质点的振动情况是很复杂的,由此产生的波动也是很复杂的。

当波源作简谐振动时,媒质中各质点也作简谐振动,其频率与波源的频率相同,振幅也与波源有关,这时的波动称简谐波或余弦波。

平面谐波就是波阵面是平面的简谐波。

为了用数学函数式来描述媒质中各质点的位移是怎样随各质点的平衡位置和时间变化的,需寻找一个数学表示式来描述一个前进中的波——行波。

这样的数学函数式,称为行波的波动方程。

设有一平面余弦行波,在无吸收的、均匀无限大的媒质中沿x 轴正向传播,波速为u ,取任一波线作为x的原点。

为了清楚地描述波线上各点的振动,我们用x 表示各个质点在波线上的平衡位置,用y 表示它们的振动位移。

值得注意的是,每个质点的振动位移y 是对它自己的平衡位置而言。

假定在o 处(x=0),媒质质点的振动方程cos(0A y =)φω+t ,0y 是O 点处质点在时刻t 离开平衡位置的位移。

B 为波线上任一点,因为振动是从O 点传播到B 点的,所以B 点处的质点振动将落后于O 点处的质点,落后的时间为u x t B =,这也是振动状态从O 点传到B 点所需要的时间,即:B 点处质点在t 时刻的位移等于O 点处质点在)(u x t B -时刻的位移。

故B 点处质点的振动方程为)(c o s [u x t A y B -=ω+]φ。

由B 点的任意性知,])(cos[φω+-=u x t A y (1) 也为在波线上任一点处的质点在任一瞬时的位移。

若把y,t,x 均看作变量,上式就是沿x 轴方向前进的平面谐波的波动方程。

对波动方程的讨论:(1) 由λπω==uT T ,2,])(cos[φω+-=u x t A y 也可写成])(2cos[φλπ+-=x T t A y 或])(2cos[φλπ+-=ut x A y(2) 若波沿x 反向传播,则波动方程应写为])(cos[φω++=t x t A y(3) 将波动方程两边对t 求导,得x 处质点在任意时刻t 的振动速度,所以,知道振动方程就可以确定波线上任一x 处的质点在t 时刻的振动状态。

(4) 波动方程的物理意义波动方程中有两个自变量(x,t ),当x=constant ,即考虑波线上某一给定点处的质点,波动方程变为y=y(t),此时波动方程表示距原点为x 处的质点在不同时刻的位移,即表示这个质点作谐振动的情形。

左图体现了波动的时间周期性当t=constant,即在某给定时刻统观波线上所有质点,此时各质点的位移是不同的。

波动方程变为y=y(x),相当于某一时刻给各质点拍照,波动方程表示在给定时刻波线上各个x 处质点的位移。

右图体现了波动的空间周期性若x,t 都在变化,波动方程就表示波线上各个不同的质点在不同时刻的位移或波动方程中包括了不同时刻的波形,亦即反映了波形的传播。

(5) 写波动方程的步骤:《1》 选择任一波线为讨论的x 轴,在x 轴上任找一点为坐标原点。

《2》 写出t=0时原点的振动方程。

《3》 根据的方向,写出波动方程。

(与x 同向,为u x t -;与x 反向,为u x t +)《4》 如要求波线上任一点的振动方程,只需将该点的x 值代入波动方程即可。

(6) 对(1)式这样的波动方程,一般假定波源在歪曲远处,如波源在x=-10米处,(1)式只适用于10-≥x 米的区域;如波源在x=0处,(1)式只适用于0≥x 的区域。

例题1:一平面谐波在介质中以速度u =20m/s 自左向右传播,已知传播路径上的某点A 的振动方程为 )4cos(3ππ-=t y (SI ),另一点D 在A 点右方9米处,求:(1) 若取x 轴方向向左,并以A 为坐标原点,试写出波动方程,并求D 点的振动方程。

(2) 若取x 轴方向向右,以A 点左方5米处的O 点为x 轴原点,再写出波动方程,并求D 点的振动方程。

解(!):以A 为坐标原点的波动方程为])(4cos[3ππ-+=u x t y ,将x=-9代入波动方程。

即得D点的振动方程])209(4cos[3ππ--=t y D =3cos(5144ππ-t ). (2)以A 点为坐标原点的波动方程为])(4cos[3ππ-+=u x t y ,将x=5代入波动方程得o 点的振动方程:t t y πππ4cos 3])205(4cos[30=-+=以o 点为坐标原点的波动方程为:)20(4cos 3x t y -=π 四、 波动能量当弹性波传播到媒质中的某处时,该处原来不动的质点开始振动,因而具有动能,(能量的供给者是波源)同时该处的媒质也将产生形变,因而也具有势能。

可证明:如在媒质中取一质量元m ∆,当波动传到它时,它所具有的动能和势能为:)(sin 21222u x t mA E E p k -∆==ωω (2)媒质体积元总机械能为:)(sin 222u x t mA E E E p k -∆=+=ωω (3) 讨论:1、(2)式表明行波传播过程中,体积元的k E 与p E 是同相的,而且是相等的。

k E 与p E 同时达到最大值和最小值。

这一点与质点振动情况完全不一样,在振动系统中,k E 与p E 互相转换,系统的机械能守恒。

2、(3)式表明,当x=constant时,体积元的总机械能上随t作周期性变化的,在0(πk2)和最大值(π212+k)之间周期地变化着。

对某一给定时刻(t=constant),各体积元的总能量又是随x作周期性变化的。

这一点体现了波动具有时间周期性和空间周期性。

3、由上述情况知,波动传播时,媒质由近及远地一层接着一层地振动,能量是逐层传播出去的。

这是波动的一个重要特征。

媒质中任一质元都在不断地接受和放出能量,即先吞后吐。

这就是波动传播能量的机构。

这也是波动与振动的区别:波动传播能量,质元机械能不守恒,振动系统不传播能量,机械能守恒。

4、媒质中单位体积的波动能量称为波的能量密度)(sin21222uxtA-=ωωρω,波的能量是随t而变化的,通常取其在一个周期内的平均值2221ωρωA=,因为正弦的平方在一个周期内的平均值为1/2。

相关文档
最新文档