数字信号处理设计实验报告 西电
数字信号处理实验(西电高西全教材)

《数字信号处理》第三版,高西全、丁玉美,实验程序清单:实验0实验内容:1、实验用Matlab工具箱函数简介熟悉以下函数的功能、格式(1)abs (2)angle (3)conv (4)filter(5)freqz (6)impz (7)fft (8)ifft(9)plot (10)stem (11)subplot (12)figure2、常用序列的产生及其频谱分析(1)单位脉冲序列及其频谱n=0:50; %定义序列的长度是50x=[1,zeros(1,50)]; %注意:MATLAB中数组下标从1开始%x(1)=1;close all;subplot(3,1,1);stem(x);title('单位冲击信号序列');k=-25:25;X=x*(exp(-j*pi/25)).^(n'*k);magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(magX);title('单位冲击信号的幅度谱'); angX=angle(X); %绘制x(n)的相位谱subplot(3,1,3);stem(angX) ; title ('单位冲击信号的相位谱')(2)矩形序列及其频谱n=1:50x=sign(sign(10-n)+1);close all;subplot(3,1,1);stem(x);title(…矩形序列‟);k=-25:25;X=x*(exp(-j*pi/25)).^(n‟*k);magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(magX);title(…矩形序列的幅度谱‟);angX=angle(X); %绘制x(n)的相位谱sub plot(3,1,3);stem(angX) ; title (…矩形序列的相位谱‟)(3)特定冲击串及其频谱(n)= δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)%h2n=1:50; %定义序列的长度是50x=zeros(1,50); %注意:MATLAB中数组下标从1开始x(1)=1;x(2)=2.5;x(3)=2.5;x(4)=1;close all;subplot(3,1,1);stem(x);title(…特定冲击串‟);k=-25:25;X=x*(exp(-j*pi/12.5)).^(n‟*k);magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(magX);title(…特定冲击串的幅度谱‟);angX=angle(X); %绘制x(n)的相位谱subplot(3,1,3);stem(angX) ; title (…特定冲击串的相位谱‟)(4)采样信号序列及其频谱%x(n)=Ae-anT sin(w0nT)u(nT) (0<=n<=50);%A=444.128;a=50*sqrt(2.0)*pi; fs=1kHz(T=0.001);w0=50*sqrt(2.0)*pi n=0:50; %定义序列的长度是50A=444.128; %设置信号有关的参数a=50*sqrt(2.0)*pi;T=0.001; %采样率,fs=1kHzw0=50*sqrt(2.0)*pi;x=A*exp(-a*n*T).*sin(w0*n*T); %pi是MATLAB定义的π,信号乘可采用“.*”close all %清除已经绘制的x(n)图形subplot(3,1,1);stem(x); %绘制x(n)的图形title(…理想采样信号序列‟);k=-25:25;W=(pi/12.5)*k;X=x*(exp(-j*pi/12.5)).^(n‟*k);magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(magX);title(…理想采样信号序列的幅度谱‟);angX=angle(X); %绘制x(n)的相位谱subplot(3,1,3);stem(angX) ; title (…理想采样信号序列的相位谱‟)单位冲击信号的相位谱矩形序列的相位谱特定冲击串特定冲击串的幅度谱特定冲击串的相位谱0102030405060理想采样信号序列理想采样信号序列的相位谱实验一 系统响应及系统稳定性%====内容1:调用filter解差分方程,由系统对u(n)的响应判断稳定性==== close all;clear allA=[1,-0.9];B=[0.05,0.05]; %系统差分方程系数向量B和Ax1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号x1(n)=R8(n)x2n=ones(1,128); %产生信号x2(n)=u(n)hn=impz(B,A,58); %求系统单位脉冲响应h(n)subplot(3,1,1);stem(hn);title('(a) 系统单位脉冲响应h(n)');y1n=filter(B,A,x1n); %求系统对x1(n)的响应y1(n)subplot(3,1,2);stem(y1n);title('(b) 系统对R8(n)的响应y1(n)');y2n=filter(B,A,x2n); %求系统对x2(n)的响应y2(n)subplot(3,1,3);%y='y2(n)';stem(y2n);title('(c) 系统对u(n)的响应y2(n)');box on%===内容2:调用conv函数计算卷积=====x1n=[1 1 1 1 1 1 1 1 ]; %产生信号x1(n)=R8(n)h1n=[ones(1,10) zeros(1,10)];h2n=[1 2.5 2.5 1 zeros(1,10)];y21n=conv(h1n,x1n);y22n=conv(h2n,x1n);figure(2)subplot(2,2,1);stem(h1n); %调用函数stem绘图title('(d) 系统单位脉冲响应h1(n)');box onsubplot(2,2,2);stem(y21n);title('(e) h1(n)与R8(n)的卷积y21(n)');box onsubplot(2,2,3);stem(h2n);title('(f) 系统单位脉冲响应h2(n)');subplot(2,2,4);stem(y22n);title('(g) h2(n)与R8(n)的卷积y22(n)');%====内容3:谐振器分析=======un=ones(1,256); %产生信号u(n)n=0:255;xsin=sin(0.014*n)+sin(0.4*n); %产生正弦信号A=[1,-1.8237,0.9801];B=[1/100.49,0,-1/100.49]; %系统差分方程系数向量B和A y31n=filter(B,A,un); %谐振器对u(n)的响应y31(n)y32n=filter(B,A,xsin); %谐振器对u(n)的响应y31(n)figure(3)subplot(2,1,1);stem(y31n);title('(h) 谐振器对u(n)的响应y31(n)'); subplot(2,1,2);stem(y32n);title('(i) 谐振器对正弦信号的响应y32(n)');(a) 系统单位脉冲响应h(n)(b) 系统对R8(n)的响应y1(n)(f) 系统单位脉冲响应h2(n)(g) h2(n)与R8(n)的卷积y22(n)(h) 谐振器对u(n)的响应y31(n)(i) 谐振器对正弦信号的响应y32(n)实验二时域采样与频域采样1时域采样理论的验证程序清单% 时域采样理论验证程序exp2a.mTp=64/1000; %观察时间Tp=64微秒%产生M长采样序列x(n)% Fs=1000;T=1/Fs;Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk= fft(xnt,M); %M点FFT[xnt)]yn='xa(nT)';subplot(3,2,1);stem(xnt);title('(a) Fs=1000Hz');k=0:M-1;fk=k/Tp;subplot(3,2,2);plot(fk,abs(Xk));title('(b) FT[xa(nT)],Fs=1000Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))])%================================% Fs=300Hz和Fs=200Hz的程序与上面Fs=1000Hz完全相同。
数字信号处理课程设计实验报告

数字信号处理课程设计实验报告数字信号处理课程设计实验报告(基础实验篇)实验⼀离散时间系统及离散卷积⼀、实验⽬的和要求实验⽬的:(1)熟悉MATLAB软件的使⽤⽅法。
(2)熟悉系统函数的零极点分布、单位脉冲响应和系统频率响应等概念。
(3)利⽤MATLAB绘制系统函数的零极点分布图、系统频率响应和单位脉冲响应。
(4)熟悉离散卷积的概念,并利⽤MATLAB计算离散卷积。
实验要求:(1)编制实验程序,并给编制程序加注释;(2)按照实验内容项要求完成笔算结果;(3)验证编制程序的正确性,记录实验结果。
(4)⾄少要求⼀个除参考实例以外的实例,在实验报告中,要描述清楚实例中的系统,并对实验结果进⾏解释说明。
⼆、实验原理δ的响应输出称为系统1.设系统的初始状态为零,系统对输⼊为单位脉冲序列()n的单位脉冲响应()h n。
对于离散系统可以利⽤差分⽅程,单位脉冲响应,以及系统函数对系统进⾏描述。
单位脉冲响应是系统的⼀种描述⽅法,若已知了系统的系统函数,可以利⽤系统得出系统的单位脉冲响应。
在MATLAB中利⽤impz 由函数函数求出单位脉冲响应()h n2.幅频特性,它指的是当ω从0到∞变化时,|()|Aω,H jω的变化特性,记为()相频特性,指的是当ω从0到∞变化时,|()|∠的变化特性称为相频特性,H jωω。
离散系统的幅频特性曲线和相频特性曲线直观的反应了系统对不同记为()频率的输⼊序列的处理情况。
三、实验⽅法与内容(需求分析、算法设计思路、流程图等)四、实验原始纪录(源程序等)1.离散时间系统的单位脉冲响应clcclear alla=[1,-0.3];b=[1,-1.6,0.9425];impz(a,b,30);%离散时间系统的冲激响应(30个样值点)title('系统单位脉冲响应')axis([-3,30,-2,2]);2.(1)离散系统的幅频、相频的分析⽅法21-0.3()1 1.60.9425j j j e H z e e ωωω---=-+clcclear alla=[1,-0.3];b=[1,-1.6,0.9425];%a 分⼦系数,b 分母系数 [H,w]=freqz(a,b,'whole'); subplot(2,1,1); plot(w/pi,abs(H));%幅度 title('幅度谱');xlabel('\omega^pi');ylabel('|H(e^j^\omega)'); grid on;subplot(2,1,2);plot(w/pi,angle(H));%相位 title('相位谱');xlabel('\omega^pi'); ylabel('phi(\omega)'); grid on;(2)零极点分布图clc; clear all a=[1,-0.3];b=[1,-1.6,0.9425]; zplane(a,b);%零极图 title('零极点分布图')3.离散卷积的计算111()()*()y n x n h n =clcclear all% x=[1,4,3,5,3,6,5] , -4<=n<=2 % h=[3,2,4,1,5,3], -2<=n<=3 % 求两序列的卷积 clear all;x=[1,4,3,5,3,6,5]; nx=-4:2; h=[3,2,4,1,5,3];nh=-2:3;ny=(nx(1)+nh(1)):(nx(length(x))+nh(length(h))); y=conv(x,h);n=length(ny);subplot(3,1,1);stem(nx,x);xlabel('nx');ylabel('x'); subplot(3,1,2);stem(nh,h);xlabel('nh');ylabel('h'); subplot(3,1,3);stem(ny,y);xlabel('n');ylabel('x 和h 的卷积')五、实验结果及分析(计算过程与结果、数据曲线、图表等)1.离散时间系统的单位脉冲响应051015202530-2-1.5-1-0.500.511.52n (samples)A m p l i t u d e系统单位脉冲响应2.离散系统的幅频、相频的分析⽅法00.20.40.60.81 1.2 1.4 1.6 1.82 102030幅度谱ωp i|H (e j ω)0.20.40.60.811.21.41.61.82-2-1012相位谱ωp ip h i (ω)-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.81Real PartI m a g i n a r y P a r t零极点分布图3.离散卷积的计算-4-3-2-1012nxx-2-1.5-1-0.500.51 1.522.53nhh -6-4-20246nx 和h 的卷积六、实验总结与思考实验⼆离散傅⽴叶变换与快速傅⽴叶变换⼀、实验⽬的和要求实验⽬的:(1)加深理解离散傅⾥叶变换及快速傅⾥叶变换概念; (2)学会应⽤FFT 对典型信号进⾏频谱分析的⽅法; (3)研究如何利⽤FFT 程序分析确定性时间连续信号; (4)熟悉应⽤FFT 实现两个序列的线性卷积的⽅法;实验要求:(1)编制DFT 程序及FFT 程序,并⽐较DFT 程序与FFT 程序的运⾏时间。
数字信号处理实验报告(自己的实验报告)

数字信号处理实验报告(⾃⼰的实验报告)数字信号处理实验报告西南交通⼤学信息科学与技术学院姓名:伍先春学号:20092487班级:⾃动化1班指导⽼师:张翠芳实验⼀序列的傅⽴叶变换实验⽬的进⼀步加深理解DFS,DFT 算法的原理;研究补零问题;快速傅⽴叶变换(FFT )的应⽤。
实验步骤1. 复习DFS 和DFT 的定义,性质和应⽤;2. 熟悉MATLAB 语⾔的命令窗⼝、编程窗⼝和图形窗⼝的使⽤;利⽤提供的程序例⼦编写实验⽤程序;按实验内容上机实验,并进⾏实验结果分析;写出完整的实验报告,并将程序附在后⾯。
实验内容1. 周期⽅波序列的频谱试画出下⾯四种情况下的的幅度频谱,并分析补零后,对信号频谱的影响。
2. 有限长序列x(n)的DFT(1)取x(n)(n=0:10)时,画出x(n)的频谱X(k) 的幅度;(2)将(1)中的x(n)以补零的⽅式,使x(n)加长到(n:0~100)时,画出x(n)的频谱X(k) 的幅度;(3)取x(n)(n:0~100)时,画出x(n)的频谱X(k) 的幅度。
利⽤FFT进⾏谱分析已知:模拟信号以t=0.01n(n=0:N-1)进⾏采样,求N 点DFT 的幅值谱。
请分别画出N=45; N=50;N=55;N=60时的幅值曲线。
数字信号处理实验⼀1.(1) L=5;N=20;60,7)4(;60,5)3(;40,5)2(;20,5)1()](~[)(~,2,1,01)1(,01,1)(~=========±±=??-+≤≤+-+≤≤=N L N L N L N L n x DFS k X m N m n L mN L mN n mN n x )52.0cos()48.0cos()(n n n x ππ+=)8cos(5)4sin(2)(t t t x ππ+=n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(1)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=20'); subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(2)L=5;N=40;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(2)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=40');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(3)L=5;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(3)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=60'); subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(4)L=7;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(4)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=7,N=60'); subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');2. (1)M=10;N=10;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(1)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10'); axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(2)M=10;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(2)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10'); axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(3)M=100;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(3)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=100'); axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');3.figure(1)subplot(2,2,1)N=45;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N); plot(q,abs(y))stem(q,abs(y))title('FFT N=45')%subplot(2,2,2)N=50;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N); plot(q,abs(y))title('FFT N=50')%subplot(2,2,3)N=55;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);title('FFT N=55')%subplot(2,2,4)N=16;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=16')function[Xk]=dfs(xn,N)n=[0:1:N-1];k=[0:1:N-1];WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;实验⼆⽤双线性变换法设计IIR 数字滤波器⼀、实验⽬的1.熟悉⽤双线性变换法设计IIR 数字滤波器的原理与⽅法; 2.掌握数字滤波器的计算机仿真⽅法;3.通过观察对实际⼼电图的滤波作⽤,获得数字滤波器的感性知识。
西电电院数字信号处理上机实验报告六

实验六、FIR数字滤波器设计及其网络结构班级: 学号: 姓名: 成绩:1实验目得(1)熟悉线性相位FIR数字滤波器得时域特点、频域特点与零极点分布;(2)掌握线性相位FIR数字滤波器得窗函数设计法与频率采样设计法;(3)了解IIR数字滤波器与FIR数字滤波器得优缺点及其适用场合。
2 实验内容(1)设计计算机程序,根据滤波器得主要技术指标设计线性相位FIR数字低通、高通、带通与带阻滤波器;(2)绘制滤波器得幅频特性与相频特性曲线,验证滤波器得设计结果就是否达到设计指标要求;(3)画出线性相位FIR数字滤波器得网络结构信号流图。
3实验步骤(1)设计相应得四种滤波器得MATLAB程序;(2)画出幅频相频特性曲线;(3)画出信号流图。
4 程序设计%% FIR低通f=[0、2,0、35];m=[1,0];Rp=1;Rs=40;dat1=(10^(Rp/20)-1)/(10^(Rp/20)+1);dat2=10^(-Rs/20);rip=[dat1,dat2];[M,f0,m0,w]=remezord(f,m,rip);M=M+2;hn=remez(M,f0,m0,w);w=0:0、001:pixn=[0:length(hn)-1];H=hn*exp(-j*xn'*w);figuresubplot(2,1,1)plot(w/pi,20*log10(abs(H)));gridon;xlabel('\omega/\pi'),ylabel('|H(e^j^w)|/dB')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') %% FIR高通f=[0、7,0、9];m=[0,1];Rp=1;Rs=60;dat1=(10^(Rp/20)-1)/(10^(Rp/20)+1);dat2=10^(-Rs/20);rip=[dat2,dat1];[M,f0,m0,w]=remezord(f,m,rip);hn=remez(M,f0,m0,w);w=0:0、001:pixn=[0:length(hn)-1];H=hn*exp(-j*xn'*w);figuresubplot(2,1,1)plot(w/pi,20*log10(abs(H)));gridon;xlabel('\omega/\pi'),ylabel('|H(e^j^w)|/dB')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') %% FIR带通f=[0、2,0、35,0、65,0、8];m=[0,1,0];Rp=1;Rs=60;dat1=(10^(Rp/20)-1)/(10^(Rp/20)+1);dat2=10^(-Rs/20);rip=[dat2,dat1,dat2];[M,f0,m0,w]=remezord(f,m,rip);M=M+3hn=remez(M,f0,m0,w);w=0:0、001:pixn=[0:length(hn)-1];H=hn*exp(-j*xn'*w);figuresubplot(2,1,1)plot(w/pi,20*log10(abs(H)));gridon;xlabel('\omega/\pi'),ylabel('|H(e^j^w)|/dB')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') %% FIR带阻f=[0、2,0、35,0、65,0、8];m=[1,0,1];Rp=1;Rs=60;dat1=(10^(Rp/20)-1)/(10^(Rp/20)+1);dat2=10^(-Rs/20);rip=[dat1,dat2,dat1];[M,f0,m0,w]=remezord(f,m,rip);hn=remez(M,f0,m0,w);w=0:0、001:pixn=[0:length(hn)-1];H=hn*exp(-j*xn'*w);figuresubplot(2,1,1)plot(w/pi,20*log10(abs(H)));gridon;xlabel('\omega/\pi'),ylabel('|H(e^j^w)|/dB')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') 5实验结果及分析(1)FIR低通滤波器自动得到得M值不满足要求,故我们将M加上2 在w=0、2π时,H=-0、5dB;w=0、35π时,H=-41dB。
西安电子科技大学数字信号处理上机报告

数字信号处理大作业院系:电子工程学院学号:02115043姓名:邱道森实验一:信号、系统及系统响应一、实验目的(1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。
(2) 熟悉时域离散系统的时域特性。
(3) 利用卷积方法观察分析系统的时域特性。
(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。
二、实验原理采样是连续信号数字处理的第一个关键环节。
对连续信号()a x t 进行理想采样的过程可用(1.1)式表示:()()()ˆa a xt x t p t =⋅ 其中()t xa ˆ为()a x t 的理想采样,()p t 为周期冲激脉冲,即 ()()n p t t nT δ∞=-∞=-∑()t xa ˆ的傅里叶变换()j a X Ω为 ()()s 1ˆj j j a a m X ΩX ΩkΩT ∞=-∞=-∑进行傅里叶变换,()()()j ˆj e d Ωt a a n X Ωx t t nT t δ∞∞--∞=-∞⎡⎤=-⎢⎥⎣⎦∑⎰ ()()j e d Ωtan x t t nT t δ∞∞--∞=-∞=-∑⎰()j e ΩnTan x nT ∞-=-∞=∑式中的()a x nT 就是采样后得到的序列()x n , 即()()a x n x nT =()x n 的傅里叶变换为()()j j e enn X x n ωω∞-=-∞=∑比较可知()()j ˆj e aΩTX ΩX ωω==为了在数字计算机上观察分析各种序列的频域特性,通常对()j e X ω在[]0,2π上进行M 点采样来观察分析。
对长度为N 的有限长序列()x n ,有()()1j j 0eekk N nn X x n ωω--==∑其中2π,0,1,,1k k k M Mω==⋅⋅⋅-一个时域离散线性时不变系统的输入/输出关系为()()()()()m y n x n h n x m h n m ∞=-∞=*=-∑上述卷积运算也可以转到频域实现()()()j j j e e e Y X H ωωω= (1.9)三、实验内容及步骤(1) 认真复习采样理论、 离散信号与系统、 线性卷积、 序列的傅里叶变换及性质等有关内容, 阅读本实验原理与方法。
2017年西电电院数字信号处理上机实验报告五

实验五、IIR数字滤波器设计及其网络结构班级:学号:姓名:成绩:1实验目的(1)熟悉数字滤波的基本概念、数字滤波器的主要技术指标及其物理意义;(2)掌握巴特沃斯和切比雪夫模拟低通滤波器的设计方法和IIR数字低通滤波器的脉冲响应不变设计法、双线性变换法设计方法。
(3)了解模拟和数字滤波器的频率变换、IIR数字滤波器的直接(优化)设计方法;2 实验内容(1)设计计算机程序,根据滤波器的主要技术指标设计IIR数字巴特沃斯和切比雪夫低通、高通、带通和带阻滤波器;(2)绘制滤波器的幅频特性和相频特性曲线,验证滤波器的设计结果是否达到设计指标要求;(3)画出数字滤波器的直接型、级联型、并联型网络结构信号流图。
3实验步骤(1)设计相应的八种滤波器的MATLAB程序;(2)画出幅频相频特性曲线;(3)画出信号流图。
4程序设计%% 巴特沃斯低通wp=0.2;ws=0.35;rp=1;rs=10;[N,wc]=buttord(wp,ws,rp,rs);[B,A]=butter(N,wc);w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H))subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')%% 巴特沃斯高通wp=0.8;ws=0.6;rp=1;rs=10;[N,wc]=buttord(wp,ws,rp,rs);[B,A]=butter(N,wc,'high');w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') %% 巴特沃斯带通wpl=0.4;wpu=0.6;wsl=0.2;wsu=0.8wp=[wpl,wpu];ws=[wsl,wsu];rp=1;rs=20;[N,wc]=buttord(wp,ws,rp,rs);[B,A]=butter(N,wc);w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|') subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') %% 巴特沃斯带阻wpl=0.2;wpu=0.8;wsl=0.4;wsu=0.6wp=[wpl,wpu];ws=[wsl,wsu];rp=1;rs=20;[N,wc]=buttord(wp,ws,rp,rs);[B,A]=butter(N,wc,'stop');w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') %% 切比雪夫低通wp=0.2;ws=0.5;rp=1;rs=40;[N,wpo]=cheb1ord(wp,ws,rp,rs);[B,A]=cheby1(N,rp,wpo);w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')%% 切比雪夫高通wp=0.7;ws=0.5;rp=1;rs=40;[N,wpo]=cheb1ord(wp,ws,rp,rs);[B,A]=cheby1(N,rp,wpo,'high');w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')%% 切比雪夫带通wpl=0.4;wpu=0.6;wsl=0.2;wsu=0.8wp=[wpl,wpu];ws=[wsl,wsu];rp=1;rs=20;[N,wpo]=cheb1ord(wp,ws,rp,rs);[B,A]=cheby1(N,rp,wpo);w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')%% 切比雪夫带阻wpl=0.2;wpu=0.8;wsl=0.4;wsu=0.6wp=[wpl,wpu];ws=[wsl,wsu];rp=1;rs=20;[N,wpo]=cheb1ord(wp,ws,rp,rs);[B,A]=cheby1(N,rp,wpo,'stop');w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')5实验结果及分析(1)巴特沃斯低通W=0.5πi时,H=-0.75dB,w=0.35π时,H=-10dB,满足要求。
数字信号处理(西电上机实验)

数字信号处理实验报告实验一:信号、系统及系统响应一、实验目的:(1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。
(2) 熟悉时域离散系统的时域特性。
(3) 利用卷积方法观察分析系统的时域特性。
(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。
二、实验原理与方法:(1) 时域采样。
(2) LTI系统的输入输出关系。
三、实验内容、步骤(1) 认真复习采样理论、离散信号与系统、线性卷积、序列的傅里叶变换及性质等有关内容,阅读本实验原理与方法。
(2) 编制实验用主程序及相应子程序。
①信号产生子程序,用于产生实验中要用到的下列信号序列:a. xa(t)=A*e^-at *sin(Ω0t)u(t)A=444.128;a=50*sqrt(2)*pi;b. 单位脉冲序列:xb(n)=δ(n)c. 矩形序列:xc(n)=RN(n), N=10②系统单位脉冲响应序列产生子程序。
本实验要用到两种FIR系统。
a. ha(n)=R10(n);b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)③有限长序列线性卷积子程序用于完成两个给定长度的序列的卷积。
可以直接调用MATLAB语言中的卷积函数conv。
conv用于两个有限长度序列的卷积,它假定两个序列都从n=0 开始。
调用格式如下:y=conv (x, h)四、实验内容调通并运行实验程序,完成下述实验内容:①分析采样序列的特性。
a. 取采样频率fs=1 kHz, 即T=1 ms。
b. 改变采样频率,fs=300 Hz,观察|X(ejω)|的变化,并做记录(打印曲线);进一步降低采样频率,fs=200 Hz,观察频谱混叠是否明显存在,说明原因,并记录(打印)这时的|X(ejω)|曲线。
②时域离散信号、系统和系统响应分析。
a. 观察信号xb(n)和系统hb(n)的时域和频域特性;利用线性卷积求信号xb(n)通过系统hb(n)的响应y(n),比较所求响应y(n)和hb(n)的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。
数字信号处理设计实验报告 西电

数字信号处理设计实验报告一、实验目的通过实验学会设计IIR和FIR数字滤波器分离多个信号,并用matlab实现。
二、实验容用数字信号处理技术实现两个时域重叠信号的分离,及相位检波,设计分离和检波的方法,编写计算机程序,模拟信号处理过程,绘出时域和频域的处理结果。
)三、程序设计模拟信号的时域波形,频谱Fs=40000;t=0:1/Fs:4;s1=cos(2*pi*30*t).*cos(2*pi*100*t);s2=cos(2*pi*70*t).*cos(2*pi*700*t);st=s1+s2;S1=abs(fftshift(fft(s1)))/80000;S2=abs(fftshift(fft(s2)))/80000;ST=abs(fftshift(fft(st)))/80000;F = (-80000:80000)*0.25figure(1)subplot(321);plot(t,s1);title('s1时域波形');xlabel('时间t');ylabel('幅度');grid on;axis([0 0.1 -1 1])subplot(322);plot(F,S1);title('s1频谱');xlabel('频率F');ylabel('幅值');grid on;axis([-1000 1000 0 1])subplot(323);plot(t,s2);title('s2时域波形');xlabel('时间t');ylabel('幅度');grid on;axis([0 0.05 -1 1])subplot(324);plot(F,S2);title('s2频谱');xlabel('频率F');ylabel('幅值');grid on;axis([-1000 1000 0 1])subplot(325);plot(t,st);title('st时域波形');xlabel('时间t');ylabel('幅度');grid on;axis([0 0.05 -1 1])subplot(326);plot(F,ST);title('st频谱');xlabel('频率F');ylabel('幅值');grid on;axis([-1000 1000 0 1])采样信号的时域波形,频谱Fs1=4000;t1=0:1/Fs1:4; N = 0:length(t1)-1s1n=cos(2*pi*30*N/Fs1).*cos(2*pi*100*N/Fs1); s2n=cos(2*pi*70*N/Fs1).*cos(2*pi*700*N/Fs1); sn=s1n+s2n;S1N=abs(fftshift(fft(s1n)))/8000;S2N=abs(fftshift(fft(s2n)))/8000;SN=abs(fftshift(fft(sn)))/8000;F1 = (-8000:8000)*0.25figure(2)subplot(321);stem(t1,s1n);title('s1n时域波形');xlabel('时间t');ylabel('幅度');grid on;axis([0 0.05 -1 1])subplot(322);plot(F1,S1N);title('S1N频谱');xlabel('频率F');ylabel('幅值');grid on;axis([-1000 1000 0 1])subplot(323);stem(t1,s2n);title('s2n时域波形');xlabel('时间t');ylabel('幅度');grid on;axis([0 0.025 -1 1])subplot(324);plot(F1,S2N);title('S2N频谱');xlabel('频率F');ylabel('幅值');grid on;axis([-1000 1000 0 1])subplot(325);stem(t1,sn);title('sn时域波形');xlabel('时间t');ylabel('幅度');grid on;axis([0 0.025 -1 1])subplot(326);plot(F1,SN);title('SN频谱');xlabel('频率F');ylabel('幅值');grid on;axis([-1000 1000 0 1])通过前级滤波器的波形fp1 = 300;fs1 = 400;Rp = 1;Rs=40Wp1=2*fp1/Fs1;Ws1=2*fs1/Fs1; %%滤波器1[M1,Wc1]=buttord(Wp1,Ws1,Rp,Rs);[Bz1,Az1]=butter(M1,Wc1,'low');fp2 = 500;fs2 = 400;Rp = 1;Rs=40Wp2=2*fp2/Fs1;Ws2=2*fs2/Fs1; %%滤波器2[M2,Wc2]=buttord(Wp2,Ws2,Rp,Rs);[Bz2,Az2]=butter(M2,Wc2,'high');s3=filter(Bz1,Az1,sn); %信号通过低通滤波器S3=abs(fftshift(fft(s3)))/8000; %%还原真实幅值,由于是N个点的叠加s4=filter(Bz2,Az2,sn); %信号通过高通滤波器S4=abs(fftshift(fft(s4)))/8000; %%还原真实幅值,由于是N个点的叠加figure(3)subplot(221);plot(t1,s3);title('通过前级低通滤波器1信号时域波形');xlabel('时间t');ylabel('幅值');grid onaxis([0 0.1 -1 1])subplot(222);plot(F1,S3);title('通过前级低通滤波器1信号频谱图');xlabel('频率f');ylabel('幅值');grid on;axis([-1000 1000 0 1])subplot(223);plot(t1,s4);title('通过前级高通滤波器1信号时域波形');xlabel('时间t');ylabel('幅值');grid onaxis([0 0.1 -1 1])subplot(224);plot(F1,S4);title('通过前级高通滤波器1信号频谱图');xlabel('频率f');ylabel('幅值A');grid on;axis([-1000 1000 0 1])后级检波滤波输出L1=cos(2*pi*100*N/Fs1);L2=cos(2*pi*700*N/Fs1); %本振信号x1=L1.*s3;x2=L2.*s4;fp3 = 50;fs3 =90;Wp3=2*fp3/Fs1;Ws3=2*fs3/Fs1;Rp=1;Rs=40; %%后级滤波器LPF1 [M3,Wc3]=buttord(Wp3,Ws3,Rp,Rs);[Bz3,Az3]=butter(M3,Wc3,'low');y1=filter(Bz3,Az3,x1); %信号通过低通滤波器Y1=abs(fftshift(fft(y1)))/8000;fp4 = 200;fs4 =300;Wp4=2*fp4/Fs1;Ws4=2*fs4/Fs1;Rp=1;Rs=40; %%后级滤波器LPF2 [M4,Wc4]=buttord(Wp4,Ws4,Rp,Rs);[Bz4,Az4]=butter(M4,Wc4,'low');y2=filter(Bz4,Az4,x2); %信号通过低通滤波器Y2=abs(fftshift(fft(y2)))/8000;figure(4)subplot(221);plot(t1,y1);title('通过后级低通滤波器1信号时域波形'); xlabel('时间t');ylabel('幅值');grid on;axis([0.1 0.6 -1 1])subplot(222);plot(F1,Y1);title('通过后级低通滤波器1信号频谱图'); xlabel('频率f');ylabel('幅值A');grid on;axis([-100 100 0 0.5])subplot(223);plot(t1,y2);title('通过后级低通滤波器2信号时域波形'); xlabel('时间t');ylabel('幅值');grid on;axis([0.1 0.6 -1 1])subplot(224);plot(F1,Y2);title('通过后级低通滤波器2信号频谱图'); xlabel('频率f');ylabel('幅值A');grid on;axis([-100 100 0 0.5])四、实验结果及分析由上图可知,s1(t)的频谱分量分布在70hz、130hz、-70hz、-130hz处,s2(t)的频谱分量在630hz、770hz、-630hz、-770hz 处,而s(t)的频谱是s1(t)、s2(t)的叠加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理设计实验报告一、实验目的通过实验学会设计IIR和FIR数字滤波器分离多个信号,并用matlab实现。
二、实验内容用数字信号处理技术实现两个时域重叠信号的分离,及相位检波,设计分离和检波的方法,编写计算机程序,模拟信号处理过程,绘出时域和频域的处理结果。
)(1n s)(n a)()()(21t s t s t s += )(s n)(s 2n)(n b 三、程序设计模拟信号的时域波形,频谱Fs=40000;t=0:1/Fs:4;s1=cos(2*pi*30*t).*cos(2*pi*100*t);s2=cos(2*pi*70*t).*cos(2*pi*700*t);st=s1+s2;S1=abs(fftshift(fft(s1)))/80000;S2=abs(fftshift(fft(s2)))/80000;ST=abs(fftshift(fft(st)))/80000;F = (-80000:80000)*0.25figure(1)subpl ot(321);pl ot(t,s1);titl e('s1时域波形');xlabel('时间t');ylabel('幅度');grid on;axis([0 0.1 -1 1])subpl ot(322);pl ot(F,S1);titl e('s1频谱');xlabel('频率F');ylabel('幅值');grid on;axis([-1000 1000 0 1])subpl ot(323);采样 滤波器滤波器滤波器2滤波器4pl ot(t,s2);titl e('s2时域波形');xlabel('时间t');ylabel('幅度');grid on;axis([0 0.05 -1 1])subpl ot(324);pl ot(F,S2);titl e('s2频谱');xlabel('频率F');ylabel('幅值');grid on;axis([-1000 1000 0 1])subpl ot(325);pl ot(t,st);titl e('st时域波形');xlabel('时间t');ylabel('幅度');grid on;axis([0 0.05 -1 1])subpl ot(326);pl ot(F,ST);titl e('st频谱');xlabel('频率F');ylabel('幅值');grid on;axis([-1000 1000 0 1])采样信号的时域波形,频谱Fs1=4000;t1=0:1/Fs1:4; N = 0:l ength(t1)-1s1n=cos(2*pi*30*N/Fs1).*cos(2*pi*100*N/Fs1); s2n=cos(2*pi*70*N/Fs1).*cos(2*pi*700*N/Fs1); sn=s1n+s2n;S1N=abs(fftshift(fft(s1n)))/8000;S2N=abs(fftshift(fft(s2n)))/8000;SN=abs(fftshift(fft(sn)))/8000;F1 = (-8000:8000)*0.25figure(2)subpl ot(321);stem(t1,s1n);titl e('s1n时域波形');xlabel('时间t');ylabel('幅度');grid on;axis([0 0.05 -1 1])subpl ot(322);pl ot(F1,S1N);titl e('S1N频谱');xlabel('频率F');ylabel('幅值');grid on;axis([-1000 1000 0 1])subpl ot(323);stem(t1,s2n);titl e('s2n时域波形');xlabel('时间t');ylabel('幅度');grid on;axis([0 0.025 -1 1])subpl ot(324);pl ot(F1,S2N);titl e('S2N频谱');xlabel('频率F');ylabel('幅值');grid on;axis([-1000 1000 0 1])subpl ot(325);stem(t1,sn);titl e('sn时域波形');xlabel('时间t');ylabel('幅度');grid on;axis([0 0.025 -1 1])subpl ot(326);pl ot(F1,SN);titl e('SN频谱');xlabel('频率F');ylabel('幅值');grid on;axis([-1000 1000 0 1])通过前级滤波器的波形fp1 = 300;fs1 = 400;Rp = 1;Rs=40Wp1=2*fp1/Fs1;Ws1=2*fs1/Fs1; %%滤波器1[M1,Wc1]=buttord(Wp1,Ws1,Rp,Rs);[Bz1,Az1]=butter(M1,Wc1,'low');fp2 = 500;fs2 = 400;Rp = 1;Rs=40Wp2=2*fp2/Fs1;Ws2=2*fs2/Fs1; %%滤波器2[M2,Wc2]=buttord(Wp2,Ws2,Rp,Rs);[Bz2,Az2]=butter(M2,Wc2,'high');s3=filter(Bz1,Az1,sn); %信号通过低通滤波器S3=abs(fftshift(fft(s3)))/8000; %%还原真实幅值,由于是N个点的叠加s4=filter(Bz2,Az2,sn); %信号通过高通滤波器S4=abs(fftshift(fft(s4)))/8000; %%还原真实幅值,由于是N个点的叠加figure(3)subpl ot(221);pl ot(t1,s3);titl e('通过前级低通滤波器1信号时域波形');xlabel('时间t');ylabel('幅值');grid onaxis([0 0.1 -1 1])subpl ot(222);pl ot(F1,S3);titl e('通过前级低通滤波器1信号频谱图');xlabel('频率f');ylabel('幅值');grid on;axis([-1000 1000 0 1])subpl ot(223);pl ot(t1,s4);titl e('通过前级高通滤波器1信号时域波形');xlabel('时间t');ylabel('幅值');grid onaxis([0 0.1 -1 1])subpl ot(224);pl ot(F1,S4);titl e('通过前级高通滤波器1信号频谱图');xlabel('频率f');ylabel('幅值A');grid on;axis([-1000 1000 0 1])后级检波滤波输出L1=cos(2*pi*100*N/Fs1);L2=cos(2*pi*700*N/Fs1); %本振信号x1=L1.*s3;x2=L2.*s4;fp3 = 50;fs3 =90;Wp3=2*fp3/Fs1;Ws3=2*fs3/Fs1;Rp=1;Rs=40; %%后级滤波器LPF1 [M3,Wc3]=buttord(Wp3,Ws3,Rp,Rs);[Bz3,Az3]=butter(M3,Wc3,'low');y1=filter(Bz3,Az3,x1); %信号通过低通滤波器Y1=abs(fftshift(fft(y1)))/8000;fp4 = 200;fs4 =300;Wp4=2*fp4/Fs1;Ws4=2*fs4/Fs1;Rp=1;Rs=40; %%后级滤波器LPF2 [M4,Wc4]=buttord(Wp4,Ws4,Rp,Rs);[Bz4,Az4]=butter(M4,Wc4,'low');y2=filter(Bz4,Az4,x2); %信号通过低通滤波器Y2=abs(fftshift(fft(y2)))/8000;figure(4)subpl ot(221);pl ot(t1,y1);titl e('通过后级低通滤波器1信号时域波形');xlabel('时间t');ylabel('幅值');grid on;axis([0.1 0.6 -1 1])subpl ot(222);pl ot(F1,Y1);titl e('通过后级低通滤波器1信号频谱图');xlabel('频率f');ylabel('幅值A');grid on;axis([-100 100 0 0.5])subpl ot(223);pl ot(t1,y2);titl e('通过后级低通滤波器2信号时域波形');xlabel('时间t');ylabel('幅值');grid on;axis([0.1 0.6 -1 1])subpl ot(224);pl ot(F1,Y2);titl e('通过后级低通滤波器2信号频谱图');xlabel('频率f');ylabel('幅值A');grid on;axis([-100 100 0 0.5])四、实验结果及分析由上图可知,s1(t)的频谱分量分布在70hz、130hz、-70hz、-130hz处,s2(t)的频谱分量在630hz、770hz、-630hz、-770hz 处,而s(t)的频谱是s1(t)、s2(t)的叠加。
上图是s1(t)、s2(t)、s(t)采样后信号的时域频域波形图。
S(t)通过前级低通滤波器后,低频分量被滤出,即分离出了s1(t);S(t)通过前级高通滤波器后,高频分量被滤出,即分离出了s2(t)。