转矩控制、矢量控制
矢量控制与直接转矩控制技术区别修订稿

矢量控制与直接转矩控制技术区别WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-矢量控制与直接转矩控制技术矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。
具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。
矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。
这样就可以将一台三相异步电机(同步电机是指转子定子同时通电,异步机就是电机的转子转动速度与定子所产生的旋转磁场的旋转速度不一样,有转差值,顾名思义,同步机则不存在转差)等效为直流电机来控制,因而获得与直流调速系统同样的静、动态性能。
基于转差频率控制的矢量控制方式同样是在进行U / f =恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。
基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。
早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。
无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。
实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。
它的基本控制思想是根据输入的电动机的铭牌参数,按照转矩计算公式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。
转矩控制矢量控制和VF控制解析

转矩控制矢量控制和V F控制解析IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】转矩控制、矢量控制和VF控制解析1.变转矩就是负载转矩随电机转速增大而增大,是非线性变化的,如风机水泵恒转矩就是负载转矩不随电机转速增大而增大,一般是相对于恒功率控制而言。
如皮带运输机提升机等机械负载控制就是变频器输出频率与输出电压比值为恒定值或正比。
例如:50HZ时输出电压为380V,25HZ时输出电压为190V即恒磁通控制;转矩不可控,系统只是一个以转速物理量做闭环的单闭环控制系统,他只能控制电机的转速根据电机原理可知,三相异步电机定子每相电动势的有效值:E1=4.44f1N1Φm式中:E1--定子每相由气隙磁通感应的电动势的有效值,V;f1--定子频率,Hz;N1——定子每相绕组有效匝数;Φm-每极磁通量由式中可以看出,Φm的值由E1/f1决定,但由于E1难以直接控制,所以在电动势较高时,可忽略定子漏阻抗压降,而用定子相电压U1代替。
那么要保证Φm不变,只要U1/f1始终为一定值即可。
这是基频以下调时速的基本情况,为恒压频比(恒磁通)控制方式,属于恒转矩调速。
基准频率为恒转矩调速区的最高频率,基准频率所对应的电压为即为基准电压,是恒转矩调速区的最高电压,在基频以下调速时,电压会随频率而变化,但两者的比值不变。
在基频以上调速时,频率从基频向上可以调至上限频率值,但是由于电机定子不能超过电机额定电压,因此电压不再随频率变化,而保持基准电压值不变,这时电机主磁通必须随频率升高而减弱,转矩相应减小,功率基本保持不变,属于恒功率调速区。
3.矢量控制,把输出电流分励磁和转矩电流并分别控制,转矩可控,系统是一个以转矩做内环,转速做外环的双闭环控制系统。
它既可以控制电机的转速,也可以控制电机的扭矩。
矢量控制时的速度控制(ASR)通过操作转矩指令,使得速度指令和速度检出值(PG的反馈或速度推定值)的偏差值为0。
永磁同步电机的控制方法

永磁同步电机的控制方法
永磁同步电机的控制方法通常有以下几种:
1. 矢量控制:通过对永磁同步电机的电流和转子位置进行精确控制,实现精准的转速和转矩控制。
控制系统中包含了速度闭环和电流闭环控制,能够实现较高的响应速度和稳定性。
2. 直接转矩控制(DTC):在矢量控制的基础上,直接对电机转矩进行控制,通过实时监测电机状态和转矩需求,调整电机相电流和振幅,从而实现转矩控制和动态响应调节,避免了传统的速度环节和PI控制器,提高了系统的动态性能。
3. 感应机同步转矩控制(ISDT):利用感应机的电流矢量和同步电机之间的转子位置误差,实现对同步电机的转矩控制。
通过对比感应机和同步电机电磁转矩的误差,并根据误差进行调节,以实现精确转矩控制。
4. 滑模控制:利用滑模控制器,通过对滑动面进行设计,将同步电机的速度和位置误差纳入控制范围,实现速度闭环控制和稳定控制。
滑模控制方法具有较强的鲁棒性和快速响应特性,适用于对永磁同步电机的高性能控制要求。
5. 直接自适应控制(Direct Adaptive Control,DAC):基于模型引导技术,根据电机特性建立适应器模型,通过实时修正控制器参数,使得控制器能够自适应地处理电机的变化和非线性特性,以实现精准控制。
矢量控制(VC)和直接转矩控制(DTC)区别

⽮量控制(VC)和直接转矩控制(DTC)区别摘要:本⽂对⽬前交流电机变频调速控制系统流⾏的⽮量控制(VC)和直接转矩控制(DTC)的发展历史与现状,并对两者转矩响应,稳态特性,及⽆速度传感器控制进⾏了⽐较与探讨。
关键词:⽮量控制,直接转矩控制,转矩响应,稳态特性,⽆速度传感器控制1.前⾔转载于⾃1971年德国西门⼦公司F.Blaschke发明了基于交流电机坐标交换的交流电机⽮量控制(以下简称VC)原理以来,交流电机⽮量控制得到了⼴泛地应⽤。
经过30年的产品开发和⼯程实践,⽮量控制原理⽇趋完善,⼤⼤⼩⼩的交流电机变频调速控制系统⼤多采⽤⽮量控制,使交流电机调速达到并超过传统的直流电机调速性能。
1985年德国鲁尔⼤学M.Depenbrock教授提出了不同于坐标变换⽮量控制的另外⼀种交流电机调速控制原理——直接转矩控制(以下简称DTC),鲁尔⼤学的教授曾多次在国际学术会议并到中国来介绍DTC技术,引起了学术界极⼤的兴趣和关注。
DTC原理具有不同于VC 的鲜明特点:·不需要旋转坐标变换,有静⽌坐标系上控制转矩和磁链·采⽤砰-砰控制·DTC与脉宽调制PWM技术并⽤·转矩响应快·应⽤于GTO电压型变频器的机车牵引传动DTC的出现引起交流电机控制理论的研究热潮,国内不少⾼校对DTC技术及系统进⾏深⼊研究,不少⽂章提出⼀些有益的改进⽅法,对DTC理论与实践作出贡献。
但应该指出,DTC 引⼊中国的初期,⼈们的视⾓多集中在DTC的不⽤旋转变换和砰-砰控制上。
随着计算机技术的飞速发展,VC的旋转坐标变换的技术实现已不成为问题,⽽由于DTC技术应⽤实例局限于GTO电压型变频器的机车牵引传动,使得国内学术界和变频器制造商没有条件对实⽤的DTC技术以及DTC变频器的静态和动态特性进⾏深⼊研究。
1995年瑞⼠ABB公司第⼀次将DTC技术应⽤到通⽤变频器上,推出采⽤DTC技术的IGBT 脉宽调制变频器ACS600,随后⼜将DTC技术应⽤于IGCT三电平⾼压变频器ACS1000,近期推出的⽤于⼤型轧钢,船舶推进的IGCT变频器ACS6000也采⽤了DTC直接转矩控制技术。
矢量控制与直接转矩控制的比较

矢量控制与直接转矩控制的比较矢量控制是交流电机最为完美的控制方案;直接转矩控制是一种粗况的控制方案。
1971年,F Blaschke比较系统地提出了矢量控制理论。
矢量控制是通过坐标变换和矢量旋转,将交流电机完全等效为直流电机,然后应用成熟的直流电机控制方案,控制交流电机。
因此从控制方案上讲,应用矢量控制的交流调速系统和直流调速系统具有同样的控制性能。
又由于交流电机没有换向器,而且转子结构的特殊性,使得交流调速系统的最终控制性能要优于直流调速系统。
矢量控制系统的原理框图如下,矢量控制理论的提出,被认为是交流电机控制理论发展过程中的里程碑。
同其他理论一样,矢量控制理论从提出到在实践中获得成功应用,也经历了坎坷的过程。
1.在当时的情况下,矢量控制的计算量相对较大,各个子单元的计算速度能否满足控制系统整体要求,2.磁场定向的准确性,受电机参数时变的影响较大。
因此,在应用的初期,实际效果差强人意。
人们在理论的先进性,和实际的应用效果之间做了一定的取舍。
在此背景下,于1977年,A.B.P iunkett在IEEE 杂志上首先提出了直接转矩的控制思想,1985年,由德国鲁尔大学的Depenbrock教授首次取得了实际应用。
直接转矩控制德语称之为Direkte Selb-Stragelung, 英语称之为Direct Self-Control。
由于它控制的是转矩,因此后来也经常称之为Direct Torque Control。
直接转矩控制的思想源于矢量控制,其原理框图如下,P214 图6-62由于直接转矩控制是在两相静止坐标系内,省去了矢量控制中的旋转变换,因而使计算量减少,从而提高了系统整体的运行速度。
这在90年代初,鉴于当时的集成芯片的水平,这样的减少还是很有必要的。
另外,由于直接转矩控制采用定子磁场控制,避免了转子电阻时变的影响,因此在一定程度上减弱了电机参数时变对系统的影响。
直接转矩控制在克服了矢量控制弊端的同时,这种粗况式控制方式也暴露出固有的缺陷。
直接转矩控制与矢量控制的区别

直接转矩控制与矢量控制的区别简单地说,直接转矩控制与矢量控制的主要区别如下:1.控制特点矢量控制以转子磁通的空间矢量为定向(基准)。
为此,在控制过程中:(1)需要电动机的参数多,定向准确度受参数变化的影响较大:(2)要进行复杂的等效变换(直一交变换、2/3变换等),调节过程需要若干个开关周期才能完成,故响应时间较长,大于100ms。
而直接转矩控制以定子电压的空间矢量为定向(基准)。
为此,在控制过程中:(1)只需要电动机的定子电阻一个参数,既易于测量,定向准确度也高;(2)不必进行等效变换,故动态响应快,只需1~5m;(3)容易实现无速度传感器控制。
2.脉宽调制矢量控制采用正弦脉宽调制( SPWM)方式,故:(1)必须有SPWM发生器,结构复杂;(2)输出电流的谐波分量较小,冲击电流小;(3)载波频率是固定的,电磁噪声小。
直接转矩控制不采用正弦脉宽调制( SPWM)方式,而采用“砰-砰”控制(双位控制)方式,逆变电路的开关状态(是否有电压输出)取决于实测转矩信号TS*与给定转矩信号TG*之间进行比较的结果:TS*>TG*→逆变电路有电压输出;TS*<TG*→逆变电路无电压输出。
因此:(1)不需要PWM发生器,故结构简单,且转矩响应快;(2)输出电流的谐波分量较大,冲击电流也较大,逆变器输出端常常需要接入输出滤波器或输出电抗器,但这又将导致输出电压偏低;(3)逆变电路的开关频率不固定,电动机的电磁噪声较大。
根据清华大学反复实验以及用户使用后的反馈信息来看,直接转矩控制和矢量控制是各有优缺点的。
除了上面所述的比较外,一般说来,直接转矩控制在高频运行和低频运行时的实际性能都不如矢量控制。
目前,两种控制方式正在互相渗透。
例如,有的变频器在矢量控制方式中加入转矩控制功能;而采用直接转矩控制方式的变频器在低频段也正在借助矢量控制的方法来改善其低频运行特性。
异步电动机矢量控制_FOC_和直接转矩控制_DTC_方案的比较

异步电动机矢量控制_FOC_和直接转矩控制_DTC_方案的比较首先,我们来看看FOC方案。
FOC方案是基于电机矢量控制理论而发展起来的一种控制方法,在控制异步电动机时,可以通过精确测量和控制转子磁链矢量的方向和大小,来实现精确控制电机的转矩和转速。
其核心思想是将电动机的三相定子电流进行矢量拆分,分为一个磁场矢量和一个转矩矢量,从而实现转子磁链方向和大小的控制。
FOC方案的优点是控制精度高,响应速度快。
由于可以实时测量和控制电机的磁链矢量,FOC方案可以精确控制电机的转矩和转速。
此外,由于转子磁链矢量可以根据需要即时调整,FOC方案可以快速响应转矩和速度的变化,从而适用于需要快速响应和精确控制的应用。
然而,FOC方案也存在一些缺点。
首先,FOC方案的实现较为复杂,需要进行电流和电压的矢量控制,以及相应的转子定位和速度估算算法。
这些复杂的控制算法在实践中需要较高的计算能力和较多的计算资源,因此实现起来较为困难。
其次,FOC方案对于电机参数和系统模型的准确性要求较高。
由于FOC方案需要测量和控制转子磁链矢量,因此对电机参数和系统模型的准确性要求较高,如果参数不准确,将导致控制性能下降。
接下来,我们来看看DTC方案。
DTC方案是一种基于直接转矩控制原理的控制方法,其核心思想是通过采用转矩和磁链两个控制变量直接控制电机的转矩和速度。
DTC方案通过测量和计算磁链和转矩的误差,根据预定的控制规则直接调节电机的电压和频率,以实现对电机转矩和速度的控制。
DTC方案的优点是实现简单,控制快速。
DTC方案不需要进行电流和电压的矢量控制,只需要测量和控制磁链和转矩的误差,因此实现起来相对简单。
此外,DTC方案由于直接控制电机的电压和频率,可以快速响应转矩和速度的变化,适用于需要快速相应和简单控制的应用。
然而,DTC方案也存在一些缺点。
首先,DTC方案的动态性能较差。
由于DTC方案是基于磁链和转矩误差进行控制的,其控制性能受到不可避免的误差和延迟的影响,因此其动态性能较差,不能达到FOC方案的精确度和响应速度。
矢量控制与直接转矩控制的比较[整理]
![矢量控制与直接转矩控制的比较[整理]](https://img.taocdn.com/s3/m/913c011bbb1aa8114431b90d6c85ec3a86c28b50.png)
矢量控制与直接转矩控制的比较矢量控制是交流电机最为完美的控制方案;直接转矩控制是一种粗况的控制方案。
1971年,F Blaschke比较系统地提出了矢量控制理论。
矢量控制是通过坐标变换和矢量旋转,将交流电机完全等效为直流电机,然后应用成熟的直流电机控制方案,控制交流电机。
因此从控制方案上讲,应用矢量控制的交流调速系统和直流调速系统具有同样的控制性能。
又由于交流电机没有换向器,而且转子结构的特殊性,使得交流调速系统的最终控制性能要优于直流调速系统。
矢量控制系统的原理框图如下,矢量控制理论的提出,被认为是交流电机控制理论发展过程中的里程碑。
同其他理论一样,矢量控制理论从提出到在实践中获得成功应用,也经历了坎坷的过程。
1.在当时的情况下,矢量控制的计算量相对较大,各个子单元的计算速度能否满足控制系统整体要求,2.磁场定向的准确性,受电机参数时变的影响较大。
因此,在应用的初期,实际效果差强人意。
人们在理论的先进性,和实际的应用效果之间做了一定的取舍。
在此背景下,于1977年,A.B.P iunkett在IEEE 杂志上首先提出了直接转矩的控制思想,1985年,由德国鲁尔大学的Depenbrock教授首次取得了实际应用。
直接转矩控制德语称之为Direkte Selb-Stragelung, 英语称之为Direct Self-Control。
由于它控制的是转矩,因此后来也经常称之为Direct Torque Control。
直接转矩控制的思想源于矢量控制,其原理框图如下,P214 图6-62由于直接转矩控制是在两相静止坐标系内,省去了矢量控制中的旋转变换,因而使计算量减少,从而提高了系统整体的运行速度。
这在90年代初,鉴于当时的集成芯片的水平,这样的减少还是很有必要的。
另外,由于直接转矩控制采用定子磁场控制,避免了转子电阻时变的影响,因此在一定程度上减弱了电机参数时变对系统的影响。
直接转矩控制在克服了矢量控制弊端的同时,这种粗况式控制方式也暴露出固有的缺陷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转矩控制、矢量控制和VF 控制解析1. 变转矩就是负载转矩随电机转速增大而增大,是非线性变化的,如风机水泵恒转矩就是负载转矩不随电机转速增大而增大,一般是相对于恒功率控制而言。
如皮带运输机提升机等机械负载2. VF 控制就是变频器输出频率与输出电压比值为恒定值或正比。
例如:50HZ时输出电压为380V,25HZ时输出电压为190V即恒磁通控制;转矩不可控,系统只是一个以转速物理量做闭环的单闭环控制系统,他只能控制电机的转速根据电机原理可知,三相异步电机定子每相电动势的有效值:E仁4.44f1N1①m 式中:E1--定子每相由气隙磁通感应的电动势的有效值,V ;f1 --定子频率,Hz;N 1 ——定子每相绕组有效匝数;①m-每极磁通量由式中可以看出,①m的值由E1/f1决定,但由于E1 难以直接控制,所以在电动势较高时,可忽略定子漏阻抗压降,而用定子相电压U1代替。
那么要保证①m不变,只要U1/f1 始终为一定值即可。
这是基频以下调时速的基本情况,为恒压频比(恒磁通)控制方式,属于恒转矩调速。
基准频率为恒转矩调速区的最高频率,基准频率所对应的电压为即为基准电压,是恒转矩调速区的最高电压,在基频以下调速时,电压会随频率而变化,但两者的比值不变。
在基频以上调速时,频率从基频向上可以调至上限频率值,但是由于电机定子不能超过电机额定电压,因此电压不再随频率变化,而保持基准电压值不变,这时电机主磁通必须随频率升高而减弱,转矩相应减小,功率基本保持不变,属于恒功率调速区。
3. 矢量控制,把输出电流分励磁和转矩电流并分别控制,转矩可控,系统是一个以转矩做内环,转速做外环的双闭环控制系统。
它既可以控制电机的转速,也可以控制电机的扭矩。
矢量控制时的速度控制(ASR )通过操作转矩指令,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。
带PG 的V/f 控制时的速度控制通过操作输出频率,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。
矢量控制原理是模仿直流电动机的控制原理, 根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制,在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。
具体做法是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。
矢量控制分有速度传感器矢量控制和无速度传感器矢量控制两种, 前者精度高后者精度低。
矢量控制系统的无速度传感器运行方式,首先必须解决电机转速和转子磁链位置角的在线辨识问题。
常用的方法有基于检测定子电流信号的辨识方法,有同时使用电流检测信号和电压检测信号的辨识方法,还有根据电流检测信号和逆变器的开关控制信号重构电压信号的方法。
基于蓝海华腾变频器V6-H 说明书作以上说明1. V/F 控制方式变频器采用V/F 控制方式时,对电机参数依赖不大,一般强调“空载电流”的大小。
由于我们采用矢量化的V/F 控制方式,故做电机参数静止自整定还是有必要的。
不同功率段的变频器,自学习后的空载电流占额定电流大小百分比也是不同的。
一般有如下百分比数据:5.5kW~15 kW, 空载电流P9.05 的值为30%~50% 的电机额定电流;3.7 kW 及以下的,空载电流P9.05 的值为50%左右的电机额定电流;特殊情况时,0.4 kW 、0.75 kW 、1.5 kW ,空载电流P9.05 的值为70%~80% 的电机额定电流;有的0.75 kW 功率段,参数自整定后空载电流为电机额定电流的90% 。
空载电流很大,励磁也越大。
何为矢量化的V/F 控制方式,就是在V/F 控制时也将输入电流量进行解耦控制,使控制更加精确。
变频器输出电流包括两个值:空载电流和力矩电流,输出电流I 的值为空栽电流Im 和力矩电流It 平方和后开2 次方。
故空载电流是影响变频器输出电流的主要因素之一。
V/F 控制时输出电压与运行频率之比为一定值:即U/F=K (K 为常数),P0.12= 最大输出电压U,P0.15= 基频F。
上图中有个公式,描述转矩、转速、功率之间的关系。
变频器在基频以下运行时,随着速度增快,可以输出恒定的转矩,速度增大不会影响转矩的输出;变频器在基频以上运行时,只能保证输出额定的功率,随着转速增大,变频器不能很好的输出足够大的力;有时候变频器速度更快,高速运行时,处于弱磁区,我们必须设置相应的参数,以便让变频器适应弱磁环境。
速度与出力,高速或者低速时,两者不可兼得,这里有个数据概念:调速范围,指满足额定转矩出力的最低频率与最高频率的比值。
以前一般的VF 控制方式调试范围为1:20~1 :40,我司产品V/F 控制调速范围可以达到1:100 ,能够满足更多范围的行业应用。
在开环矢量时可以达到1:200,闭环矢量时达到1:1000 ,接近伺服的性能。
变频器V/F 控制系统运行时,有两种方式进行转矩的提升:1)、自动转矩提升:必须在P0.16=0 且P4.00=0 时,自动转矩提升才有效。
其作用为:变频器V/F 控制低频运行时,提高输出电压,抵消定子压降以产生足够的转矩,保证电机正常运行。
自动转矩提升与变频器设置“空载电流”和静止学习的“定子电阻”有关系,变频器必须作电机参数静止自整定,才能更好的控制电机运行。
变频器作自动转矩提升控制电机时,见上图所示输出电压和频率的线性关系,运行中因为负载变化对电压输出作适当的增减,由于响应时间的快慢,所以会出现出力不稳定因素。
2)、手动转矩提升设置P0.16 为某一数值时,或者设置P4.00 为非零时,手动转矩提升才有效。
手动转矩提升只与变频器设置“空载电流”有关系,受电机其他参数设置影响较小。
如下图所示,为手动转矩提升曲线图。
变频器输出作手动转矩提升,其转矩出力在原来基础上成线性增加,所以出力稳定,不受负载变化的影响,出力稳定。
但是转矩提升不益太大,转矩提升的幅度应根据负载情况适当设定,提升过多,在启动过程中将产生较大的电流冲击。
自动转矩提升只能满足一拖一的输出情况,当涉及一台变频器拖动多台电机时,V/F 控制时必须采用手动转矩提升,即设置P0.16 为非0 值。
V/F 控制时的有关性能参数调试:PA.02 为V/F 控制转差补偿增益,设置此参数时,可以参考电机额定转速P9.02 来设定参数。
该功能有助于变频器在负载波动及重载情况下保持电机转速恒定,即补偿由于负载波动而导致的电机转速增减,但是由于补偿本身的响应时间问题,导致系统出现不稳定因素增多,在系统波动较大的情况下,此功能码设置为0 有一定效果PA.04 、PA.05 为电流限定功能,由于瞬时负载过大而导致系统没法正常运行,可以适当增大PA.05 限定值。
V/F 控制涉及到以上注意要点和关键功能码。
2. 矢量控制方式变频器作矢量控制时,对电机参数的依赖很大,所以必须对电机作旋转自整定,参数自整定前,必须设置正确的电机机型参数,完全脱开电机负载。
Pd.01 、Pd.02 、Pd.03 、Pd.04 、Pd.05 、Pd.15 、Pd.16 参数说明:下图所示为速度环比例增益与积分时间、电流环比例系数与积分系数调节。
Pd.01~ Pd.05 为速度环比例增益与积分时间调节参数,设置Pd.05=5HZ ,当电机运行频率大于5HZ 的时候,Pd.01 、Pd.02 调节参数起作用;当电机运行频率小于5HZ 的时候,Pd.03、Pd.04调节参数起作用。
运行参数输出T与比例增益P 成正比,与积分时间I 成反比,所以Pd.01~ Pd.04 四组参数,P 设置越大,I 设置越小,那么T 就越大,变频器控制电机动态响应就越快,此时速度环输入频率与反馈频率一旦有频率差,系统就响应迅速。
但是响应太快了会导致电机出现震荡非常厉害。
举例:某现场,Pd.01 和Pd.03 为出厂值2 或3,此两参数设置在5HZ上下时的比例增益P。
开始调试,进行参数自学习,作矢量控制,设置P0.03=4 ,点运行,此时电机震动非常厉害,电流很大,运行根本不正常。
后来设置Pd.01=1 和Pd.03=1 ,然后再运行电机,运行很稳定,无任何异常情况。
这里我们让动态响应变慢了,那么系统响应慢些了,频率及电流输出就稳定些了。
但是调试基本原则是,“在系统无震荡的前提下”,响应越快越好,也就是Pd.01 和Pd.03 越大,Pd.02 和Pd.04 越小,响应就越快,越好。
因为实时跟踪反馈的速度,然后作出频率及电流、转矩输出调整,这是开环矢量型变频器控制出力稳定性的基本要求。
一般小功率的变频器带电机场合,需要适当减小Pd.01 和Pd.03,增大Pd.02和Pd.04,这样更能适应现场的调试工作,当然是根据具体情况来调节数据,不能一概而论。
Pd.15 和Pd.16 为电流环比例系数和积分系数。
下图所示电流环调节过程。
在电流环调整时,比例系数P、积分系数I越大,对系统作用越强。
一般此两参数不作更改。
举例:1)、某现场测试,变频器带一台电机空载,作旋转自学习以后,矢量控制,点运行。
电机平稳运行着,只是电机内部会发出嗡嗡的声音,感觉电机轴在内部遇到什么阻碍,象棉花塞着了一样,我们观察电机输出空载电流,比通常情况电流输出要高一些,系统不会有大的抖动和震动,就只出现上面文字说明的情况,也不严重,但是就是与正常情况有点区别。
后来我们更改Pd.15 和Pd.16 参数由1000 变成400 ,然后再运行电机,此时有明显效果,电流偏小了,与正常运行电流一致了,也没有嗡嗡的声响了。
此时我们调节参数把电流环作用减弱了,响应不是那么快了,然后能满足此电机的正常运行。
2)、当现场控制需要高速运行,超过基频50HZ (举例),那么电机进入弱磁场区域,存在系统震荡,那么此时可以把Pd.16 由1000 减小为0,让电流环积分增益I 作用为0,此时,弱磁区高速运行就不存在问题了,系统运行稳定无震荡。
Pd.08 、Pd.09 参数说明:此两个参数分别对驱动转矩和制动转矩进行限定,值越大,那么变频器启动瞬间输出的瞬间转矩力就越大,VF 控制和矢量控制时加减速响应时间越快。
Pd.14 参数说明:此功能设置欲激磁时间,欲激磁是在电机启动前事先建立起磁通,以达到电机启动时快速响应的目的。
当有运行指令时,先按本功能码设定的时间进入欲激磁状态,磁通建立起来后,再进入正常的加速运行。
在不影响加速的情况下,此参数设置的越长,那么电机起动出力越好。
我们出厂值设置为0.3S ,有些电机可以设置为0,不需要预激磁。