化工原理课程设计换热器设计
化工原理课程设计换热器

化工原理课程设计换热器
换热器设计是化工原理课程设计中一个重要的部分。
下面将为您介绍步骤和注意事项。
一、设计步骤:
1. 确定换热器类型:根据工艺要求及介质性质,选择适合的换热器类型,如管壳式、板式、螺旋板式等。
2. 估算传热系数:根据换热器类型、流体类型、流量、温度等因素,估算出传热系数。
3. 计算传热面积:根据所需传热量和传热系数,计算指定温度下需求的传热面积。
4. 选择换热器管径及壳体规格:根据所需传热面积和换热器类型,选择合适的换热器管径及壳体规格。
5. 设计热损失:根据换热器使用环境,计算换热器热损失量,以确保能量转化的高效。
6. 设计流路:结合工艺流程及介质性质,确定换热器内部介质的流路和流速,
以确保传热效率。
二、注意事项:
1. 选用合适的换热器类型,以确保传热效率和占用空间的合理性。
2. 估算传热系数要考虑介质性质、流量、温度等因素,更加科学地估算传热系数。
3. 所需传热面积要根据实际需要,同时结合换热器的大小、材质等因素做出合理的选择。
4. 选择换热器管径及壳体规格要遵循一定的社会标准及安全规范,以确保换热器使用的稳定性和安全性。
5. 设计热损失要考虑换热器使用环境,以确保能量转化的高效。
同时,必须符合国家有关规定。
化工原理课程设计 列管式换热器

化工原理课程设计列管式换热器设计要求:设计一个列管式换热器,实现两种不同温度的流体之间的热量传递。
设计要求如下:1. 列管式换热器采用直管式结构,热传导介质为水和油;2. 设计流量分别为水流量 Q1 = 500 L/h,油流量 Q2 = 300 L/h;3. 设计温度分别为水的进口温度 T1i = 80℃,油的进口温度T2i = 120℃;4. 确定水的出口温度 T1o 和油的出口温度 T2o;5. 选择合适的换热器材料,确保换热效果良好;6. 根据设计参数计算所需的换热面积 A 和换热效率η。
设计方案:1. 确定管径和管长:首先根据水和油的流量和温度差,计算所需的换热面积。
然后确定换热器的尺寸,其中包括管径和管长。
2. 选择换热器材料:根据换热介质的性质和工作条件,选择合适的换热器材料,例如不锈钢。
3. 计算出口温度:根据热平衡原理,计算水和油的出口温度。
假设换热器满足热平衡条件,即水的热量损失等于油的热量增加。
4. 计算换热面积:根据换热器的尺寸和热传导方程,计算所需的换热面积。
5. 计算换热效率:根据热平衡原理和换热器的热传导性能,计算换热效率。
实施步骤:1. 根据设计流量和温度差,计算所需的换热面积。
假设水和油的传热系数均为常数,可以使用换热传导方程进行计算。
2. 根据所需的换热面积和理论计算值,选择合适的换热器尺寸。
3. 根据所选换热器材料,计算换热器的尺寸和管径。
假设管壁温度近似等于流体温度。
4. 根据热平衡原理,计算出口温度。
假设热平衡条件满足,即水的热量损失等于油的热量增加。
5. 根据所选材料和尺寸,计算换热效率。
假设换热器的热传导系数为常数,使用换热效率计算公式进行计算。
总结:本课程设计主要针对列管式换热器的设计,通过选择合适的换热器材料和计算换热器的尺寸,实现了水和油之间的热量传递。
根据设计要求,通过计算出口温度和换热效率,验证了设计方案的合理性。
设计过程需要考虑多方面的因素,如流体性质、流量和温度差等。
化工原理课程设计换热器

化工原理课程设计换热器本文主要介绍化工原理课程设计中涉及到的换热器的相关知识和设计思路。
换热器是化工工业中常用的设备之一,其主要功能是通过传导、对流和辐射的方式实现热量的传递,从而将一个流体的热量传递给另一个流体。
因此,在化工原理课程设计中涉及到换热器的设计,既需要考虑流体的物理性质,也需要考虑热力学参数的影响。
换热器的类型繁多,按照传热方式的不同可分为对流式换热器和辐射式换热器。
常用的对流式换热器包括管壳式换热器、板式换热器和螺旋式换热器等。
在换热器的设计中,需要首先确定换热器所要实现的传热方式和工作条件,如流体流速、进出口温度和压力等。
接下来需要考虑的问题是如何选择合适的材料以满足流体的物理性质和热力学参数的要求。
在化工原理课程设计中,换热器的设计重点之一是热力学计算。
为了实现对流体的热量传递,需要考虑流体的传热系数。
传热系数与流体的物理性质密切相关,包括流体的密度、比热、粘度和导热系数等。
通过对这些参数的测量和分析,可以计算出传热系数,并进而确定换热器的传热效率。
另外,在化工原理课程设计中,换热器的设计还需要考虑到换热器的尺寸、材料和结构等方面的问题。
尺寸的设计需要考虑工作流体的容积和流速等因素,以保证换热器的实现效率和安全性。
材料选择需要考虑到流体的化学性质,以避免流体与材料发生反应和腐蚀。
结构设计需要兼顾容易清洗、拆卸和维护的要求,以方便日常运行和维护。
总之,在化工原理课程设计中,换热器的设计是一个系统性的工程,包括物理学、化学和工程学等多个学科领域的综合运用。
只有充分理解流体的物理性质和热力学参数,才能做出合理的设计并实现高效的换热效果。
同时,还需要考虑到实际工程的应用需求,以满足生产的需要和安全的要求。
化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计列管式换热器是一种常用的换热器类型,其结构简单、传热效率高、维修方便等优点使其在工业生产中得到广泛应用。
该换热器由多个平行排列的管子组成,热流体和冷流体分别流过管内外,通过管壁传递热量,实现热量交换。
根据不同的流体流动方式,列管式换热器又可分为纵向流式和横向流式两种形式。
其中,横向流式换热器传热效率更高,但结构较为复杂,维修难度较大,因此在实际应用中需要根据具体情况进行选择。
浮头式换热器的特点是管板和壳体之间没有固定连接,只有一个浮头,管束和浮头相连。
浮头可以在壳体内自由移动,以适应管子和壳体的热膨胀。
这种结构适用于温差较大或壳程压力较高的情况。
但是,由于管束和浮头的连接是松散的,因此需要注意防止泄漏。
U型管式换热器:U型管式换热器的管子呈U形,两端分别焊接在管板上,形成一个U型管束。
壳体内的流体从一端进入,从另一端流出,管内的流体也是如此。
这种结构适用于流体腐蚀性较强的情况,因为管子可以很容易地更换。
多管程换热器:多管程换热器是将管束分成多个组,每组管子单独连接到管板上,形成多个管程。
这种结构可以提高传热效率,但也会增加流体阻力。
因此,需要根据具体情况来选择多管程的数量。
总之,列管式换热器是一种广泛应用于化工及酒精生产的换热器。
不同的结构适用于不同的工艺条件,需要根据具体情况来选择合适的换热器。
在使用过程中,需要注意保养和维护,及时清洗和更换损坏的部件,以保证换热器的正常运行。
换热器的一块管板与外壳用法兰连接,另一块管板不与外壳连接,这种结构称为浮头式换热器。
浮头式换热器的优点是管束可以拉出以便清洗,管束的膨胀不受壳体约束,因此在两种介质温差大的情况下,不会因管束与壳体的热膨胀量不同而产生温差应力。
但其缺点是结构复杂,造价高。
填料式换热器的管束一端可以自由膨胀,结构比浮头式简单,造价也较低。
但壳程内介质有外漏的可能,因此不应处理易挥发、易燃、易爆和有毒的介质。
化工原理课程设计——换热器设计

化工原理课程设计——换热器设计本课题研究的目的要紧是针对给定的固定管板式换热器设计要求,通过查阅资料、分析设计条件,以及换热器的传热运算、壁厚设计和强度校核等设计,差不多确定固定管板式换热器的结构。
通过分析固定管板式换热器的设计条件,确定设计步骤。
对固定管板式换热器筒体、封头、管板等部件的材料选择、壁厚运算和强度校核。
对固定管板式换热器前端管箱、后端管箱、传热管和管板等结构进行设计,对换热器进行开孔补强校核。
绘制符合设计要求的固定管板式换热器的图纸,给出相关的技术要求;在固定管板换热器的结构设计过程中,要参考相关的标准进行设计,比如GB-150、GB151……,使设计能够符合相关标准。
同时要是设计的结构满足生产的需要,达到安全生产的要求。
通过设计过程达到熟悉了解换热器各部分结构特点及工作原理的目的。
关键词:换热器;固定管板;设计;强度名目摘要 ....................................................... 错误!未定义书签。
1绪论 (1)1.2固定管板换热器介绍 (2)1.3本课题的研究目的和意义 (3)1.4换热器的进展历史 (4)2产品冷却器结构设计的总体运算 (6)2.1 产品冷却器设计条件 (6)2.2前端管箱运算 (8)2.2.1前端管箱筒体运算 (8)2.2.2前端管箱封头运算 (10)2.3后端管箱运算 (11)2.3.1后端管箱筒体运算 (11)2.3.2后端管箱封头运算 (12)2.4壳程圆筒运算 (13)3各部分强度校核 (15)3.1开孔补强运算 (15)3.2壳程圆筒校核 (18)3.3管箱圆筒校核 (19)4换热管及法兰的设计 (20)4.1换热管设计 (20)4.2管板设计 (21)4.3管箱法兰设计 (22)4.4壳体法兰设计 (25)4.5各项系数运算 (27)5 产品冷却器制造过程简介 (34)5.1 总则 (34)5.2零部件的制造 (34)结论 (43)参考文献: (44)致谢 (44)1绪论1.1换热器的作用及分类在工业生产中,换热设备的要紧作用是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到工艺过程规定的指标,以满足工艺过程上的需要。
化工原理课程设计模板-换热器

化工原理课程设计模板-换热器1. 引言换热器是化工过程中常用的设备之一,其主要功能是在流体之间进行热量传递,以实现温度控制、能量回收等目的。
本文将介绍化工原理课程设计中换热器的设计过程和要点。
2. 设计目标在进行换热器设计之前,首先要确定设计的目标。
设计目标包括但不限于以下几点:•确定需要传热的流体的进口温度和出口温度;•确定传热后流体的温度变化范围;•确定换热器的热传导面积;•确定换热器的传热系数。
3. 设计步骤换热器的设计过程可以分为以下几个步骤:3.1 确定流体的性质参数在设计换热器之前,需要明确流体的性质参数,包括流体的密度、比热容以及传热系数等。
这些参数可以通过实验测定或者查阅相关文献获得。
3.2 计算流体的传热量根据热传导定律,可以计算流体的传热量。
传热量的计算公式如下:Q = m * c * ΔT其中,Q表示传热量,m表示流体的质量,c表示流体的比热容,ΔT表示流体的温度变化。
3.3 确定换热器的传热面积根据热传导定律,可以计算换热器的传热面积。
传热面积的计算公式如下:A = Q / (U * ΔTlm)其中,A表示传热面积,U表示换热器的传热系数,ΔTlm表示对数平均温差。
3.4 选择换热器的类型和结构根据设计要求和实际情况,选择合适的换热器类型和结构。
常见的换热器类型包括管壳式换热器、板式换热器等。
3.5 进行换热器的细节设计在确定了换热器的类型和结构之后,进行换热器的细节设计,包括管道的布置、流体的流动方式以及换热器的材料选择等。
3.6 进行换热器的性能评价完成换热器的设计之后,进行性能评价,验证设计结果是否满足设计目标。
性能评价主要包括换热器的传热效率、压降以及经济性等方面。
4. 实例分析下面通过一个实例来说明换热器的设计过程。
实例:管壳式换热器假设需要设计一个管壳式换热器,用于将流体A的温度从40℃降至20℃,同时将流体B的温度从70℃升至90℃。
根据设计要求,我们可以计算出流体A和流体B的传热量,然后根据对数平均温差计算出传热面积,从而确定换热器的尺寸。
化工原理课程设计 换热器

一、设计任务书二、确定设计方案2.1 选择换热器的类型本设计中空气压缩机的后冷却器选用带有折流挡板的固定管板式换热器,这种换热器适用于下列情况:①温差不大;②温差较大但是壳程压力较小;③壳程不易结构或能化学清洗。
本次设计条件满足第②种情况。
另外,固定管板式换热器具有单位体积传热面积大,结构紧凑、坚固,传热效果好,而且能用多种材料制造,适用性较强,操作弹性大,结构简单,造价低廉,且适用于高温、高压的大型装置中。
采用折流挡板,可使作为冷却剂的水容易形成湍流,可以提高对流表面传热系数,提高传热效率。
本设计中的固定管板式换热器采用的材料为钢管(20R钢)。
2.2 流动方向及流速的确定本冷却器的管程走压缩后的热空气,壳程走冷却水。
热空气和冷却水逆向流动换热。
根据的原则有:(1)因为热空气的操作压力达到1.1Mpa,而冷却水的操作压力取0.3Mpa,如果热空气走管内可以避免壳体受压,可节省壳程金属消耗量;(2)对于刚性结构的换热器,若两流体的的温度差较大,对流传热系数较大者宜走管间,因壁面温度与对流表面传热系数大的流体温度相近,可以减少热应力,防止把管子压弯或把管子从管板处拉脱。
(3)热空气走管内,可以提高热空气流速增大其对流传热系数,因为管内截面积通常比管间小,而且管束易于采用多管程以增大流速。
查阅《化工原理(上)》P201表4-9 可得到,热空气的流速范围为5~30 m·s-1;冷却水的流速范围为0.2~1.5 m·s-1。
本设计中,假设热空气的流速为8 m·s-1,然后进行计算校核。
2.3 安装方式冷却器是小型冷却器,采用卧式较适宜。
三、设计条件及主要物性参数3.1设计条件由设计任务书可得设计条件如下表:体积流量进口温度出口温度操作压力设计压力注:要求设计的冷却器在规定压力下操作安全,必须使设计压力比最大操作压力略大,本设计的设计压力比最大操作压力大0.1MPa 。
3.2确定主要物性数据3.2.1定性温度的确定可取流体进出口温度的平均值。
化工原理设计(换热器设计)

广东石油化工学院化工原理课程设计说明书题目:柴油预热原油的管壳式换热器学生班级:学生姓名:学生学号: 18指导教师:李燕化学化工学院年月日化工原理课程设计任务书一、设计题目:列管式换热器设计二、设计任务及操作条件某炼油厂用柴油将原油预热。
柴油和原油的有关参数如下表, 两侧的污垢热阻均可取1.72×10-4m2.K/W,要求两侧的阻力损失均不超过0.5×105Pa。
试选用一台适当型号的列管式换热器。
(x:学号)三、设计要求提交设计结果,完成设计说明书。
设计说明书包括:封面、目录、设计任务书、设计计算书、设计结果汇总表、参考文献及设计自评表、换热器装配图等。
(设计说明书及图纸均须手工完成)四、定性温度下流体物性数据物料温度℃质量流量kg/h比热kJ/kg.℃密度kg/m3导热系数W/m.℃粘度Pa.s 入口出口柴油175 T2 34220 2.48 715 0.133 0.64×10-3原油70 110 44330 2.20 815 0.128 3.0×10-3 推荐总K=45~280 W/m.℃注:若采用错流或折流流程,其平均传热温度差校正系数应大于0.8五、参考书目:1、姚玉英 . 化工原理 ,上册,1版.天津:天津大学出版社,19992、柴诚敬.化工原理课程设计. 1版.天津:天津大学出版社,19943、匡国柱.化工单元过程及设备课程设计. 1版.北京:化学工业出版社,20024、李功祥.常用化工单元设备设计.1版.广州:华南理工大学出版社,2003目录1.设计任务书 (1)2.概述 (2)3.设计条件及物性参数表 (2)4.方案设计和拟定 (3)5.设计计算 (6)6.热量核算 (11)7.参考文献 (16)8.心得体会 (17)1.设计任务书1.1设计题目用柴油预热原油的管壳式换热器1.2设计任务1.查阅文献资料,了解换热设备的相关知识,熟悉换热器设计的方法和步骤;2.根据设计任务书给定的生产任务和操作条件,进行换热器工艺设计及计算;3.根据换热器工艺设计及计算的结果,进行换热器结构设计;4.以换热器工艺设计及计算为基础,结合换热器结构设计的结果,绘制换热器装配图;5.编写设计说明书对整个设计工作的进行书面总结,设计说明书应当用简洁的文字和清晰的图表表达设计思想、计算过程和设计结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理课程设计设计任务:换热器班级:13级化学工程与工艺(3)班姓名:魏苗苗学号:1320103090目录化工原理课程设计任务书 (2)设计概述 (3)试算并初选换热器规格 (6)1. 流体流动途径的确定 (6)2. 物性参数及其选型 (6)3. 计算热负荷及冷却水流量 (7)4. 计算两流体的平均温度差 (7)5. 初选换热器的规格 (7)工艺计算 (10)1. 核算总传热系数 (10)2. 核算压强降 (13)设计结果一览表 (16)经验公式 (16)设备及工艺流程图 (17)设计评述 (17)参考文献 (18)化工原理课程设计任务书一、设计题目:设计一台换热器二、操作条件:1、苯:入口温度80℃,出口温度40℃。
2、冷却介质:循环水,入口温度32.5℃。
3、允许压强降:不大于50kPa。
4、每年按300天计,每天24小时连续运行。
三、设备型式:管壳式换热器四、处理能力:109000吨/年苯五、设计要求:1、选定管壳式换热器的种类和工艺流程。
2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。
3、设计结果概要或设计结果一览表。
4、设备简图。
(要求按比例画出主要结构及尺寸)5、对本设计的评述及有关问题的讨论。
六、附表:1.设计概述1.1热量传递的概念与意义1.1.1热量传递的概念热量传Array递是指由于温度差引起的能量转移,简称传热。
由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。
1.1.2化学工业与热传递的关系化学工业与传热的关系密切。
这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。
此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。
总之,无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。
应予指出,热力学和传热学既有区别又有联系。
热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平衡状态,确定系统由一个平衡状态变成另一个平衡状态所需的总能量;而传热学研究能量的传递速率,因此可以认为传热学是热力学的扩展。
1.1.3传热的基本方式根据载热介质的不同,热传递有三种基本方式:1.1.3.1热传导(又称导热)物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导。
热传导的条件是系统两部分之间存在温度差。
1.1.3.2热对流(简称对流)流体各部分之间发生相对位移所引起的热传递过程称为热对流。
热对流仅发生在流体中,产生原因有二:一是因流体中各处温度不同而引起密度的差别,使流体质点产生相对位移的自然对流;二是因泵或搅拌等外力所致的质点强制运动的强制对流。
此外,流体流过固体表面时发生的对流和热传导联合作用的传热过程,即是热由流体传到固体表面(或反之)的过程,通常称为对流传热。
1.1.3.3热辐射因热的原因而产生的电磁波在空间的传递称为热辐射。
热辐射的特点是:不仅有能量的传递,而且还有能量的转移。
1.2换热器的概念、意义及基本设计要求1.2.1换热器的概念及意义:在化工生产中为了实现物料之间能量传递过程需要一种传热设备。
这种设备统称为换热器。
在化工生产中,为了工艺流程的需要,往往进行着各种不同的换热过程:如加热、冷却、蒸发和冷凝。
换热器就是用来进行这些热传递过程的设备,通过这种设备,以便使热量从温度较高的流体传递到温度较低的流体,以满足工艺上的需要。
它是化工炼油,动力,原子能和其他许多工业部门广泛应用的一种通用工艺设备,对于迅速发展的化工炼油等工业生产来说,换热器尤为重要。
换热器在化工生产中,有时作为一个单独的化工设备,有时作为某一工艺设备的组成部分,因此换热器在化工生产中应用是十分广泛的。
任何化工生产中,无论是国内还是国外,它在生产中都占有主导地位。
1.2.2换热器设计要求:1. 3管壳式换热器的简介1.3.1概述:管壳式换热器是目前应用最为广泛的一种换热器。
它包括:固定管板式换热器、U?型管壳式换热器、带膨胀节式换热器、浮头式换热器、分段式换热器、套管式换热器等。
管壳式换热器由管箱、壳体、管束等主要元件构成。
管束是管壳式换热器的核心,其中换热管作为导热元件,决定换热器的热力性能。
另一个对换热器热力性能有较大影响的基本元件是折流板(或折流杆)。
管箱和壳体主要决定管壳式换热器的承压能力及操作运行的安全可靠性。
1.3.2工作原理:管壳式换热器和螺旋板式换热器、板式换热器一样属于间壁式换热器,其换热管内构成的流体通道称为管程,换热管外构成的流体通道称为壳程。
管程和壳程分别通过两不同温度的流体时,温度较高的流体通过换热管壁将热量传递给温度较低的流体,温度较高的流体被冷却,温度较低的流体被加热,进而实现两流体换热工艺目的。
1.3.3主要技术特性:1、耐高温高压,坚固可靠耐用;2、制造应用历史悠久,制造工艺及操作维检技术成熟;3、选材广泛,适用范围大。
2.试算并初选换热器规格2.1流体流动途径的确定本换热器处理的是两流体均不发生相变的传热过程,且水易结垢,根据两流体的情况,故选择循环水走换热器的管程,苯走壳程。
2.2确定流体的定性温度、物性数据,并选择列管换热器的型式2.2.1定性温度冷却介质为循环水,入口温度为:25 ℃,出口温度为:33 ℃;苯的定性温度: 6024080=+=m T ℃; 水的定性温度:t m =(25+33)/2=29℃;两流体的温差: 5.325.2760=-=+m m t T ℃——两流体温差不大于50℃,不考虑热补偿;故选用固定管板式列管换热器。
2.2.2物性数据=苯μ0.381cp=0.381mPa·s=水μ0.807cp=0.807mPa·s=苯Cp0=1.828KJ/(㎏·o C)=水Cp 4.176KJ/(㎏·o C)=苯λ0.151W/(m·o C)水λ=0.613W/(m·o C)两流体在定性温度下的物性数据如下:2.3计算热负荷和冷却水流量2.3.1热流体流量:Wh=134000000/(300*24)= 18611.11111kg/h2.3.2热负荷:Q= Wh *C苯*1000*(80-40)/3600= 378012.3457W2.3.3冷流体的质量流量:Wc =Q*3600/1000/C水/(32-25)= 40753.60699 kg/h2.4计算两流体的平均温度差按单壳程、多管程进行计算,逆流时平均温度差为:2.4.1平均温度差△t′m=(△t2—△t1)/ln(△t2/△t1)=[(80-33)-(40-25)]/ln[(80-33)/(40-25)]= 28.02℃2.4.2温度矫正系数P=(t2-t1)/(T2-T1)=(33-25)/(80-40)=0.145R=(T1-T2)/(t2-t1)=(80-40)/(33-25)=5由《化工原理》上册P238页查图4-19可得: φ△t=0.92所以△tm=φ△t *△t′m=0.92*28.02= 25.77713598℃不需要热补偿又因为0.92>0.8,故可选用单壳程的列管换热器。
2.5试算和初选换热器的规格2.5.1初定K值:根据低温流体为水,高温流体为有机物(参见《化工原理》P355)有K值的范围:430~850W/(2m·o C), 假设K0=300W/(m2·℃)2.5.2单管程的管子根数:因为水走管程且初选φ25*2.5,L= 6m 的列管,所以设u i =1m/s由 i i i n d u V 24π=可求得:V=40753.60699 kg/h /(995.7*3600)=0.01137m^3n i =4V/(3.14*0.02*0.02)=36.2 取37根2.5.3传热面积:S 0=Q/(△tm*K0)=48.88m^22.5.4单管程管长:L i =S 0/(3.14*d o *n i )=16.83m2.5.5管程数:Np=L i /L=16.83/6=2.84 初选管程为Np=32.5.6总管数:n=Np*n i =3*37=111根2.5.7管心距:t=1.25*d=1.25*25=32mm2.5.8横过管束中心线的管数:=1.19*n^1/2=13根nc2.5.9计算壳径:D=1.05*t*(111/0.7)^1/2=423mm 取整:450mm2.5.10折流板:采用弓形折流板圆缺高度为壳体内径的25%,则切去的圆缺高度为h=0.25*450=112.5mm,取h=110mm;折流板间距取B=150mm折流板数:N=传热管长/折流板间距-1=6000/150-1=39块B折流板圆缺面水平装配2.5.11接管:壳程流体进出口接管:取接管内油品流速为u1=1m/s,则接管内径为d1=[4V/(3.14*u)]^1/2=[4*134000000/300/24/3600/836.6/3.14]^1/2=0.0887m 取整d1=90mm管程流体进出口接管:取接管内循环水流速u2=1.5m/s,则接管内径为d2=[4V/(3.14*u)]^1/2=[4*0.01137/3.14/1.5]^1/2=0.098m取整d2=100mm2.5.12将这些管子进行排列有图如下:2.5.13初选固定管板式换热器规格尺寸为:2.5.14实际传热面积及总传热系数:S1=3.14ndL=3.14*111*0.025*(6.0-0.1)=51.40965m^2若采用此传热面积的换热器,则要求过程的总传热系数为:K1=Q/(S1*△tm)= 285.2506706 W/(m2·℃)3 工艺核算3.1核算总传热系数3.1.1计算管程对流传热系数i αUi=Vi/Ai=4*0.01137/(ni*3.14*di^2)=4*0.01137/(37*3.14/4*0.02^2)=0.979m/s 与假设相一致 合适Re i =di*ui*995.7/(0.807*10^-3)= 24359.7142 湍流 Pr i =C 水*(0.852*10^-3)/0.613=5.406735751图 壳程摩擦系数f 0与Re 0的关系所以αi =0.023*(水λ/di)*(Re )0.8*Pri 0.3=0.023*0.613/0.02*(24359.7142)^0.8*(5.8)^0.4=4507.304891(W/(㎡·℃)3.1.2计算壳程对流传热系数0α换热器中心附近管排中流体流通截面积为:Ao=hD(1-d0/t)=0.15*0.45*(1-0.025/0.032)= 0.014765625m 2 式中 --h 折流挡板间距,取150mm ;--t 管中心距,对mm 5.225⨯Φ,mm t 32=。