新型膜分离技术研究进展

合集下载

膜分离技术研究进展+文献名称

膜分离技术研究进展+文献名称

膜分离技术研究进展组员:吴佳曦、张雯辉、郭志新、李耀睿、刘汉飞、王伦、张振斌膜分离技术在近20年发展迅速,其应用已从早期的脱盐发展到化工、轻工、石油、冶金、电子、纺织、食品、医药等工业废水、废气的处理,原材料及产品的回收与分离和生产高纯水等,是适应当代新产业发展的重要高新技术。

膜分离技术不但在工业领域得到广泛应用,同时正在成为解决能源、资源和环境污染问题的重要技术和可持续发展的技术基础。

膜分离是借助于膜,在某种推动力的作用下,利用流体中各组分对膜的渗透速率的差别而实现组分分离的过程。

目前常见的膜分离过程可分为以下几种,电渗析(Electrodialysis,ED)、反渗透(Reverse osmosis,RO)、微滤(Microfiltration,MF)、超滤(Ultrafiltration,UF)、纳滤(Nanofiltration,UF)和液膜分离等。

膜技术具有分离效率高、能耗低、无相变、操作简便、无二次污染、分离产物易于回收、自动化程度高等优点,在水处理领域具有相当的技术优势,是现代分离技术中一种效率较高的分离手段。

在环境过程中膜分离技术以其独特的作用而被广泛用于水的净化与纯化过程中。

下面分类介绍一下膜分离技术的研究现状。

1 电渗析技术研究现状(刘汉飞)电渗析是在直流电场作用下,以电位差为推动力,利用离子交换膜的选择渗透性(与膜电荷相反的离子透过膜,相同的离子则被膜截留),使溶液中的离子作定向移动以达到脱除或富集电解质的膜分离操作。

它可使电解质从溶液中分离出来,从而实现溶液的浓缩、淡化、精制和提纯。

电渗析技术普遍应用于食品生化行业以及废水处理。

下面分类对这几方面的应用现状做一介绍。

1.1 电渗透技术在食品行业中的应用利用电渗析技术对酱油进行脱盐处理,可以制得低盐酱油并基本保持酱油原有风味,但要损失一部分作为酱油指标的氨基酸态氮和有机酸等有效成分,从而将酱油的含盐量降低。

但国内尚无这方面的报导,刘贤杰等采用电渗析技术进行了酱油脱盐的研究。

新型分离技术的研究进展

新型分离技术的研究进展

新型分离技术的研究进展分离技术作为化学、制药、材料科学等领域中最为重要的技术之一,一直以来都受到广泛关注。

在过去的几十年中,各种新型的分离技术不断涌现,极大地提高了产品的纯度和品质。

本文将探讨目前新型分离技术研究的最新进展。

I. 传统分离技术的缺陷在传统的分离技术中,传统溶剂萃取、膜分离、结晶分离技术等是常用的分离方法。

但是这些方法也有着很多的缺陷。

例如:(1) 使用易燃、易挥发的有机溶剂可能会引起安全隐患,且污染环境。

(2) 传统膜分离技术的膜通常寿命较短,容易受到受污染的影响从而降低分离效果。

(3) 结晶分离技术必须要求物质有结晶性,而且耗时较长。

这些缺陷都对传统分离技术的应用产生了很大的制约。

II. 近年来,一些全新的分离技术出现了,它们正在逐渐取代传统的分离技术,成为应用领域的新宠。

目前,新型分离技术主要包括:(1) 超临界流体萃取技术超临界流体萃取技术是利用超临界流体优异的溶解性能进行分离的一种新型技术。

它主要利用压力和温度对气态或液态物质进行临界点之上的处理,使其成为具有高扩散能力的超临界流态物质,并使其保持临界点以上的特异性质。

超临界流体萃取技术的主要特点是:无毒、无污染、高效率、易于操作。

与其他技术相比,它具有化学可控性好、分离效果高等优点。

在某些领域,如材料科学、化学工程等领域,已经被广泛应用。

例如,将它应用于石油提炼可大大降低污染和能源消耗。

(2) 嵌段共聚物膜分离技术嵌段共聚物膜分离技术是一种可控结构的膜,它在表面上具有多种特定的化学官能团。

这种结构在分离过程中能够选择性地吸附一些物质,达到分离效果。

该技术的优点是反应时间短、效率高、选择性好,并且可以在极端条件下工作,如高温、高浓度、高压等环境下。

该技术已经在水处理、有机物质回收等领域中被广泛应用。

(3) 金属有机骨架材料分离技术金属有机骨架材料是一种由有机配体与中心金属离子桥接形成的多孔材料。

它的优点是具有大孔径、大比表面积、氨基、羧基等基团,并具有很好的化学可控性。

膜分离技术的研究进展及应用展望

膜分离技术的研究进展及应用展望

膜分离技术的研究进展及应用展望膜分离技术的研究进展及应用展望引言:膜分离技术是一种基于物理或化学的分离方法,利用膜的特殊结构和性质,在不同组分之间实现传质、分离和浓缩。

膜分离技术在过去几十年中得到了广泛的研究和应用,已经成为化工、环保、食品加工和生物医药等领域中不可或缺的重要分离技术之一。

本文将重点讨论膜分离技术的研究进展,并展望其在未来的应用前景。

一、膜材料的发展膜分离技术最重要的组成部分就是膜材料。

随着科技的不断进步,膜材料也在不断发展。

膜材料的关键指标包括选择性、通量、稳定性等。

传统的膜材料包括有机膜和无机膜。

有机膜的选择性较差,对一些高分子的渗透有限。

而无机膜通常具有较好的选择性,但通量较低。

因此,近年来,新型膜材料开始得到关注,如纳米膜、多孔膜、复合膜等。

这些膜材料具有高通量和良好的选择性,对分离、纯化等领域具有广泛的应用前景。

二、膜结构的改进膜结构是决定膜分离性能的关键因素之一。

在过去的研究中,通过改变膜的孔径、孔隙率、孔结构等,可以调控膜的分离性能。

然而,传统的膜结构改进方法往往限制了膜的通量和选择性。

因此,新型的膜结构设计思路被提出,如层状膜、纤维束膜、铺砌膜等。

这些新型膜结构具有更大的表面积和更高的通量,具有更好的应用前景。

三、膜分离过程的模拟与优化在膜分离过程中,通过建立数学模型,可以模拟膜分离过程,为工艺的优化提供指导。

传统的膜分离模型通常是基于扩散机理,而忽略了流体流动和膜表面阻力对分离的影响。

近年来,随着计算机模拟技术的发展,可以建立更精确的模型,考虑流体流动、膜表面阻力等因素对分离的影响。

通过优化模型参数和工艺条件,可以实现膜分离过程的最佳化。

这将提高膜分离过程的效率和经济性,并为膜分离技术的应用提供更好的支持。

四、膜分离技术的应用展望膜分离技术在水处理、气体分离、药物纯化等领域已经得到了广泛的应用。

随着人们对环境保护和资源利用的重视,膜分离技术在未来的应用前景更加广阔。

膜分离技术应用的研究进展

膜分离技术应用的研究进展

膜分离技术应用的研究进展一、本文概述随着科技的不断进步,膜分离技术作为一种高效、环保的分离技术,已经在多个领域得到了广泛的应用。

膜分离技术,利用特定的膜材料对混合物中的不同组分进行选择性分离,具有操作简便、能耗低、分离效果好等优点,因此在化工、环保、食品、医药等领域有着广阔的应用前景。

本文旨在对膜分离技术应用的研究进展进行全面的综述,分析各类膜材料的性能特点,探讨膜分离技术在不同领域的应用现状,以及未来可能的发展趋势。

通过对膜分离技术的深入研究,我们期望能够为相关领域的科技进步和产业发展提供有益的参考。

二、膜分离技术的分类与特点膜分离技术是一种基于膜的选择性渗透原理,用于分离、提纯和浓缩溶液中的不同组分的高效分离技术。

根据其分离机制和操作原理,膜分离技术主要分为以下几类,并各自具有其独特的特点。

微滤(Microfiltration,MF):微滤膜通常具有较大的孔径,能够有效截留溶液中的悬浮物、颗粒物和细菌等。

其特点是操作简单、高通量、低能耗,广泛应用于水处理、食品加工和制药等领域。

超滤(Ultrafiltration,UF):超滤膜的孔径介于微滤和纳滤之间,能够截留分子量较大的溶质和胶体物质。

超滤技术具有分离效果好、操作简便、对热敏性物质损伤小等优点,常用于蛋白质、酶等生物大分子的分离和纯化。

纳滤(Nanofiltration,NF):纳滤膜的孔径较小,能够截留分子量较小的溶质和无机盐。

纳滤技术具有对有机物和无机盐的高效分离能力,且能在较低的操作压力下实现较高的分离效率,适用于水软化、废水处理和食品工业等领域。

反渗透(Reverse Osmosis,RO):反渗透膜具有极小的孔径,能够截留溶液中的绝大多数溶质,实现高纯度水的制备。

反渗透技术具有分离效果好、产水水质高、操作稳定等优点,是海水淡化、苦咸水脱盐、工业废水处理等领域的首选技术。

电渗析(Electrodialysis,ED):电渗析技术利用电场作用下的离子迁移原理,实现溶液中阴阳离子的分离。

膜分离技术的研究进展及应用展望

膜分离技术的研究进展及应用展望

膜分离技术的研究进展及应用展望引言膜分离技术是一种基于不同物质在膜表面的选择性传递性质而实现分离的方法。

由于其高效、节能和环境友好等优点,膜分离技术在水处理、生物医药、食品工业等领域得到了广泛的应用和研究。

本文将介绍近年来膜分离技术的研究进展,并探讨其未来的应用前景。

一、膜材料的研究进展1. 有机膜材料有机膜材料是膜分离技术中最常用的材料之一。

研究者通过改变有机膜的孔径、孔隙度和表面性质等方面,提高了膜的分离性能。

此外,利用聚合物材料合成的有机膜具有优良的机械性能和化学稳定性,使得膜在分离过程中能够更好地应对高压、高温等条件。

2. 纳米孔膜材料纳米孔膜材料是近年来膜分离技术中的研究热点。

由于其孔径处于纳米尺度,能够实现更高的分离效率和选择性。

研究者通过控制纳米孔膜材料的孔径大小和形状,实现对溶质的高效分离。

此外,采用辅助添加剂改善纳米孔膜材料的稳定性和抗污性,进一步提高了膜分离技术的应用前景。

二、膜分离技术的应用展望1. 水处理领域膜分离技术在水处理领域得到了广泛的应用。

目前,以反渗透膜为主要技术的海水淡化已成为解决淡水资源短缺的重要途径之一。

未来,随着膜材料和技术的不断创新,膜分离技术在水处理中将能够更高效、更节能地去除水中的重金属、有机物和微生物等污染物,提高水资源的可持续利用率。

2. 生物医药领域膜分离技术在生物医药领域的应用也呈现出广阔的前景。

膜分离技术可以用于药物纯化、血液分离和细胞分离等方面。

未来,研究者可以进一步提高膜的分离效率和选择性,实现对生物大分子的高效分离和回收,从而推动生物医药领域的发展。

3. 食品工业领域膜分离技术在食品工业中的应用主要包括浓缩、分离和提纯等方面。

通过膜分离技术,可以实现果汁、奶制品和酒精等食品的浓缩,同时去除其中的杂质。

此外,膜分离技术还可以用于食品添加剂、香精香料和色素等的提纯过程。

未来,随着膜材料及技术的不断创新,膜分离技术在食品工业中的应用将变得更加广泛。

膜分离技术应用的研究进展

膜分离技术应用的研究进展

膜分离技术应用的研究进展关键词:membranes, separation, purification, filtration, desalination, water treatment, energy production, biotechnology, medicine, environmental protection膜分离技术是一种以膜材料为分离介质,通过膜表面的微孔或膜孔来实现物质分离的技术。

近年来,膜分离技术在各个领域都得到了广泛的应用和研究。

本文将综述膜分离技术应用的研究进展,包括背景介绍、研究进展和未来展望。

膜分离技术是一种高效、节能、环保的分离技术,具有分离精度高、分离效率高、能耗低、操作简便、不污染环境等优点。

随着工业、环保、能源、生物医学等领域的快速发展,膜分离技术的应用越来越广泛。

目前,膜分离技术已经成为了水处理、能源生产、生物技术、医药、环保等领域的重要技术手段。

膜分离技术在水处理领域的应用主要包括海水淡化、工业废水处理、市政污水处理等。

其中,海水淡化是膜分离技术最重要的应用之一,通过膜分离技术可以有效地去除海水中的盐分和杂质,得到纯净的水。

膜分离技术还可以用于工业废水处理和市政污水处理,通过分离和净化废水中的有害物质,实现废水的循环利用和达标排放。

膜分离技术在能源生产领域的应用主要包括燃料油生产、燃煤发电、水力发电等。

其中,燃料油生产中使用的膜分离技术包括蒸馏和萃取等,可以有效地去除杂质和水分,提高燃料的燃烧效率和稳定性。

在燃煤发电中,膜分离技术可以用于烟气脱硫和脱硝,减少二氧化硫和氮氧化物的排放,保护环境。

在水力发电中,膜分离技术可以用于水轮机叶片的防垢和阻垢,提高水轮机的效率和稳定性。

膜分离技术在生物技术领域的应用主要包括生物发酵、生物医药、生物环保等。

其中,生物发酵是膜分离技术最重要的应用之一,通过膜分离技术可以有效地分离和纯化发酵液中的细胞和细胞代谢产物。

在生物医药领域,膜分离技术可以用于药物提取、药物合成、医学检验等,提高药物的纯度和疗效,以及检测疾病的灵敏度和准确性。

膜分离技术的研究进展及其应用展望

膜分离技术的研究进展及其应用展望

膜分离技术的研究进展及其应用展望膜分离技术是一种重要的分离技术,主要通过多孔膜的筛选作用实现物质分离。

该技术已经广泛应用于生物技术、食品工业、化学工业、环保工程、医药等领域。

本文将介绍膜分离技术的研究进展及其应用展望。

一、膜分离技术的研究进展(一)膜材料的研究膜材料是膜分离技术的基础,目前主要有有机膜、无机膜和复合膜三种类型。

有机膜主要包括聚酯薄膜、聚碳酸酯薄膜、聚氨酯薄膜等。

这些膜材料具有重量轻、成本低的特点,但是它们的相对分子质量截止率较低,不能满足高精度的分离要求。

无机膜主要包括陶瓷膜、玻璃膜、金属膜等。

这些膜材料具有相对分子质量截止率高、高温抗腐蚀、使用寿命长的特点,但是成本昂贵,生产工艺复杂。

复合膜则是综合了有机膜和无机膜的优点,同时避免了它们的缺点,被广泛应用于分离领域。

(二)膜分离机理的研究膜分离机理主要包括纳滤、超滤、微滤和逆渗透等,其中逆渗透技术是目前应用最广泛的一种膜分离技术。

它主要利用高压将溶液逆向渗透过一种微孔膜,使得溶液中间的水分子进入膜孔,而其他大分子物质则难以通过膜孔的筛选。

逆渗透技术广泛应用于海水淡化、饮用水净化、污水处理、浓缩果汁等领域。

(三)膜分离过程的研究膜分离过程主要包括内部浓度极化层、外部浓度极化层、膜分离区等几个步骤。

其中,内外两层浓度极化层对分离效果有非常重要的影响,需要根据实际情况进行调整和优化。

此外,膜分离过程中存在一些不确定性因素,如温度、压力、污染物等,这些因素为分离过程带来了一定的不稳定性。

二、膜分离技术的应用展望(一)水处理领域随着全球水资源日益紧张,不断有新的水处理技术被推出。

膜分离技术通过其高效、节能、环保等特点,被认为是未来水处理领域的重要突破口。

目前,膜分离技术已经广泛应用于海水淡化、饮用水净化、污水处理、水中微量有害物质的去除等方面。

(二)食品工业膜分离技术已经广泛应用于食品的处理和包装。

例如,利用膜分离技术,可以从牛奶中分离出蛋白质、糖类、脂肪等成分,生产出优质乳制品;同时,膜分离技术也可以帮助包装行业实现食品保鲜、防腐、防污染等需求,满足人们对于健康、安全、方便的生活需求。

《2024年膜分离技术在水处理中的研究热点与进展》范文

《2024年膜分离技术在水处理中的研究热点与进展》范文

《膜分离技术在水处理中的研究热点与进展》篇一一、引言随着工业化的快速发展和人口的不断增长,水资源的供需矛盾日益突出,水污染问题也日益严重。

膜分离技术作为一种新型的水处理技术,具有操作简便、效率高、成本低等优点,得到了广泛的应用和深入的研究。

本文旨在探讨膜分离技术在水处理中的研究热点与进展。

二、膜分离技术概述膜分离技术是一种利用特殊膜材料对溶液进行分离、提纯的技术。

其原理是利用膜的选择透过性,使溶液中的溶质或溶剂在压力、电场、浓度差等驱动力的作用下,通过膜的孔隙或表面特性进行分离、提纯、浓缩等操作。

膜分离技术主要包括微滤、超滤、纳滤、反渗透等多种形式。

三、膜分离技术在水处理中的应用1. 微滤和超滤在水处理中的应用:微滤和超滤主要用于去除水中的悬浮物、胶体等大分子物质,提高水的浊度、色度等感官指标。

同时,它们还可以用于回收废水中的有用物质,降低废水处理成本。

2. 纳滤和反渗透在水处理中的应用:纳滤和反渗透主要用于去除水中的离子、有机物等小分子物质,提高水的纯度和安全性。

它们在海水淡化、苦咸水淡化、废水回用等领域具有广泛的应用。

四、膜分离技术的研究热点1. 膜材料的研究与开发:目前,膜材料的研究与开发是膜分离技术的研究热点之一。

新型的膜材料具有更高的通量、更好的抗污染性能和更长的使用寿命,能够提高膜分离技术的效率和稳定性。

2. 膜组件与系统的优化:膜组件与系统的优化是提高膜分离技术性能的关键。

通过优化膜组件的结构、提高系统的自动化程度和智能化水平,可以降低能耗、提高产水率和降低运行成本。

3. 复合膜的研究与应用:复合膜具有多种功能层,可以同时实现多种分离过程,具有较高的应用价值。

目前,复合膜的研究与应用已成为膜分离技术的重要研究方向。

五、膜分离技术的进展近年来,膜分离技术在水处理领域取得了显著的进展。

一方面,新型的膜材料和制备技术的研发,提高了膜的通量、抗污染性能和使用寿命;另一方面,膜组件与系统的优化和智能化水平的提升,使得膜分离技术的能耗降低、产水率提高、运行成本降低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新型膜分离技术研究进展
摘要:膜分离技术是一项新兴的高效、快速、节能的新型分离技术。

作为一种新型分离技术,在多种领域得到了广泛的应用。

综述了反渗透、电渗析、纳滤、微滤、超滤、气体分离、渗透汽化和膜反应器等各种膜分离技术的分离原理、特点,在工业中的应用以及目前存在的问题。

最后展望了膜技术的应用前景。

关键词:膜分离;原理;应用;进展
膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。

与传统分离方法(蒸发、萃取或离子交换等)相比,它是在常温下操作,没有相变,最适宜对热敏性物质和生物活性物质的分离与浓缩,具有高效、节能,工艺过程简单,投资少,污染小等优点,因而在化工、轻工、电子、医药、纺织、生物工程、环境治理、冶金等方面具有广泛的应用前景。

1膜分离技术的分离原理和特点
1.1纳滤
纳滤膜具有纳米级孔径,截留相对分子质量为200-1000,能使溶剂、有机小分子和无机盐通过。

纳滤膜的分离机理模型目前的看法主要是空间位阻-孔道模型。

与超滤膜相比,纳滤膜有一定的荷电容量;与反渗膜相比,纳滤膜又不是完全无孔的。

纳滤是介于反渗透和超滤之间的一种膜分离技术,是国内外研究的热点。

余跃等[1]废水进行了去除COD和脱色的研究。

结果表明,纳滤技术可有效地去除印染废水中的色度和COD。

1.2超滤
超滤的截留相对分子质量在1000-100000之间。

超滤过程的分离机理一般认为是压力驱动的筛孔分离过程,是膜表面上的机械截留(筛分)、在膜孔中的停留(阻塞)、在膜表面及膜孔内的吸附三种形式。

徐超等[2]在中试中采用浸没式超滤膜代替传统砂滤工艺处理浊度较低的滦河水,取得较好的处理效果,设备费用降低了。

1.3微滤
微滤是发展最早、制备技术最成熟的膜形式之一,孔径在0.05-10μm之间,可以将细菌、微粒、亚微粒、胶团等不溶物除去,滤液纯净,国际上通称为绝对过滤。

微滤分离的实质是利用膜的“筛分”作用来进行的。

即:比膜孔大的颗粒的机械截留、颗粒间相互作用及颗粒与膜表面的吸附、颗粒间的桥架作用这三种方式来实现的。

1.4反渗透
反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。

因为它和自然渗透的方向相反,故称反渗透。

学界对于反渗透分离机理的解释主要流行以下理论:溶解一扩散模型、优先吸附一毛细孔流理论、氢键理论。

自从上个世纪90年代邓宇发明了非加压吸附渗透海水淡化法以来,反渗透用于海水淡化的研究得到了极大发展[3]。

在重金属废水处理领域,美国芝加哥API工艺公司采用B一9芳香族聚酞胺中空纤维膜组件处理镀镍漂洗水,废水中Niz+的分离率为92%[4]。

1.5电驱动膜
电驱动膜也称离子交换树脂,其是对不同性质的离子具有选择透过性。

关于离子交换膜的选择透过性,通常用双电层理论或Norman膜平衡理论来加以解释。

但是这两种机理存在着局限性,孟洪等提出了“空穴传导一双电层”假说,认为离子交换膜在溶液中由于反离子的迁移在膜内留下“离子空穴”,同时在膜的两侧形成“双电层”结构“空穴”和“双电层”共同作用的结果使溶液中与反离子同号的离子能够通过离子交换膜,而与反离子异号的离子无法进入离子交换膜,从而使其具有选择透过性。

在此基础上,用“空穴传导一双电层”假说对离子交换膜在无电场和有电场作用的选择透过性进行了合理的分析。

1.6渗透汽化
渗透汽化是以混合物中组分蒸汽压差为推动力,依靠各组分在膜中的溶解与扩散速率不同的性质来实现混合物分离的过程。

料液进入渗透汽化膜分离器后,在膜两侧蒸汽压差的驱动下,扩散快的组分较多透过膜进入膜后侧,经冷凝后达到分离目的。

膜材料是PV过程能否实现节能、高效的关键。

我国在1984年前后开始对渗透汽化过程进行研究,近年来主要开展优先透有机物膜、水中有机物脱除、有机物一有机物分离以及渗透汽化与反应藕合的集中过程的研究。

1.7蒸汽渗透
蒸汽渗透是由日本学者Uragami等[5-6]提出的一种新的气相脱水膜分离过程,它是以蒸汽进料,在混合物中各组分蒸汽分压差的推动下,利用各组分在膜内溶解和扩散性能的差异以实现混合物分离。

蒸汽渗透技术应用于近沸点、恒沸点以及同分异构体的分离有其独特的优势,还可以同生物及化学反应藕合,将反应生成物不断脱除,使反应转化率明显提高,其技术性和经济性优势明显,在石油化工、医药、食品、环保等工业领域中有广阔的应用前景。

1.8气体分离
用反渗透横流薄膜进行的气体分离过程,气体在与薄膜接触时溶解于薄膜,并在膜中向另一侧扩散,到膜的另一侧时的负压使得气体从膜中解吸出来,实现了气体从膜一侧向另一侧的传质。

在膜分离的传质过程中主要有以下三个过程。

气体溶解进入膜的过程即溶解过程,气体在膜中的扩散过程即扩散过程,气体从膜中挥发进入膜的另一侧的过程即解吸过程。

1.9膜反应器
膜的反应功能是以膜作为反应介质与化学反应过程相结合而实现的,这样构成的反应设备或系统也称为膜化学反应器,旨在利用膜的特殊功能,如分离、分隔、高比表面积、微孔等,实现产物的原位分离、反应物的控制、反应与反应的藕合、相间传递的强化、反应分离过程集成等,从而达到提高反应转化率、改善反应选择性、提高反应速率、延长催化剂使用寿命、降低设备投资等目的。

2展望
膜技术在环保领域的应用将成为国内外重点发展的前沿课题。

因此对膜材料提出了更高的要求,尤其是要制造出适应于环保行业高强度、长寿命、抗污染、高通量的膜材料。

膜分离技术的研究也可谓与日俱进,可以预料在新世纪,随着法规标准的日益提高和膜技术的不断成熟、成本不断降低,膜技术将会出现一个技术上进一步提高,应用上更加普及的高潮。

参考文献
[1] 余跃,冯晖,吴沪等.纳滤膜处理印染废水的研究[J].化工时刊,2004,18(9):26-29.
[2] 徐超,付婉霞,王宏田等.浸没式超滤膜处理低浊度水的中试研究[J].给水排
水,2010,36:21-24.
[3] 黄丹,方春玉,周健等.超声波辅助法在红曲色素提取中的应用研究[J].中国调
味品,2010,35(4):65-68.
[4] 薛敏敏,邓学良,李忠海等.微波一超声波协同提取野生毛葡萄皮色素的工艺研
究[J]食品与机械,2010,26(6):141-143.
[5] 刘志强,张初署,孙杰等.膜分离技术纯化花生衣中的原花色素[J].食品科
学,2010,31(20):183-186.
[6] 张小曼,马银海,李勇等.膜分离技术提取山竺红色素的工艺优化[J].食品科
学,2010,31(10):133-136.。

相关文档
最新文档