高考汇总(二项式定理)

合集下载

高三复习:二项式定理 知识点、题型方法归纳

高三复习:二项式定理 知识点、题型方法归纳

绵阳市开元中学高2014级高三复习《二项式定理》 知识点、题型与方法归纳制卷:王小凤 学生姓名:___________一.知识梳理1.二项式定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *)这个公式所表示的定理叫二项式定理,右边的多项式叫(a +b )n 的二项展开式. 其中的系数C r n (r =0,1,…,n )叫二项式系数. 式中的C r n a n -r b r 叫二项展开式的通项,用T r +1表示,即通项T r +1=C r n an -r b r . 2.二项展开式形式上的特点 (1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C n n .3.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等.即r n rn n C C -=(2)增减性与最大值:二项式系数C k n ,当k <n +12时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;当n 是偶数时,中间一项2n nC 取得最大值;当n 是奇数时,中间两项1122n n nnCC-+=取得最大值.(3)各二项式系数和:C 0n +C 1n +C 2n +…+C r n +…+C n n =2n;C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1. 一个防范运用二项式定理一定要牢记通项T r +1=C r n an -r b r ,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r n ,而后者是字母外的部分.前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负. 一个定理二项式定理可利用数学归纳法证明,也可根据次数,项数和系数利用排列组合的知识推导二项式定理.因此二项式定理是排列组合知识的发展和延续. 两种应用(1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等.(2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等. 三条性质(1)对称性;(2)增减性;(3)各项二项式系数的和;二.题型示例【题型一】求()n x y +展开特定项例1:(1+3x )n (其中n ∈N *且n ≥6)的展开式中x 5与x 6的系数相等,则n =( )A.6B.7C.8D.9解:由条件得C 5n 35=C 6n 36,∴n !5!(n -5)!=n !6!(n -6)!×3,∴3(n -5)=6,n =7.故选B.例2:(2014·大纲)⎝ ⎛⎭⎪⎫xy-y x 8的展开式中x 2y 2的系数为________.(用数字作答)解:⎝ ⎛⎭⎪⎫x y -y x 8展开式的通项公式为T r +1=C r 8⎝ ⎛⎭⎪⎫x y 8-r ⎝⎛⎭⎪⎫-y x r =()33842281r r r r C x y ---, 令8-32r =2,解得r =4,此时32r -4=2,所以展开式中x 2y 2的系数为(-1)4C 48=70.故填70.【题型二】求()()m n a b x y +++展开特定项例1:在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( ) A .74B .121C .-74D .-121解析 展开式中含x 3项的系数为C 35(-1)3+C 36(-1)3+C 37(-1)3+C 38(-1)3=-121.【题型三】求()()m n a b x y +⋅+展开特定项例1:(2013·全国课标卷Ⅱ)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ) A.-4 B.-3 C.-2 D.-1解:(1+ax )(1+x )5的展开式中x 2项为C 25x 2+ax ·C 15x =10x 2+5ax 2=(10+5a )x 2.∵x 2的系数为5, ∴10+5a =5,a =-1.故选D.例2:(2014·浙江卷)在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( ) A .45B .60C .120D .210解析 在(1+x )6的展开式中,x m 的系数为C m 6,在(1+y )4的展开式中,y n 的系数为C n4,故f (m ,n )=C m 6·C n 4.从而f (3,0)=C 36=20,f (2,1)=C 26·C 14=60,f (1,2)=C 16·C 24=36,f (0,3)=C 34=4,所以f (3,0)+f (2,1)+f (1,2)+f (0,3)=120,故选C.例3:已知数列{}n a 是等差数列,且6710a a +=,则在1212()()()x a x a x a ---的展开式中,11x 的系数为_______.解:11x 的系数为121267()6()60a a a a a -+++=-+=-。

二项式定理-高考数学复习

二项式定理-高考数学复习

=59.
目录
解题技法
赋值法的应用
(1)对形如( ax + b ) n ,( ax 2 + bx + c ) m ( a , b , c
∈R, m , n ∈N * )的式子求其展开式的各项系数之和,只
需令 x =1即可;
(2)对( ax + by ) n ( a , b ∈R, n ∈N*)的式子求其展开式各项
n ), g ( r )≠0,则:
(1) h ( r )=0⇔ Tr +1是常数项;
(2) h ( r )是非负整数⇔ Tr +1是整式项;
(3) h ( r )是负整数⇔ Tr +1是分式项;
(4) h ( r )是整数⇔ Tr +1是有理项.
目录
2. 两个常用公式
(1) C0 + C1 + C2 +…+ C =2 n ;
PART
2
目录
二项式中的特定项及系数问题
【例1】
1
(1)(2 x - )5的展开式中 x 的系数是(

A. -40
B. 40
C. -80
D. 80

1
解析:(1)(2 x - )5展开式的通项公式为 Tr +1= 5 (2 x )5

- r (- 1 ) r =(-1) r 25- r x 5-2 r ( r =0,1,…,5),令5
理数的项的个数是
16 2
,系数为有
5 .

解析:由二项展开式的通项公式可知 Tr +1= C9 ·
( 2 )9- r ·xr , r
∈N,0≤ r ≤9,当项为常数项时, r =0, T 1= C90 ·
( 2 )9·x 0=
( 2 )9=16 2 .当项的系数为有理数时,9- r 为偶数,可得 r =

高考数学二项式定理

高考数学二项式定理

二项式定理1.二项式定理二项式定理 (a +b )n =C 0n a n +C 1n an -1b 1+…+C r n a n -r b r +…+C n n b n (n ∈N *)二项展开式的通项公式T r +1=C r n an -r b r,它表示第r +1项 二项式系数二项展开式中各项的系数C rn (r ∈{0,1,2,…,n })2.二项式系数的性质(1)C 0n =1,C n n =1. C m n +1=C m -1n +C mn . (2)C mn =C n -mn .(3)当n 是偶数时,12n T +项的二项式系数最大;当n 是奇数时,12n T +与112n T ++项的二项式系数相等且最大.(4)(a +b )n 展开式的二项式系数和:C 0n +C 1n +C 2n +…+C n n =2n.考向一 通项公式的运用【例1】(1)(2x +x )5的展开式中,x 3的系数是________.(用数字填写答案)(2)⎝⎛⎭⎪⎫x 2+1x2-23展开式中的常数项为 。

(3))(x 2+x +y )5的展开式中,x 5y 2的系数为 。

(4)展开式中x 2的系数为 。

【修炼套路】---为君聊赋《今日诗》,努力请从今日始【套路秘籍】---千里之行始于足下【套路总结】求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出【举一反三】1.展开式中项的系数是()A.270 B.180 C.90 D.452.在的展开式中,的系数是224,则的系数是()A.14 B.28 C.56 D.1123.在的展开式中,含项的系数为A. B. C. D.4.的展开式中的系数是()A.27 B.-27 C.26 D.-26考向二二项式系数、系数【例2】已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,求: (1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6;(4)|a 0|+|a 1|+|a 2|+…+|a 7|.【举一反三】1.⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .402.若x 4(x +4)8=a 0+a 1(x +3)+a 2(x +3)2+…+a 12(x +3)12,则log 2(a 1+a 3+…+a 11)=( ). A .4B .8C .12D .113.已知二项式展开式中含项的系数为,则实数的值是( )A .B .C .D .4.已知的展开式中,各项系数的和与其各项二项式系数的和之比为,则等于【套路总结】(1)“赋值法”普遍适用于恒等式,对形如(ax +b )n ,(ax 2+bx +c )m(a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.A.B.C.D.考向三二项式定理单调性【例3】若(n∈N*)的展开式中只有第6项系数最大,则该展开式中的常数项为( )A.200 B.110 C.210 D.150【举一反三】1.已知的展开式中只有第4项的二项式系数最大,则多项式展开式中的常数项为()A.10 B.42 C.50 D.1822.若的展开式中只有第六项的二项式系数最大,则展开式中的常数项是第()项A.4 B.3 C.2 D.13.在二项式的展开式中,前三项系数的绝对值成等差数列.(1)求展开式中二项式系数最大的项;(2)求展开式中所有有理项的系数之和.。

考点50 二项式定理(新高考地区专用)(原卷版)

考点50 二项式定理(新高考地区专用)(原卷版)

考点19 二项式定理一.二项式定理(1)二项式定理:(a +b )n =C 0n a n +C 1n a n -1b +…+ C k n a n -k b k +…+C n n b n (n ∈N *) (2)通项公式:T k +1=C k n an -k b k,它表示第k +1项 (3)二项式系数:二项展开式中各项的系数为C 0n ,C 1n ,…,C n n(4)项数为n +1,且各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n 二.二项式系数的性质三.指定项的系数或二项式系数 1.解题思路:通项公式2.常见指定项:若二项展开式的通项为T r +1=g (r )·x h (r )(r =0,1,2,…,n ),g (r )≠0,则有以下常见结论: (1)h (r )=0∈T r +1是常数项 (2)h (r )是非负整数∈T r +1是整式项 (3)h (r )是负整数∈T r +1是分式项 (4)h (r )是整数∈T r +1是有理项 三.系数和---赋值法 1.赋值法的应用(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ∈R)的式子,求其展开式的各项系数之和,只需令x =1即可. (2)形如(ax +by )n (a ,b ∈R)的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝⎛⎭⎫第n2+1项的二项式系数最大; (2)如果n 是奇数,则中间两项⎝⎛⎭⎫第n +12项与第n +12+1项的二项式系数相等并最大.知识理解考向一 二项展开式中特定项及系数【例1】(1)(2020·长春市第八中学高三)二项式821(1)x-的展开式中4x -的系数为 (2)(2021·上海高三一模)在262()x x+的二项展开式中,常数项等于____.(3)(2020·全国高三)在24的展开式中,有理项共有 项 (4)(2020·云南省个旧市第一高级中学高三)25()ax x-展开式中x 的系数为80,则a 等于 。

高考数学复习:二项式定理

高考数学复习:二项式定理

思维升华
(1)赋值法的应用 一般地,对于多项式(a+bx)n=a0+a1x+a2x2+…+anxn,令 g(x)=(a+bx)n, 则(a+bx)n 的展开式中各项的系数和为 g(1),(a+bx)n 的展开式中奇数项 的系数和为12[g(1)+g(-1)],(a+bx)n 的展开式中偶数项的系数和为12[g(1) -g(-1)].
自主诊断
2.(选择性必修第三册P31T4改编) 1x-
x10
的展开式中x2的系数等于
√A.45
B.20
C.-30
D.-90
k
因为展开式的通项为Tk+1=(1)k C1k0x 2
·x-(10-k)=(
1)k
C1k0
x
10
3 2
k

令-10+32k=2,得 k=8,
所以展开式中 x2 的系数为(-1)8×C810=45.
(x+y)8 展开式的通项为 Tk+1=Ck8x8-kyk,k=0,1,…,7,8. 令 k=6,得 T6+1=C68x2y6; 令 k=5,得 T5+1=C58x3y5, 所以1-yx(x+y)8 的展开式中 x2y6 的系数为 C68-C58=-28.
(2)若(x2+a)x+1x8 的展开式中 x8 的系数为 9,则 a 的值为__1___.
因为(x-2y)8 的展开式中含 x6y2 的项为 C28x6(-2y)2=112x6y2, 所以(x-2y)8的展开式中x6y2的系数为112.
(2)已知x-
a
5
x
的展开式中
x5
的系数为
A,x2
的系数为
B,若
A+B=11,
则 a=__±_1___.
x-

二项式定理-高考题(含答案)精选全文

二项式定理-高考题(含答案)精选全文

3.(2012·天津高考理科·T5)在 2x2-⎪的二项展开式中,x的系数为(D)5.(2012·重庆高考理科·T4)⎛x+1⎫⎪的展开式中常数项为(B)(A)35精选全文完整版(可编辑修改)学习好资料欢迎下载二项式定理高考真题一、选择题1.(2012·四川高考理科·T1)相同(1+x)7的展开式中x2的系数是(D)(A)42(B)35(C)28(D)212.(2011·福建卷理科·T6)(1+2x)5的展开式中,x2的系数等于(B)(A)80(B)40(C)20(D)10⎛1⎫5⎝x⎭(A)10(B)-10(C)40(D)-404.(2011.天津高考理科.T5)在(x-2)6的二项展开式中,x2的系数为(C)2x(A)-15153(B)(C)-(D)448388⎝2x⎭3535(B)(C)(D)10516846.(2012·重庆高考文科·T4)(1-3x)5的展开式中x3的系数为(A)(A)-270(B)-90(C)90(D)2707.(2013·大纲版全国卷高考理科·T7)(1+x)8(1+y)4的展开式中x2y2的系数是(D)8.(2011·新课标全国高考理科·T8)⎛ x + a ⎫⎪⎛ 2x - 1 ⎫⎪的展开式中各项系数的和为 2,则该展开式中常 ( 12.(2011·湖北高考理科·T11) x - ⎪ 的展开式中含 x 15的项的系数为 17 .)16.(2011·安徽高考理科·T12)设(x - 1)21 = a + a x + a x 2 + + a x 21 ,则17.(2011·广东高考理科·T10) x( x - )7的展开式中, x 4 的系数是___84___ (用数字作答)A.56B.84C.112D.1685 ⎝x ⎭⎝ x ⎭数项为( D )(A )-40 (B )-20 (C )20 (D )409. (2011·重庆高考理科·T4) (1 + 3x) n (其中 n ∈ N 且 n ≥ 6 )的展开式中 x 5 与 x 6 的系数相等,则 n =( B)(A) 6 (B) 7 (C) 8 (D) 910. 2011·陕西高考理科·T4) (4 x - 2- x )6 ( x ∈ R )展开式中的常数项是 (C )(A ) -20(B ) -15(C )15 (D )20二、填空题11. ⎛ 1 ⎫6(2013·天津高考理科·T10) x - ⎪ 的二项展开式中的常数项为 15 .⎝ x ⎭⎛ 1 ⎫18⎝ 3 x ⎭13.(2011·全国高考理科·T13)(1- x )20 的二项展开式中,x 的系数与 x 9 的系数之差为0 .14.(2011·四川高考文科·T13 (x + 1)9 的展开式中 x 3的系数是 84 (用数字作答).15.(2011·重庆高考文科·T11) (1 + 2 x) 6的展开式中 x 4 的系数是240 .0 1 2 21a +a =0 .10112x18.(2011·山东高考理科·T14)若 x-x2⎪⎭19.(2012·大纲版全国卷高考理科·T15)若(x+)n的展开式中第3项与第7项的二项式系数相等,120.(2013·安徽高考理科·T11)若 x+3x⎭x4的系数为7,则实数a=_________。

高考专题 二项式定理(全解析)

1 / 4二项式定理一、选择题1.(求项的系数)5(2x +的展开式中,4x 的系数是( )A .40B .60C .80D .100【答案】C【解析】5(2x二项展开式的通项为5552155(2)2k k kkk kk T C x C x---+=⋅⋅=⋅⋅.令542k-=,得2k =. 因此,二项展开式中4x 的系数为235280C ⋅=,故选C .2.(知常数项求某一项的系数)若在(a +3x )(1−√x 3)8关于x 的展开式中,常数项为4,则x 2的系数是( ) A .56 B .-56 C .112 D .-112【答案】B【解析】由题意得(1−√x 3)8展开式的通项为T r+1=C 8r (−√x 3)r=(−1)r C 8r x r3,r =0,1,2,⋯,8, ∴(a +3x )(1−√x 3)8展开式的常数项为(−1)0C 8⋅a =a =4, ∴(4+3x )(1−√x 3)8展开式中x 2项为4⋅(−1)6C 86x 63+3x ⋅(−1)3C 83x 33=−56x 2∴展开式中x 2的系数是−56. 故选B3.(直常数项求参数)若6ax ⎛- ⎝展开式的常数项为60,则a 值为( )A .4B .4±C .2D .2±【答案】D【解析】因为6ax ⎛ ⎝展开式的通项为()()3666622166T 11k k k k k k k k k k C a x x C a x -----+=-=-,令3602k -=,则4k =,所以常数项为()44646160C a --=,即21560a =,所以2a =±. 故选D2 / 44.(奇数项系数的和)记6260126(1)(1)(1)...(1)x a a x a x a x -=+++++++,则0246a a a a +++=( )A .81B .365C .481D .728【答案】B【解析】令x=0得1=0126...a a a a ++++,令x=-2得601234563=a a a a a a a -+-+-+,所以0246a a a a +++=1+729=3652. 故选B5.(由系数二项式系数的和求参数)已知n的展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于 A .4 B .5 C .6 D .7【答案】C【解析】二项式n的各项系数的和为()1+34n n=,二项式n的各项二项式系数的和为()1+12n n=, 因为各项系数的和与其各项二项式系数的和之比为64,所以4=2642n nn =,6n =,故选C .二、填空题6.(集合关系判断)若)22nx -展开式中只有第六项的二项式系数最大,则展开式中的常数项是____.【答案】180【解析】因为)22nx -展开式中只有第六项的二项式系数最大,所以10n =,展开式的通项公式为5510221101022r rrr rrr r TC xC x---+=⋅⋅⋅=⋅⋅,令5502r-=,解得3 / 42r,所以展开式的常数项为22101280C ⋅=.7.(求系数最大项)61x x ⎛⎫- ⎪⎝⎭的展开式中,系数最大的项为第__________项.【答案】3或5【解析】61x x ⎛⎫- ⎪⎝⎭的展开式中系数与二项式系数只有符号差异,又中间项的二项式系数最大,中间项为第4项其系数为负,则第3,5项系数最大. 8.(二项展开式系数的性质应用)在()()25132x x +-的展开式中,所有的奇次幂的系数和为__________.【答案】478- 【解析】设()()25223456701234567132x x a a x a x a x a x a x a x a x +-=+++++++令1x =,得:0123456716a a a a a a a a =+++++++……① 令1x =-,得:01234567972a a a a a a a a =-+-+-+-……② ①-②得:()13579562a a a a -=+++ 解得:1357478a a a a +++=- 本题正确结果:478-9.(二项式与数列)已知数列{}n a 满足11a k=,k *∈N ,[]n a 表示不超过n a 的最大整数(如[]1,61=,记[]n n b a =,数列{}n b 的前n 项和为n T ).①若数列{}n a 是公差为1的等差数列,则4T =__________; ②若数列{}n a 是公比为1k +的等比数列,则n T =__________.【答案】6 ()211nk kn k+--【解析】①若数列{}n a 是公差为1的等差数列,且11a k =,*2k k N ≥∈,,则11(1,)n a n n n k=+-∈-,所以[]1n n b a n ==-,则401236T =+++=;故填6.4 / 4②若数列{}n a 是公比为1k +的等比数列,且11a k=,*2k k N ≥∈,,则 1112131211(1)(1)n n n n n n n a k k C k C kk k------=⋅+=⋅+++⋅⋅⋅+,则213111n n k n n n b k C k C -----=++⋅⋅⋅+, 221311101(2)(33)()n n k n n n T k k k k C k C -----=+++++++⋅⋅⋅+++⋅⋅⋅+22223332341451[123(1)](1?)(1)n n n n C C C k C C C k---=+++⋅⋅⋅+-++++⋅⋅+++++⋅⋅⋅++⋅⋅⋅+3422(1))2n n n n n n n C k C k C k --=+++⋅⋅⋅+ 223321()n n n n n C k C k C k k =++⋅⋅⋅+ 21[(1)1]n k nk k =+--;故填21[(1)1]n k nk k+--. 10.(二项式与函数)已知二进制和十进制可以相互转化,例如65432108912021212020212=⨯+⨯+⨯+⨯+⨯+⨯+⨯,则十进制数89转化为二进制数为2(1011001).将n 对应的二进制数中0的个数,记为n a (例如:24(100)=,251(110011)=,289(1011001)=,则42a =,512a =,893a =),记()2n a f n =,则2018201820182019(2)(21)(22)...(21)f f f f ++++++-=__________. 【答案】20183【解析】由题意得20182018201820192212221++-,,,,共201920182018222-=个数中所有的数转换为二进制后,总位数都为2019,且最高位都为1而除最高位之外的剩余2018位中,每一位都是0或者1 设其中的数x ,转换为二进制后有k 个0(0k 2018≤≤) ∴()2kf x =在这20182个数中,转换为二进制后有k 个0的数共有2018kC 个 ∴()()()()201820182018201820192018022122 (2)12k kk f f f f C =++++++-=∑由二项式定理,()201820182018201802123k kk C ==+=∑。

高考数学一轮复习---二项式定理知识点与题型复习

二项式定理知识点与题型复习一、基础知识1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*)(2)通项公式:T k+1=C k n a n-k b k,它表示第k+1项;(3)二项式系数:二项展开式中各项的系数为C0n,C1n,…,C n n.2.二项式系数的性质注:(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.二项式系数与项的系数的区别二项式系数是指C0n,C1n,…,C n n,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.如(a+bx)n的二项展开式中,第k+1项的二项式系数是C k n,而该项的系数是C k n a n-k b k.当然,在某些二项展开式中,各项的系数与二项式系数是相等的.二、考点解析考点一二项展开式中特定项或系数问题考法(一)求解形如(a+b)n(n∈N*)的展开式中与特定项相关的量例1、(1)522⎪⎭⎫⎝⎛+xx的展开式中x4的系数为()A.10B.20C.40D.80(2)若(2x-a)5的二项展开式中x3的系数为720,则a=________.(3)已知5⎪⎭⎫⎝⎛+xax的展开式中x5的系数为A,x2的系数为B,若A+B=11,则a=________.[解题技法]求形如(a+b)n(n∈N*)的展开式中与特定项相关的量(常数项、参数值、特定项等)的步骤第一步,利用二项式定理写出二项展开式的通项公式T r+1=C r n a n-r b r,常把字母和系数分离开来(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出r;第三步,把r代入通项公式中,即可求出T r+1,有时还需要先求n,再求r,才能求出T r+1或者其他量.考法(二)求解形如(a+b)m(c+d)n(m,n∈N*)的展开式中与特定项相关的量例2、(1)(1-x)6(1+x)4的展开式中x的系数是()A.-4B.-3C.3D.4(2)已知(x-1)(ax+1)6的展开式中含x2项的系数为0,则正实数a=________.[解题技法]求形如(a+b)m(c+d)n(m,n∈N*)的展开式中与特定项相关的量的步骤第一步,根据二项式定理把(a+b)m与(c+d)n分别展开,并写出其通项公式;第二步,根据特定项的次数,分析特定项可由(a+b)m与(c+d)n的展开式中的哪些项相乘得到;第三步,把相乘后的项合并即可得到所求特定项或相关量.考法(三)求形如(a+b+c)n(n∈N*)的展开式中与特定项相关的量例3、(1)(x2+x+y)5的展开式中x5y2的系数为()A.10B.20C.30D.60(2)将344⎪⎭⎫⎝⎛-+xx展开后,常数项是________.[解题技法]求形如(a+b+c)n(n∈N*)的展开式中与特定项相关的量的步骤第一步,把三项的和a+b+c看成是(a+b)与c两项的和;第二步,根据二项式定理写出[(a +b )+c ]n 的展开式的通项;第三步,对特定项的次数进行分析,弄清特定项是由(a +b )n -r 的展开式中的哪些项和c r 相乘得到的; 第四步,把相乘后的项合并即可得到所求特定项或相关量. 跟踪训练1.在(1-x 3)(2+x )6的展开式中,x 5的系数是________.(用数字作答)3.5212⎪⎭⎫⎝⎛++x x (x >0)的展开式中的常数项为________.考点二 二项式系数的性质及各项系数和[典例精析](1)若531⎪⎪⎭⎫ ⎝⎛+x x 的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( ) A.63x B.4x C.4x 6x D.4x或4x 6x(2)若nx x ⎪⎭⎫ ⎝⎛-12的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n的值为________.(3)若(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.[解题技法] 1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如: (1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可. (2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法 若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中 (1)各项系数之和为f (1).(2)奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2.(3)偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.跟踪训练1.已知(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则|a0|+|a1|+…+|a5|=()A.1B.243C.121D.1222.若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a8)2-(a1+a3+…+a9)2=39,则实数m的值为________.3.已知(1+3x)n的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为____.考点三二项展开式的应用例、设a∈Z,且0≤a<13,若512 018+a能被13整除,则a=()A.0B.1C.11D.12[解题技法]利用二项式定理解决整除问题的思路(1)要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开.(2)用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开.但要注意两点:①余数的范围,a=cr+b,其中余数b∈[0,r),r是除数,若利用二项式定理展开变形后,切记余数不能为负;②二项式定理的逆用.跟踪训练]1.使得多项式81x4+108x3+54x2+12x+1能被5整除的最小自然数x为()A.1B.2C.3D.4课后作业1.3422⎪⎪⎭⎫ ⎝⎛+x x 的展开式中的常数项为( ) A.-32 B.32 C.6 D.-6 2.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,则a 2+a 4a 1+a 3的值为( )A.-6160B.-122121C.-34D.-901213.若二项式72⎪⎭⎫ ⎝⎛+x a x 的展开式的各项系数之和为-1,则含x 2项的系数为( )A.560B.-560C.280D.-2804.已知(1+x )n 的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( ) A.29 B.210 C.211 D.2125.二项式9221⎪⎭⎫⎝⎛-x x 的展开式中,除常数项外,各项系数的和为( )A.-671B.671C.672D.673 6.在(1-x )5(2x +1)的展开式中,含x 4项的系数为( )A.-5B.-15C.-25D.257.若(x 2-a )101⎪⎭⎫ ⎝⎛+x x 的展开式中x 6的系数为30,则a 等于( )A.13B.12C.1D.2 8.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为( ) A.1或3 B.-3 C.1 D.1或-3 9.(2x -1)6的展开式中,二项式系数最大的项的系数是________.(用数字作答)10.9⎪⎭⎫ ⎝⎛+x a x 的展开式中x 3的系数为-84,则展开式的各项系数之和为________.11.511⎪⎭⎫ ⎝⎛++x x 展开式中的常数项为________.12.已知nx x ⎪⎪⎭⎫ ⎝⎛+41的展开式中,前三项的系数成等差数列. (1)求n ;(2)求展开式中的有理项;(3)求展开式中系数最大的项.。

高考数学总复习考点知识专题讲解9 二项式定理

高考数学总复习考点知识专题讲解专题9 二项式定理知识点一 二项式定理(a +b )n =C 0n a n +C 1n a n -1b +C 2n a n -2b 2+…+C k n a n -k b k +…+C n n b n (n ∈N *).(1)这个公式叫做二项式定理.(2)展开式:等号右边的多项式叫做(a +b )n 的二项展开式,展开式中一共有n +1项. (3)二项式系数:各项的系数C kn (k ∈{0,1,2,…,n })叫做二项式系数. 知识点二 二项展开式的通项(a +b )n 展开式的第k +1项叫做二项展开式的通项,记作T k +1=C k n an -k b k . 【例1】(2023•上海)设423401234(12)x a a x a x a x a x -=++++,则04a a +=.【例2】(2022•上海)二项式(3)n x +的展开式中,2x 项的系数是常数项的5倍,则n =.【例3】(2021•浙江)已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则1a =;234a a a ++=.知识点三二项展开式的通项 求二项展开式的特定项的常用方法(1)对于常数项,隐含条件是字母的指数为0(即0次项).(2)对于有理项,一般是先写出通项公式,求其所有的字母的指数恰好都是整数的项.解这类问题必须合并通项公式中同一字母的指数,根据具体要求,令其属于整数集,再根据数的整除性来求解.(3)对于二项展开式中的整式项,其通项公式中同一字母的指数应是非负整数,求解方式与求有理项一致.【例4】(2022•新高考Ⅰ)8(1)()y x y x-+的展开式中26x y 的系数为(用数字作答).【例5】(2022•天津)523)x 的展开式中的常数项为.【例6】(2023•驻马店期末)若7102910012910(2)(1)(1)(1)(1)x x a a x a x a x a x +-=+-+-+⋯⋯+-+-,则5a =.【例7】(2023•海淀区模拟)已知5()x a +的展开式为5432543210p x p x p x p x p x p +++++,若3415p p -=,则a =.知识点四余数和整除的问题利用二项式定理可以解决求余数和整除的问题,通常需将底数化成两数的和与差的形式,且这种转化形式与除数有密切的关系.【例8】(2022秋•杨浦区校级期末)504除以17的余数为.【例9】(2023•沈阳模拟)若20232023012023(1)x a a x a x +=++⋯+,则0242022a a a a +++⋯+被5除的余数是.【例10】(2022•多选•庆阳期末)下列命题为真命题的是() A .61()x x -展开式的常数项为20B .1008被7除余1 C .61()x x-展开式的第二项为46x -D .1008被63除余1知识点五 二项式系数的性质1.对称性:在(a +b )n 的展开式中,与首末两端“等距离”的两个二项式系数相等,即C m n =C n -mn2.增减性与最大值 增减性:当k <n +12时,二项式系数是逐渐增大的;当k >n +12时,二项式系数是逐渐减小的. 最大值:(1)当n 为偶数时,中间一项的二项式系数2C n n最大;当n 为奇数时,中间两项的二项式系数12C n n-,12C n n+相等,且同时取得最大值(2)求二项式系数最大的项,根据二项式系数的性质对(a +b )n 中的n 进行讨论. ①当n 为奇数时,中间两项的二项式系数最大; ②当n 为偶数时,中间一项的二项式系数最大. (3)展开式中系数的最大项的求法求展开式中系数的最大项与求二项式系数最大项是不同的,需要根据各项系数的正、负变化情况进行分析.如求(a +bx )n (a ,b ∈R )的展开式中系数的最大项,一般采用待定系数法.设展开式中各项系数分别为A 0,A 1,A 2,…,A n ,且第k +1项最大,应用⎩⎨⎧A k ≥A k -1,A k ≥A k +1,解出k ,即得出系数的最大项. 3.各二项式系数的和(1)C 0n +C 1n +C 2n +…+C n n =2n ;(2)C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -14.二项展开式中系数和的求法(1)对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R ,m ,n ∈N *)的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可,对(ax +by )n (a ,b ∈R ,n ∈N *)的式子求其展开式的各项系数之和,只需令x =y =1即可.(2)一般地,若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1), 奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.【例11】(2022•北京)若443243210(21)x a x a x a x a x a -=++++,则024(a a a ++=) A .40B .41C .40-D .41-【例12】(2023•新乡开学)若二项式*(2()n x n N∈的展开式中只有第5项的二项式系数最大,则展开式中2x 项的系数为() A .1120-B .1792-C .1792D .1120【例13】(2023•慈溪市期末)若二项式*(12)()n x n N +∈的展开式中第6项与第7项的系数相等,则此展开式中二项式系数最大的项是() A .3448x B .41120x C .51792x D .61792x【例14】(2022秋•葫芦岛期末)设n ∈N +,化简=+++-12321666n n n n n n C C C C ( )A .7nB .C .7n ﹣1D .6n ﹣1【例15】已知(2x -1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5.求下列各式的值:(1)a 0+a 1+a 2+…+a 5;(2)|a 0|+|a 1|+|a 2|+…+|a 5|;(3)a 1+a 3+a 5.(4)a 0+a 2+a 4;(5)a 1+a 2+a 3+a 4+a 5; (6)5a 0+4a 1+3a 2+2a 3+a 4.【例16】(2023•泰州期末)若6652360136()x y a y a xy a x y a x +=++⋯++⋯+,则220246135()()a a a a a a a +++-++的值为()A .0B .32C .64D .128【例17】(2023•静安区期末)在23(3)nx x -+的二项展开式中,533r n r n rnC x--称为二项展开式的第1r +项,其中0r =,1,2,3,⋯,n .下列关于23(3)nx x -+的命题中,不正确的一项是()A .若8n =,则二项展开式中系数最大的项是1426383C xB .已知0x >,若9n =,则二项展开式中第2项不大于第3项的实数x 的取值范围是3540()3x <…C .若10n =,则二项展开式中的常数项是44103C D .若27n =,则二项展开式中x 的幂指数是负数的项一共有12项 【例18】(2023秋•泰兴市月考)设*n N ∈,0101(1)(1)(2)(2)n n n n n x a a x a x b b x b x =+-++-=+-++-,则()A .001132n n n n b a b a b a -+-++-=-B .0101012()nn nb b b a a a a a a +++=+++ C .0101111()211n n a a a a a a n n +++=+++++D .21201(1)4()4n n n n b b n b a a a ++++=+++【例19】(2023•江宁区期末)二项式定理是产生组合恒等式的一个重要源泉,由二项式定理可得:0122*1111(1)(,),1n nn m mn n n n n n C C x C x C x x n N x R C C m n -+++++=+∈∈=+等,则012111231nn n n n C C C C n ++++=+.【例20】(2022•玄武区期末)在231(1)(1)(1)n x x x +++++⋯++的展开式中,含2x 的系数是n a ,8a =;若对任意的*n N ∈,*n N ∈,20n n a λ⋅-…恒成立,则实数λ的最小值是.【例21】(2019•江苏)设2012(1)n n n x a a x a x a x +=+++⋯+,4n …,*n N ∈.已知23242a a a =.(1)求n 的值;(2)设(1n a =+a ,*b N ∈,求223a b -的值.同步训练1.(2021•上海)已知二项式5()x a +展开式中,2x 的系数为80,则a =.2.(2021•上海)已知(1)n x +的展开式中,唯有3x 的系数最大,则(1)n x +的系数和为.3.(2020•浙江)二项展开式52345012345(12)x a a x a x a x a x a x +=+++++,则4a =,135a a a ++=.4.(2020•新课标Ⅲ)262()x x+的展开式中常数项是(用数字作答).5.(2020•天津)在522()x x+的展开式中,2x 的系数是.6.(2023•郫都区模拟)已知921001210(1)(1)x x a a x a x a x --=+++⋯+,则8a =45-.7.(2020•新课标Ⅰ)25()()y x x y x++的展开式中33x y 的系数为()A .5B .10C .15D .208.(2023•湖北模拟)51(1)(12)x x+-的展开式中,常数项是() A .9-B .10-C .9D .109.(2023•曲靖模拟)已知4520222023(1)(12)(12023)(12022)x x x x -++++-展开式中x 的系数为q ,空间有q 个点,其中任何四点不共面,这q 个点可以确定的直线条数为m ,以这q 个点中的某些点为顶点可以确定的三角形个数为n ,以这q 个点中的某些点为顶点可以确定的四面体个数为p ,则(m n p ++=) A .2022B .2023C .40D .5010.(2023•徐汇区期末)1002被9除所得的余数为() A .1B .3C .5D .711.已知f (x )=(3x 2+3x 2)n 的展开式中各项的系数和比各项的二项式系数和大992. (1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.12(2023•河源期末)5(21)x y --的展开式中含22x y 的项的系数为() A .120-B .60C .60-D .3013.(2023•怀化期末)已知10111012n n C C =,设2012(23)(1)(1)(1)n n n x a a x a x a x -=+-+-+⋯+-,下列说法:①2023n =,②20233n a =-,③0121n a a a a +++⋯+=,④展开式中所有项的二项式系数和为1.其中正确的个数有() A .0B .1C .2D .314(2023•青原区期末)若28(1)(1)ax x x -+-的展开式中含2x 的项的系数为21,则(a =) A .3-B .2-C .1-D .115.(2023•常熟市月考)今天是星期五,经过7天后还是星期五,那么经过1008天后是()A .星期三B .星期四C .星期五D .星期六16.(2023•南海区月考)已知012233222281n n n nn n n C C C C C +++++=,则123nn n n n C C C C ++++等于()A .15B .16C .7D .817.(2022•浙江)已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =,12345a a a a a ++++=.。

专题58二项式定理-高考数学复习资料(解析版)


A.5 B.-10 C.-32 D.-42
【答案】 D
1
1
1
-2
-2
【解析】 由于 x 5 的通项为 Cr5· x 5-r·(-2)r=Cr5(-2)r·x,故(x2+1)· x 5 的展开式的常
数项是 C15·(-2)+C55(-2)5=-42.故选 D. 8.(2019·潍坊模拟)设 a∈Z,且 0≤a<13,若 512018+a 能被 13 整除,则 a=( )
方程或不等式的知识求解.
2.求几个多项式积的特定项:可先分别化简或展开为多项式和的形式,再分类考虑特定项产生的每一种情
形,求出相应的特定项,最后进行合并即可.
3.三项展开式特定项:(1)通常将三项式转化为二项式积的形式,然后利用多项式积的展开式中的特定项(系
数)问题的处理方法求解;(2)将其中某两项看成一个整体,直接利用二项式展开,然后再分类考虑特定项
A.5
B.-10
C.-32
D.-42
31
x- 3 10
(2)
2 x 的展开式中所有的有理项为________.
【答案】 (1)D (2)45x2,-63, 45 x-2
4
8 256
1
5
1 5-r
1
5
-2
r-5
-2
【解析】 (1)由于 x
的通项为 Cr5· x ·(-2)r=Cr5·(-2)r·x 2 ,故(x2+1)· x
所以 a6=C510,则 k 的最大值为 6. x3+2 n
2.(2019·烟台模拟)已知 x 的展开式的各项系数和为 243,则展开式中 x7 的系数为( )
A.5
B.40
C.20
D.10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海高考二项式定理题汇总
1. (1985理)求15
23)x
1x (-
的展开式中的常数项。

[-5005] 2. (1985文)求82)x 2(+的展开式中10x 的系数。

[448] 3. (1986)83)x
1x (-
的展开式中,x 的一次项的系数是___________。

[28]
4. (1987)8)x
1x (-的展开式中,4x 的系数与
4x
1
的系数之差是_________。

[0] 5. (1988)n )x 1(+的展开式中,若第三项与第六项的系数相等,则=n _____。

[7] 6. (1989)在202)x 1(-的展开式中,如果第4r 项和第2r +项的二项式系数相等,(1)
求r 的值;(2)写出展开式中的第4r 项和第2r +项。

[4r =;3016x 15504T -=,
106x 15504T -=]
7. (1990)已知7)a x (+的展开式中,7x 的系数是280-,则实数=a __________。

[3
4
-
] 8. (1991)6
2)x 1x 2(-
的展开式中的常数项为______________。

[60] 9. (1992)8)x 1x (+的展开式中2x
1
的系数是_______________。

[56]
10. (1993)9)1x (-按x 降幂排列的展开式中,系数最大的项是( )(A )第4项和第5项(B )第5项(C )第5项和第6项(D )第6项[B] 11. (1994)523)x
2
x (-的展开式中5x 的系数是_______________。

[40]
12. (1995)若)N n (1bx ax x )1x (23n n ∈+++++=+ ,且1:3b :a =,那么=
n _______。

[11]
13. (1996)在46)x 1()x 1(-+的展开式中,3x 的系数是__________。

[-8]
14. (1997)若)N n ()1x 3(n ∈+的展开式中各项系数的和是256,则展开式中2x 的系数
是__________。

[54]
15. (1998)设n 是一个自然数,n )n x 1(+的展开式中3x 的系数为16
1
,则=n ______。

[4] 16. (1999)在5
23)x
2x (+
的展开式中,含5x 项的系数为_______________。

[40] 17. (2000春)若5)a x (+的展开式中的第四项是2a 10(a 是大于零的常数),则=
x __________。

[
a
1
] 18. (2000)在二项式11)1x (-的展开式中,系数最小的项的系数为____________。

[-462]
19. (2001春)二项式6
)x
1x (+
的展开式中的常数项的值______________。

[20] 20. (2001)在代数式522)x
1
1)(5x 2x 4(+--的展开式中,常数项为___________。

[15]
21. (2002春)若在n 5)x
1
x (-的展开式中,第4项是常数项,则=n _________。

[18]
22. (2002)在二项式n )x 31(+和n )5x 2(+的展开式中,各项系数之和分别记为n a 、n b ,
n 是正整数,则=--∞→n
n n n n b 4a 3b 2a lim
_____________。

[21
]
23. (2003)已知数列}{n a (n 为正整数)是首项是a 1,公比为q 的等比数列,(1)求和:
223122021C a C a C a +-,3
34233132031C a C a C a C a -+-;(2)由(1)的结果归纳概括出关于正整数n 的一个结论,并加以证明。

[(1)21223122021)q 1(a C a C a C a -=+-; 31334233132031)q 1(a C a C a C a C a -=-+-;(2)归纳概括的结论为:若数列}{n a 是首项为a 1,公比为q 的等比数列,则n
n 1n n 3n 42n 31n 20n 1C a )1(C a C a C a C a +-++-+-
)N n ()q 1(a n 1∈-=,证明略]
24. (2004春)如图,在由二项式系数所构成的杨辉三角形中,
第_____行中从左至右第14与第15个数的比为3:2。

[34] 25. (2004)若在二项式10)1x (+的展开式中任取一项,则该项
的系数为奇数的概率是_____________。

[
11
4] 第0行 1 第1行 1 1 第2行 1 2 1 第3行 1 3 3 1 第4行 1 4 6 4 1 第5行 1 5 10 10 5 1 …… …… ……
26. (2005春)若)3n ,N n (2cx bx ax x )2x (n 23n n ≥∈+++++=+ ,且2:3b :a =,
则=n ___________。

[11]
27. (2005)在10)a x (-的展开式中,7x 的系数是15,则实数=a __________。

[2
1-]。

相关文档
最新文档