四点共圆基本判断方法超全 ppt课件
《四点共圆的条件》课件

如何证明四点共圆
01
02
03
塞瓦定理证明法
利用塞瓦定理的逆定理, 通过证明三点共线,进而 证明四点共圆。
反证法
假设四点不共圆,然后通 过一系列逻辑推理,最终 得出矛盾,从而证明四点 必定共圆。
相似三角形法
通过构建相似三角形,利 用相似三角形的性质来证 明四点共圆。
四点共圆的性质与实际应用
性质总结
要点一
总结词
要点二
详细描述
实际应用中的四点共圆问题主要涉及到几何图形在生活中 的实际应用,如建筑、机械等领域。
在建筑设计中,经常需要用到四点共圆的知识来确定建筑 物的位置和角度。在机械设计中,四点共圆的知识也被广 泛应用,例如在齿轮的设计中,需要用到四点共圆的知识 来确定齿轮的位置和角度。此外,在电路板的设计中,也 需要用到四点共圆的知识来确定元件的位置和角度。
02
四点共圆的条件
圆上三点确定一个圆的定理
总结词
三点确定一个圆的定理
详细描述
在平面几何中,任意三个不共线的点可以确定一个唯一的圆,该圆通过这三个点 。这个定理是几何学中一个基本且重要的定理,是研究圆和点关系的基础。
圆内接四边形的性质
总结词
内接四边形的性质
详细描述
圆内接四边形具有一系列重要的性质,如相对边相等、对角互补等。这些性质在证明四点共圆时常常用到,也是 几何学中的重要知识点。
VS
详细描述
如果一个四边形的对角线互相平分,则该 四边形的四个顶点共圆。这个性质可以通 过三角形三边的平方关系来证明。具体来 说,如果一个四边形的对角线互相平分, 则可以将该四边形划分为两个三角形,利 用三角形三边的平方关系,可以证明这两 个三角形的三个顶点与四边形的中心点共 圆。
四点共圆知识

四点共圆知识嘿,朋友!今天咱们来聊聊神秘又有趣的“四点共圆”知识。
你知道吗,四点共圆就像是四个小伙伴手拉手围成一个圈圈,共同玩耍。
那到底啥是四点共圆呢?简单说,就是平面上的四个点在同一个圆上。
这有啥用呢?用处可大了去啦!比如在几何题里,要是能发现四点共圆,那解题思路可能就像开了闸的洪水,一下子涌出来了。
咱们先来说说怎么判断四点共圆。
有一种方法叫“对角互补法”。
啥意思呢?就是如果四边形的对角互补,那这四个点就在同一个圆上。
这就好比两个脾气互补的朋友,能相处得特别好,一起在一个圈子里快乐玩耍。
再比如说“同弦所对的圆周角相等”。
这就好像一把钥匙开一把锁,同一个弦对应的圆周角,那肯定是“一伙儿”的,这四个点也就共圆啦。
四点共圆还有很多神奇的性质呢。
比如说,共圆的四个点所连成的同侧共底的两个三角形的顶角相等。
这是不是有点像双胞胎,长得像,性格也差不多。
还有啊,如果四点共圆,那么其中一个点到另外三个点的距离之积等于另外一个点到这三个点的距离之积。
这是不是很奇妙?就好像是这四个点之间有着一种神秘的约定。
那怎么在实际解题中运用四点共圆呢?给你举个例子。
有个几何题,给了你一些角度和线段长度的条件,怎么都解不出来。
这时候你突然发现,如果能证明这四个点共圆,那就能利用四点共圆的性质找到突破口,一下子就把难题给解决了,是不是感觉超级爽?学习四点共圆知识,就像是探索一个神秘的宝藏,每发现一个新的性质或者方法,都像是找到了一颗闪闪发光的宝石。
所以啊,朋友,别小看这四点共圆的知识,它可是几何世界里的一把神奇钥匙,能帮你打开一扇又一扇难题的大门,让你的数学之旅更加精彩!你说,这么有趣又有用的知识,咱们能不好好学吗?。
四点共圆条件 课件

已知点A($- 1$,$- 1$),B($- 2$,$- 3$),C($- 3$ ,$- 2$),以点D($- 1$,$- 2$)为圆心作圆,下列结论 正确的是( )
提高习题
题目:已知圆C:$(x - a)^{2} + (y - b)^{2} = r^{2}$和直线l :$ax + by - ab = 0(a > 0,b > 0)$,则( )
详细描述
首先,连接四边形相对两边的中点,然后证明所得线段的两端分别平行于相对 两边的中点连线,最后证明该线段等于相对两边的中点连线的一半,从而证明 了四点共圆。
利用角平分线定理证明
总结词
通过角平分线定理,我们可以证明四 点共圆。
详细描述
首先,连接四边形相对两边的中点, 然后证明相对两边的中点连线将相对 的两个角平分,最后证明相对两边的 中点连线与相对的两边垂直,从而证 明了四点共圆。
A.直角三角形 B.等腰 三角形 C.等边三角形 D.等腰直角三角形
提高习题
题目
在直角坐标系中,$bigtriangleup ABC$三个顶点的坐标分 别是A($- 3$,$0$),B($- 1$,$- 2$),C($- 2$,$1$),则$bigtriangleup ABC$外接圆的方程为____.
圆心是三个不共线点确定的三角形的 外心,而半径等于从圆心到圆上任一 点的距离。
圆的基本性质
圆的对称性
圆是中心对称和轴对称图形,对 称中心是圆心,任何经过圆心的 直线都可以将圆分成两个对称的 部分。
圆周角定理
在同圆或等圆中,同弧或等弧所 对的圆周角相等,都等于该弧所 对的圆心角的一半。
02
四点共圆的条件
证明几何定理
四点共圆判定定理ppt课件

了毕生精力.
姜立. 夫
9
.
3
巩固练习
练1. 如图,⊙O的弦AB和CD相交于K,过弦
AB,CD的两端的切线分别相交于P,Q.连 接OP和OQ分别交AB、CD于M、N. 求证:M 、N、P、Q四点共圆.
.
4
提高练习
练2. 在锐角△ABC中,以BC为直径作圆与BC
边上的高AD及其延长线交于M,N.以AB为直
径作圆与AB边上的高CE及其延长线交于P,
Q.求证:M,P,N,Q四点共圆.
.5Leabharlann 挑战自己练3. 如图,⊙O的弦AB和CD相交于K,过弦
AB,CD的两端的切线分别相交于P,Q.求
证:OK⊥PQ.
.
6
回味无穷
.
7
课后作业
自选四道与四点共圆判定定理有关的题 (最好选择与判定定理4~5有关的,可以选 择本课件上的题) 温馨提醒: 1. 有代表性、有挑战性、有意义性; 2. 有题目、有图、有过程.
4. 若两线段AB、CD交于E,且AE·EB=CE·ED,则A、B 、C、D四点共圆;
5. 相交线段PA、PB上分别有异于P、A、B的点C、D, 且PA·PC=PB·PD,则A、B、C、D四点共圆.
.
2
经典例题
例.在△ABC中,AB= AC,D为BC中点,且 BE⊥AC于E,交AD于P,已知BP=3,PE=1,求 PA的值.
XUSUHUA
第二十七章 圆
27.24 四点共圆判定定理(2)
.
1
知识链接
常见四点共圆的判定定理: 1. 若干个点与定点的距离相等,则这些点在同一圆周
上;
2. 点C、D在线段AB的异侧,且∠ACB+∠ADB=180° ,则A、B、C、D四点共圆;
四点共圆的判定与性质

四点共圆的判定与性质一、四点共圆的判定(一)判定方法1、若四个点到一个定点的距离相等,则这四个点共圆。
2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。
3、若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。
4、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。
5、同斜边的直角三角形的顶点共圆。
6、若AB、CD两线段相交于P点,且PA×PB=PC×PD,则A、B、C、D四点共圆(相交弦定理的逆定理)。
7、若AB、CD两线段延长后相交于P。
且PA×PB=PC×PD,则A、B、C、D四点共圆(割线定理)。
8、若四边形两组对边乘积的和等于对角线的乘积,则四边形的四个顶点共圆(托勒密定理的逆定理。
(二)证明1、若四个点到一个定点的距离相等,则这四个点共圆。
若可以判断出OA=OB=OC=OD,则A、B、C、D四点在以O为圆心OA为半径的圆上。
2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。
若∠A+∠C=180°或∠B+∠D=180°,则点A、B、C、D四点共圆。
3、若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。
若∠B=∠CDE,则A、B、C、D四点共圆证法同上。
4、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。
若∠A=∠D或∠ABD=∠ACD,则A、B、C、D四点共圆。
5、同斜边的直角三角形的顶点共圆。
如图2,若∠A=∠C=90°,则A 、B 、C 、D 四点共圆。
6、若AB 、CD 两线段相交于P 点,且PA ×PB=PC ×PD ,则A 、B 、C 、D 四点共圆(相交弦定理的逆定理)。
7、若AB 、CD 两线段延长后相交于P 。
四点共圆基本判断方法(超全)-课件

3.若一个四边形的外角等于它的内对角,则这个 四边形的四个点共圆。
若∠B=∠CDE,则A、B、 C、D四点共圆证法同上
例 如图 所示,已知四边形 ABCD 是平行四边形,
过 点 A 和点 B 的圆与 AD、BC 分别交于 E、F 点。
求证: C、D、E、 F 四点共圆。 A E
D
B
• 分析: 欲证 C、D、E、F 四点共圆,可证以 该四点构成的四 边形中,一组对角互补或外 角等于内对角即可。
• 因二角共用AB弧,则〈A≠<D, 与实际不符, 所以只有D点在△ABC外接圆上, 故A、B、C、D四点共圆。
5.同斜边的直角三角形的顶点共圆
如图1,四边形ABCD中,∠A=∠C=90°,求证:A、B、C、D 四点共圆.
如图2,∠A=∠C=90°,求证:A、B、C、D四点共圆.
• 分析指导:可以直接根据圆的定义证明A、B、C、D四点到 某一定点的距离相等.取斜边的中点O.,再连接A.C,利用斜边
FC
4.若两个点在一条线段的同旁,并且和这条 线段的两端连线所夹的角相等,那么这两个 点和这条线段的两个端点共圆。
• 若∠A=∠D或∠ABD=∠ACD,则A、B、C、D四 点共圆
用反证法: 已知:同侧△ABC和△CBD,共有底边CB, 〈A=〈D, 求证:A、B、C、D四点共圆 证明:
• 假设四点不在同一圆上, 作△ABC外接圆,则D点不在圆上,
中点等于斜边一半证OA=OB=OC=OD。
A
A
D
C
D
B
C
B
天每
开个
放孩
;子
有的
的花
孩期
子不
是一
菊样
花,
,有
初三:第14课 四点共圆

第14课 四点共圆一、基本结论与方法:判断四点共圆的方法有:1.到定点等距离的几个点在同一个圆上;2.同斜边的直角三角形的各顶点共圆;3.同底同侧张角相等的三角形的各顶点共圆;4、如果一个四边形的一组对角互补,那么它的四个顶点共圆;5、如果四边形的一个外角等于它的内对角,则它的四个顶点共圆;6、四边形的对角线相交于点P ,且PA•PC=PB•PD,那么四个顶点共圆;7、四边形ABCD 的一组对边AB 、DC 的延长线交于点P ,若PA•PB=PC•PD, 那么四个顶点共圆.托勒密定理:圆内接四边形的对边之积的和,等于对角线之积。
即:如图,四边形ABCD 内接于圆,求证:BD AC BC AD CD AB ⋅=⋅+⋅.DB二、例题与习题例1、如图,ABCD 是等腰梯形,求证:BD 2=AB•CD+BC 2.CD 例2、△ABC 中,∠A:∠B:∠C=1:2:4,:求证:BC AC AB 111=+A D例3、在边长为1的正七边形中,对角线AD=a,BG=b,求证:22)()(ab b a b a =-+.C 例4、两圆相交于A 、B,P 是BA 延长线上一点,PCD 、PEF 分别是两圆的割线,求证:C 、D 、E 、F 四点共圆。
F例5、由圆外定直线上任意点,引圆的两条切线,求证:两切点的连线必经过某定点。
CA例6、点P 是正三角形外接圆的劣弧AB 上一点,连接PC 交AB 于D ,求证:(1)PA+PB=PC;(2)111PA PBPD +=.例7、P为△ABC内一点,D、E、F分别在三角形的边上,已知P、D、C、E四点共圆,P、E、A、F四点共圆,求证:B、D、P、F四点共圆。
例8、设凸四边形ABCD的对角线互相垂直,垂足为E,证明:点E关于AB、BC、CD、DA 的对称点也共圆。
A例9、两个圆彼此相交,从它们的对称中心引出两条射线交圆周于不在同一直线上的四个点,证明:这四个点共圆。
例10、梯形ABCD的两条对角线相交于点K,分别以梯形的两腰围直径作圆,点K位于两圆之外,证明:由K向两圆所作的切线长度相等。
证明四点共圆的方法

证明四点共圆的方法四点共圆的五种基本判定方法:1.若四个点到一个定点的距离相等,则这四个点共圆。
2.若一个四边形的一组对角互补,则这个四边形的四个顶点共圆。
3.若一个四边形的一个外角等于它的内对角,则这个四边形的四个顶点共圆。
4.若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆。
5.同斜边的直角三角形的顶点共圆。
下面对这五种判定方法分别说明:1.若四个点到一个定点的距离相等,则这四个点共圆。
如图1,若OA=OB=OC=OD,则A、B、C、D四点共圆,如图2.对于这种判定方法,借助于圆的定义即可说明。
2.若一个四边形的一组对角互补,则这个四边形的四个顶点共圆。
已知:四边形ABCD中,∠A+∠C=180°.求证:四边形ABCD内接于一个圆(A,B,C,D四点共圆).证明:用反证法过A,B,D作圆O,假设C不在圆O上,则C在圆外或圆内,若C在圆外,设BC交圆O于C’,连结DC’(如图3),据圆内接四边形的性质得∠A+∠DC’B=180°,∵∠A+∠C=180°∴∠DC’B=∠C 这与三角形外角定理矛盾,故C不可能在圆外.类似地可证C不可能在圆内.∴C在圆O上,也即A,B,C,D四点共圆.3.若一个四边形的外角等于它的内对角,则这个四边形的四个顶点共圆。
证明方法同2,把外角等于内对角的情况转化为一组对角互补4.若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆。
已知:如图4,BC同侧△ABC和△CBD,且∠A=∠D.求证:A、B、C、D四点共圆.证明:假设四点不在同一圆上,作△ABC外接圆,则D点不在圆上,∵∠A,∠D共用弧AB,∴∠A≠∠D,与实际不符,∴D点在△ABC外接圆上,故A、B、C、D四点共圆。
5.同斜边的直角三角形的顶点共圆.证明方法:取斜边的中点,再连接斜边中点和直角顶点,利用斜边中点等于斜边一半即可说明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 证明:用反证法
过A,B,D作圆O,假设C不在圆O
上,则C在圆外或圆内,若C在圆外,
设BC交圆O于C’,连结DC’,根据圆
内接四边形的性质得
∠A+∠DC’B=180°,
∵∠A+∠C=180°∴∠DC’B=∠C
这与三角形外角定理矛盾,故C不可
能在圆外。类似地可证C不可能在圆
内。
∴C在圆O上,也即A,B,C,D四点
•20250/.12同/12 斜边的直角三角形的顶点共圆。
1
1.若四个点到一个定点的距离相等, 则这四个点共圆 。
2020/12/12
2
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
如图2,∠A=∠C=90°,求证:A、B、C、D四点共圆.
• 分析指导:可以直接根据圆的定义证明A、B、C、D四点到 某一定点的距离相等.取斜边的中点O.,再连接A.C,利用斜边
中点等于斜边一半证OA=OB=OC=OD。
A
A
D
C
D
B 2020/12/12
C
ห้องสมุดไป่ตู้
B
12
• 假设四点不在同一圆上, 作△ABC外接圆,则D点不在圆上,
• 因二角共用AB弧,则〈A≠<D, 与实际不符, 所以只有D点在△ABC外接圆上, 故A、B、C、D四点共圆。
2020/12/12
11
5.同斜边的直角三角形的顶点共圆
如图1,四边形ABCD中,∠A=∠C=90°,求证:A、B、C、D 四点共圆.
Key. 四点共圆的证明
五个基本判断方法:
• 1. 若四个点到一个定点的距离相等,则这四个点共 圆。
• 2. 若一个四边形的一组对角互补(和为180°), 则这个四边形的四个点共圆。
• 3. 若一个四边形的外角等于它的内对角,则这个四 边形的四个点共圆。
• 4. 若两个点在一条线段的同旁,并且和这条线段的 两端连线所夹的角相等,那么这两个点和这条线的 两个端点共圆。
• ∴20∠20B/12F/1E2 = ∠D。 ∴ C、D、E、F 四点共圆
FC
9
4.若两个点在一条线段的同旁,并且和这条 线段的两端连线所夹的角相等,那么这两个 点和这条线段的两个端点共圆。
• 若∠A=∠D或∠ABD=∠ACD,则A、B、C、D四 点共圆
2020/12/12
10
用反证法: 已知:同侧△ABC和△CBD,共有底边CB, 〈A=〈D, 求证:A、B、C、D四点共圆 证明:
共20圆20/1。2/12
7
3.若一个四边形的外角等于它的内对角,则这个 四边形的四个点共圆。
若∠B=∠CDE,则A、B、 C、D四点共圆证法同上
2020/12/12
8
例 如图 所示,已知四边形 ABCD 是平行四边形,
过 点 A 和点 B 的圆与 AD、BC 分别交于 E、F 点。
求证: C、D、E、 F 四点共圆。 A E
2020/12/12
5
2.若一个四边形的一组对角互补(和为 180°),则这个四边形的四个点共圆
• 若∠A+∠C=180° 或∠B+∠D=180°, 则点A、B、C、D
四点共圆
2020/12/12
6
已知:四边形ABCD中,∠A+∠C=180° 求证:四边形ABCD内接于一个圆(A,B, C,D四点共圆
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
• 如图,菱形ABCD的对角线AC和BD相交于O点,E,F, G,H分别是AB,BC,CD,DA的中点,求证:E,F, G,H四个点在以O为圆心的同一个圆上
• 分析指导:利用直 角三角形斜边的中 点等于斜边的一半, 再利用菱形的四边 相等即可证出。
D
B
• 分析: 欲证 C、D、E、F 四点共圆,可证以 该四点构成的四 边形中,一组对角互补或外 角等于内对角即可。
• 由此,连接 EF 构成四边形 EFCD 后,证明 ∠BFE = ∠D 即可。 证明: 连接 EF, ∵ 四边 形 ABFE 是圆内接四边形, ∴ ∠A + ∠BFE = 180°。 又∵ 四边形 ABCD 是平行四边形, ∴ ∠A + ∠D = 180°。