聚 氨 酯
聚氨酯PU

叔胺类催化剂 金属有机化合物
阻燃剂
其它配合剂
抗氧剂 紫外线吸收剂
着色剂 增塑剂
概述、聚氨酯的主要原料-异氰酸酯
PUR的分子结构中均含有异氰酸酯(—NCO—)基团。生产PUR 用得最多的是甲苯二异氰酸酯(TDI)、二苯基甲烷二异氰酸酯 (MDI)和多亚甲基多苯基多异氰酸酯(PAPI)
1.甲苯二异氰酸酯(TDI)TDI是水白色或浅黄色液体,具有强烈 的刺激性气味,毒性大,对皮肤、眼睛和呼吸道有强烈的刺激作 用,吸入高浓度TDI蒸气对人体有害。DI常用于软质PUR泡沫制 品
聚醚多元醇 主要品种有聚氧化丙烯醚二醇和聚四氢呋喃醚二醇 。这类多元醇粘度低、可在常温下混合、制得的PUR弹性大、成 本低。适用于软质PUR泡沫塑料制品。
聚酯多元醇常见的品种有二元酸与二元醇反应生成的线型聚酯 多元醇,主要用于软质PUR制品;二元酸与三元醇反应生成的支 化聚酯多元醇及芳香聚酯主要用于硬质PUR制品。
2. 二苯基甲烷二异氰酸酯(MDI) MDI毒性比TDI弱,使用较方 便。MDI常用于半硬和硬质PUR泡沫塑料。
3. 多亚甲基多苯基多异氰酸酯(PAPI)PAPI是一种不同官能度 的多异氰酸酯混合物。主要用于硬质PUR制品及混炼、浇注PUR 制品。
概述、聚氨酯的主要原料-多元醇
制备PUR的多元醇一般为分子内含有两个以上羟基的有机化合物 ,常见的有聚酯多元醇和聚醚多元醇。它们在PUR中的含量决定 了材料的软硬、柔韧和刚性。
书》后,有关氟氯烃(CFC)发泡剂的替代问题,经10多年的研 究,已取得显著进展。
概述-聚氨酯的主要原料 脂肪族
异氰酸酯 脂环族
芳香族
聚酯多元醇 环氧丙烷聚醚多元醇
低聚物多元醇 聚醚多元醇 四氢呋喃聚醚多元醇
聚氨酯对人体健康的危害

聚氨酯对人体健康的危害
聚氨酯全称为聚氨基甲酸酯,是主链上含有重复氨基甲酸酯基团的大分子化合物的统称。
它是由有机二异氰酸酯或多异氰酸酯与二羟基或多羟基化合物加聚而成。
即二苯基甲烷二异氰酸酯(MDI)或甲苯二异氰酸酯(TDI)与多元醇加添加剂聚合成聚氨基甲酸乙酯(聚氨酯)。
该物质遇高热或火时可散发氰化钾有毒气体。
氰化钾毒气为剧毒气体,可经呼吸道及皮肤直接吸收,人体接触後能於一瞬间致死。
中毒征象:微小份量已可致人,迅速昏迷,呼吸停止,死亡。
一般中毒会出现呕吐等状况,同时皮肤表面会呈鲜红色。
在肠内的吸收很快,可迅速吸收,中毒者身上的细胞功对人体细胞造成永久的、无可挽回的破坏。
资料显示,人体只要吸收了二十五毫克,几分钟至一小时之内即可致命,而吸收了六毫克即会出现呕吐、皮肤转红,呼吸困难等症状。
中毒一般会通过三种途径:空气吸入、食物中毒及皮肤直接吸收。
企业应高度重视有毒化学品的管理;做好突发事件的应急救援预案;完善工作场所的防护措施的设置和维护;加强作业人员的个体防护的配备,并监督作业人员个体防护用具的使用。
7.2 聚氨酯

不同活性氢与异氰酸酯的相对反应活性:脂肪族NH2>芳香 族NH2>伯 醇OH>水>仲OH>酚OH>羧基>取代脲>酰胺>氨基甲酸 酯. 1.异氰酸酯与羟基的反应: RNCO+R’-OHRNHCOOR’ 异氰酸酯与羟基的反应产物为氨基甲酸酯,研究表明,异氰酸 酯与羟基 反应是二级反应,反应速率常数随着羟基含量而变化,不随异 氰酸酯的 浓度而改变. 多元醇与多异氰酸酯生成聚氨酯甲酸酯(简称聚氨酯).以二元 醇与二 异氰酸酯的反应为例,反应式如下: nOCN-RNCO + nHO-R’-OH~~~[CNOH-R-NHCOOR’-O]n~~~
第十四章
一、简介
聚氨酯(PU)
1937年,德国拜耳(Bayer)教授首先利用异氰酸酯与多元 醇化合物发生加聚反应制得聚氨酯树脂以来,经过几十年的发 展,聚氨酯已成为当今社会继聚乙烯、聚丙烯、聚氯乙烯、聚
苯乙烯、酚醛塑料之后用量较大、发展速度最快的聚合物之一
。2002年超过1000万t,年增长率为4%~5%,最高达13%。 聚氨酯树脂具有可发泡性、弹性、耐磨性、粘接性、耐低温 性、耐溶剂性以及耐生物老化性等特点。因此用途十分广泛。
聚氨酯原料
1、异氰酸酯及其结构特征
一、结构特点
在分子结构中含有异氰酸酯基团(-N=C=O)的 化合物,均称为异氰酸酯(isocyanate),其结构 通式如下:
R-(NCO)n
式中R为烷基、芳基、脂环基等;n=1、2、
3….整数。在聚氨酯材料合成中,主要使用n≥2的
异氰酸酯化合物。
二、异氰酸酯的分类
c.异氰酸酯与羧酸酐的反应,生成较高耐热性的酰亚胺环,二
异氰酸酯与二羧酸酐反应生成较高耐热性的聚酰亚胺.
聚氨酯是什么材料

什么是聚氨酯?聚氨酯(PUR),也称为氨基甲酸酯,其特征在于含有氨基甲酸酯键:-NH-C(= O)-OR'。
氨基甲酸酯是由有机异氰酸酯基(r-NCO)和羟基(r'-oh)反应形成的:R-NCO + R'-OH = R-NH-C(= O)-OR'。
聚氨酯泡沫称为PUR泡沫。
像许多其他聚合物系列一样,聚氨酯是基于将多元醇组分与异氰酸酯组分混合以形成氨基甲酸酯嵌段共聚物。
由于多元醇和异氰酸酯的无限性,以及其他应用和辅助材料聚氨。
1942年,Zaunbrecher和Barth发明了软质聚氨酯泡沫产品的第一项专利,即在催化剂存在下混合甲苯二异氰酸酯(TDI),羟基封端的聚酯多元醇和水以形成聚氨酯并同时产生气体。
聚氨酯链是由异氰酸酯基(NCO)与羟基(OH)反应形成的,二异氰酸酯基与水反应生成二氧化碳气体。
由于伯羟基含量高,早期的聚酯多元醇与异氰酸酯反应放出热量,在某些情况下会导致严重的芯燃烧或着火,特别是大海绵的生产,限制了其应用。
聚氨酯的广泛应用得益于多元醇的迅速发展。
自从聚醚多元醇被发明并投入使用以来,它们已成为聚氨酯泡沫工业的核心材料。
在早期阶段,仅通过使用环氧丙烷(PO)作为单体制备聚环氧丙烷多元醇(聚醚多元醇)。
聚醚的反应性官能团主要是仲羟基,聚醚多元醇的反应性明显低于聚酯多元醇。
从那时起,不断开发各种引发剂,具有不同功能和分子量的聚醚多元醇,后来又开发了聚环氧丙烷-环氧乙烷多元醇,聚合物多元醇(或接枝共聚物多元醇)和PHD多元醇,这使聚氨酯得以应用。
更丰富。
介绍在早期发泡过程中,采用预聚物的方法,即先将聚醚多元醇和二异氰酸酯制备成预聚物,然后将水,催化剂,表面活性剂和其他添加剂加入到预聚物中,并在高速搅拌下混合以发泡。
制备要求高,操作范围窄,起泡过程和起泡质量难以控制。
由于使用了1,4-二氮杂双环[2,2,2]辛烷(DABCO胺固定催化剂)的发明,因此逐步消除了通过预聚物方法进行的发泡过程,一步发泡成为主流并迅速发展。
聚氨酯全称为聚氨基甲酸酯

聚氨酯全称为聚氨基甲酸酯 ,是主链上含有重复氨基甲酸酯基团的大分子化合物的统称。
它是由有机二异氰酸酯或多异氰酸酯与二羟基或多羟基化合物加聚而成。
目前聚氨酯泡沫塑料应用广泛。
聚氨酯弹性体可在较宽的硬度范围具有较高的弹性及强度、优异的耐磨性、耐油性、耐疲劳性及抗震动性,具有“耐磨橡胶”之称。
聚氨酯弹性体在聚氨酯产品中产量虽小,但聚氨酯弹性体具有优异的综合性能,已广泛用于冶金、石油、汽车、选矿、水利、纺织、印刷、医疗、体育、粮食加工、建筑等工业部门。
PU是聚氨酯,PU皮就是聚氨酯成份的表皮.现在服装厂家广泛用此种材料生产服装,俗称仿皮服装.PU 是英文polyurethane的缩写,化学中文名称聚氨酯其质量也有好坏,好的包包多采用进口PU 革聚氨酯复合板聚氨酯复合板也称PU夹芯板。
聚氨酯为芯材的复合板由上下层彩钢板加中间发泡聚氨酯组成,采用世界上先进的六组份在线自动操作混合浇注技术,可在线一次性完成社会配料中心或工厂的配比混合工艺,并可根据温度在线随意调整,从而生产出与众不同的高强度、节能型、绿色环保的建筑板材。
由于其防火防潮性能好,也常用于其它材料复合板的封边芯材,聚氨酯封边复合板采用高品质彩色涂层钢板为面材,连续岩棉、玻璃丝棉为芯材,高密度硬质发泡聚氨酯为企口填充,经过高压发泡固化,自动密实布棉并由超长双覆带控制成型复合而成,与传统挂棉维护材料相比,防火、保温效果更佳,性能更持久,安装便捷、外观雅致。
是钢建筑维护材料的领先者。
一般用于建筑物的屋面外层板,该板具有良好的保温、隔热、隔音效果,并且聚氨酯不助燃,符合消防安全。
上下板加聚氨酯的共同作用,具有很高的强度和刚度,下层板光滑平整,线条明朗,增加室内美观度、平整度。
安装方便,工期短,美观,是一种新型的建筑材料。
本夹芯板具有轻质、美观和良好的防腐蚀性能,又可直接加工,它给建筑业、造船业、车辆制造业、家具行业、电气行业等提供了一种新型原材料,起到了以钢代木、高效施工、节约能源、防止污染等良好效果。
聚氨酯PU

聚氨酯橡胶
产品应用(发泡聚氨酯制品)
聚氨酯橡胶
聚氨酯橡胶性能(弱点)
(1)耐水解性能比较差,尤其是温度稍高或酸碱 介质存在下水解更快; (2)滞后损失大,在高速运动中的厚制品积累热 较高,影响使用。
聚氨酯橡胶
聚氨酯橡胶分类(按加工方式)
浇注型聚氨酯 混炼型聚氨酯 热塑性聚氨酯
聚氨酯橡胶
PU类型
浇注型
优点
缺点
最大限度地发挥聚氨酯弹性体的 特点,工艺简单,制造加工设备 和模具费低,可机械或手工操作
聚氨酯橡胶
聚氨酯涂层剂
聚氨酯涂层剂是当今发展的主要种类,它的优 势在于:涂层柔软并有弹性;涂层强度好,可 用于很薄的涂层;涂层多孔,具有透湿和通气 性能;耐磨,耐湿,耐干洗。 其不足在于: 成本 较高;耐气候性差;遇水、热、碱要水 解。
聚氨酯橡胶
硬质聚醚型塑料
该制品最大特点是:可根据具体使用要求,通 过改变原料的规格、品种和配方,合成所需性 能的产品。该产品质轻(密度可调),比强度 大,绝缘和隔音性能优越,电气性能佳,加工 工艺性好,耐化学药品,吸水率低,加入阻燃 剂,亦可制得自熄性产品。主要用于冷库、冷 罐、管道等部门作绝缘保温保冷材料,高层建 筑、航空、汽车等部门做结构材料起保温隔音 和轻量化的作用。超低密度的硬泡可做防震包 装材料及船体夹层的填充材料。
聚氨酯橡胶
产品应用
目前聚氨酯泡沫塑料应用广泛。软泡沫塑料主要用于家具及交通工具 各种垫材、隔音材料等;硬泡沫塑料主要用于家用电器隔热层、屋墙 面保温防水喷涂泡沫、管道保温材料、建筑板材、冷藏车及冷库隔热 材等;半硬泡沫塑料用于汽车仪表板、方向盘等。市场上已有各种规 格用途的泡沫塑料组合料(双组分预混料),主要用于(冷熟化)高回弹 泡沫塑料、半硬泡沫塑料、浇铸及喷涂硬泡沫塑料等。
聚氨酯是什么材料

聚氨酯是什么材料我们所熟知的聚氨酯全名为聚氨基甲酸酯,是一种高分子化合物。
聚氨酯有聚酯型和聚醚型二大类。
可制成聚氨酯塑料、聚氨酯纤维、聚氨酯橡胶及弹性体。
软质聚氨酯主要是具有热塑性的线性结构,它比PVC发泡材料有更好的稳定性、耐化学性、回弹性和力学性能,具有更小的压缩变型性。
隔热、隔音、抗震、防毒性能良好。
因此用作包装、隔音、过滤材料。
硬质PU塑料质轻、隔音、绝热性能优越、耐化学药品、电性能好,易加工,吸水率低。
它主要用于建筑、汽车、航空工业的结构材料。
聚氨酯弹性体性能介于塑料和橡胶之间,耐油,耐磨,耐低温,耐老化,硬度高,有弹性。
主要用于制鞋工业和医疗业、合成革等。
聚胺酯属于反应型高分子材料,同类的塑料还包括:环氧树脂、不饱和聚酯、酚醛塑料。
其中的氨基甲酸酯基团是由异氰酸酯官能团-N=C=O和羟基-OH反应生成的。
聚氨酯是由聚亚氨脂和多元醇在催化剂和其它助剂存在下加成聚合反应而生成。
既然这样,聚亚氨酯是一个含有两个以上异氰酸官能团R-(N=C=O)n ≥ 2 的分子,而多元醇是一个含有两个以上羟基官能团R'-(OH)n ≥ 2的分子. 反应产物是包含有胺基甲酸酯基-RNHCOOR'-的聚合物. 异氰酸酯会和任何含有活泼氢离子的分子发生反应。
更重要的是,异氰酸酯会和水反应生成脲键并放出二氧化碳。
它们还会和聚醚胺反应生成聚脲。
商业制造时,液态异氰酸酯和包含多元醇、催化剂和其它助剂的混合物反应生成聚氨酯。
这两种组分即通常所指的聚氨酯配方体系。
北美称异氰酸酯为A组分,或叫“ISO”。
多元醇和其它助剂的混合物被称为B组分,或叫“POLY",这种混合物有时也被称作树脂或树脂混合物。
在欧洲,A组分和B组分正好相反。
树脂混合的助剂可以包括链增长剂、交联剂、表面活性剂、阻燃剂、发泡剂、颜料和填料。
聚氨酯介绍

的应用越来越广。MDI的化学结构主要为4,4-MDI,此外还包括2,4-MDI和 2,2-MDI。其沸点、凝固点见下表:
聚氨酯介绍
聚氨酯及塑料
聚氨酯为大分子链中含有氨酯型重复结构单 元的一类聚合物,全称为聚氨基甲酸酯,简称PU 或PUR。是由多异氰酸酯与聚醚型或聚酯型多羟 基化合物在一定比例下反应的产物。一般分为热 塑性和热固性两大类;或分为弹性体和泡沫塑料 两大类。
2
聚氨酯的合成原理 1. 聚氨酯(Po1yurethane, PU)的发展
8
1.芳香族多异氰酸酯 聚氨酯树脂中90%以上属于芳香族多异氰酸酯。与芳基相连的异氰酸 酯基对水和羟基的活性比脂肪基异氰酸酯基团更活泼。基于TDI的聚氨酯 由于高的苯环密度,其力学性能也较脂肪族多异氰酸酯的聚氨酯更为优 异。以下是一些常用的产品。 (1)甲苯二异氰酸酯(tolulene diisocyanate,TDI) 甲苯二异氰酸酯是最早开发、应用最广、产量最大的二异氰酸酯单体; 根据其两个异氰酸酯(—NCO)基团在苯环上的位置不同,可分为2,4-甲 苯二异氰酸酯(2,4-TDI,简称2,4-体)和2,6-甲苯二异氰酸酯(2,6-TDI, 2,6-体)。
10
O O C NH
H2N
CH3 O
NH C O hv
CH3 O
NH C O [O]
[O] HN
H3C O O C HN
NN
CH3 O
NH C O
CH2 O
NH C O
11
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚氨酯【摘要】:聚氨酯硬泡大很多应用场合都是阻燃要求的,20年来中国相应的材料阻燃标准在不断修订,并逐步与国际标准接轨。
通过对以往研究工作的总结,本文就聚氨酯硬泡在实施《建筑材料燃烧性能分级方法》(GB8624-2006)后应向什么方向发展,提出了几点建议。
[关键词]:阻燃标准;聚氨酯硬泡;阻燃方向聚氨酯硬泡20余年执行的相关阻燃标准 1.1《建筑材料燃烧性能分级方法》(GB8624-1997)对于PU硬泡B1等级的严格要求近20年来,我国聚氨酯工业发展很快。
由于该产品具有非常低的导热系数及透水蒸汽性,质轻、比强度高,加之其与纸、金属、木材、水泥板、砖墙塑料板、沥青毡等具有很强的粘接性,不需另加其它粘合剂等优点,已为众多的工业及民用部门所采用。
但是,聚氨酯与其它有机高分子材料一样是一种可燃性较强的聚合物。
硬质聚氨酯泡沫塑料的密度小,绝热性能好,与外界的暴露面比其它材料大,因此更容易燃烧。
随着聚氨酯泡沫塑料的广泛运用,其材料的耐燃、防火等问题已成为迫切需要解决的重要课题。
在我国,由于不慎引燃聚氨酯泡沫塑料而导致火灾的事件时有发生,给聚氨酯泡沫的应用带来了一些负面影响。
在国外许多专家甚至认为这个问题是硬质聚氨酯泡沫塑料今后能否继续发展的关键之一。
因此硬质聚氨酯泡沫塑料的耐燃性、安全性,已成为能否用于建筑材料的重要技术指标。
许多国家的建筑立法机构都制定了一系列难燃法规,与此同时又相应的制定了一系列对聚氨酯泡沫塑料燃烧性能的测试方法。
我国从1980年开始制定了4项塑料燃烧性能试验方法的国家标准,即氧指数法(GB2406-1980)、炽热棒法(GB2407-1980)、水平燃烧法(GB2408-1980)、垂直燃烧法(GB2409-1980),特别是氧指数法(GB2406-1980)是我国适用于硬质聚氨酯泡沫塑料燃烧性试验的第1个国家标准。
1984年上海市公安局颁布了《关于生产、销售、使用高分子建筑材料的管理规定》,其中明确指出:硬质聚氨酯泡沫塑料使用在建筑上,氧指数不得小于26%。
相当多的省市部门及公安消防机构参照此规定陆续颁布了各地方和部门的法规。
研制氧指数大于26%的硬质聚氨酯泡沫塑料,也引起了国内相关研究部门的普遍重视。
国家科委在“六五”、“七五”期间将硬质聚氨酯泡沫塑料氧指数大于26%的指标列为国家攻关课题,并在“七五”攻关成功。
这对安全使用硬质聚氨酯泡沫塑料,减少和消除火灾事故,起到了积极的作用。
但随着我国科学技术不断提高,生产、使用硬质聚氨酯泡沫塑料的有关单位和公安消防部门的工作人员逐渐认识到,其是一种有机高分子材料,即使氧指数达到26%或者更高,并非意味着在火中不燃烧。
高氧指数可通过提高阻燃剂的含量来达到,而大量阻燃剂的使用却又带来了烟雾大、毒性大的弊端。
随着我国聚氨酯泡沫塑料工业的发展,要求全面地了解泡沫塑料的燃烧性能,科学地确定阻燃性能的综合评价指标,真实地反映在实际火灾中材料的燃烧行为,已提到议事日程上来。
最初以自熄性和氧指数作为评价材料燃烧难易程度的指标,已远远不够,还必须考虑到着火后,火焰传播扩散速度指标、产生烟雾大小及毒性情况。
为此我国颁布了国家标准——建筑物隔热用硬质聚氨酯泡沫塑料(GB10800-1989),并于1990年开始实施规定的水平燃烧法和垂直燃烧法测定聚氨酯泡沫塑料的阻燃性,即用火焰传播性来衡量材料的阻燃性。
1997年颁布国家标准《建筑材料燃烧性能分级方法》(GB8624-1997)(以下简称《标准》),于1997年4月1日实施,规定中的氧指数、垂直燃烧法、烟密度3项指标,更为严格的测定硬质聚氨酯泡沫塑料阻燃性能,即用着火性、火焰传播性,烟密度3项综合指标衡量材料的阻燃性能。
B1等级材料指标:1)氧指数大于32%;2)平均燃烧时间30s,平均燃烧高度小于250mm;3)烟密度等级SDR<75。
查阅国外相当于我国B1等级的相关标准及测试方法以及文献报道,均未发现同时把氧指数、火焰传播性、烟密度3项指标作为PU硬泡阻燃级别的产品评定标准。
在ASTME-84阻燃一级标准中,只考虑了火焰传播指数及发烟量2项指标,均无氧指数大于32%的指标;在德国DIN4102标准中,B1等级的评定是:只有火焰传播性能;在日本JISA9514的标准及JISA9501法测定中,评定难燃级别也只考虑了火焰传播性;在SATMD2863评定难燃级别中,难燃一级氧指数大于30%,而我国在B1等级中规定的氧指数大于32%,在世界上是最高的。
而在即将颁布的国家标准《公共场所阻燃制品及组件燃烧性能要求及标志》中,除上述3项指标外,还增加了1项烟气毒性指标,即以着火性(热释放性)、火焰传播性、发烟性、烟气毒性4项指标作为泡沫塑料阻燃级别的产品评定标准。
故该国家标准将比1997年的《标准》更为苛刻、更为严格。
纵观世界聚氨酯工业的发展历程,在国外聚氨酯的发展中,始终将其优异性能放在第1位。
如硬泡在应用领域,始终将其绝热性放在第1位,而对其防火、安全性的要求比较宽,只要求在一定原则范围之内。
在国外对这种易燃的高分子材料,只要遵循下述原则:1)减少对生命的威胁:其途径是防止点燃、起火,减少火焰传播速度,限制火区范围,留有或允许有逃生的时间;制定氧指数、热释放速率峰值与火焰传播速度的标准。
2)减少对财产造成的损失:其途径是把火情、火灾控制在原发区域,限制、控制由烟雾造成的对生命的威胁及财产损失;制定火焰传播速度、烟密度等级与烟毒性的标准。
在国外根据上述原则制定各国的国家标准,虽测试方法不一致,但总体情况要求较宽,只要达到防火标准中4个参数(火焰的着火性、火焰的传播性、火焰的发烟性、火焰的烟雾毒性)中的1~2个指标值就可允许其使用。
因而我国颁布的《标准》中PU硬泡B1等级的国家标准是目前世界上指标最高、也是最为严格的。
1.2新颁布的《建筑材料及制品燃烧性能分级》(GB8624-2006)国家标准我国1997年颁布的《标准》,虽其指标是目前世界最高、最为严格的,但其采用试验方法大多是小尺寸试验,其火焰传播特性——水平燃烧法、垂直燃烧法,均采用单火焰点火方式,装置小巧简单,根本难以准确预测PU泡沫材料在实际火灾条件下的燃烧特性。
尤其是氧指数法,其试验方法采用长条状的试样树立在氧氮气流中,点火方法为从试样顶端点火,火焰向下蔓延,这与实际火灾中的火焰传播方式不同,并且在实际火灾中的PU泡沫材料不是在富氧情况下燃烧,而是在氧气浓度越来越低的情况下燃烧。
烟密度测定只是累计数,也无法测定在真实火灾中PU泡沫烟毒气的释放速率。
因而GB8624-1997标准体系很难真实地反映PU泡沫材料在实际火灾场景下的燃烧特性,只是主要针对发生火灾时,材料表面的火焰传播和蔓延。
随着火灾科学和消防工程科学领域研究地不断深入,对燃烧特性的内涵也从单纯的火焰传播和蔓延,扩展到材料在真实火灾中的实际燃烧特性参数:燃烧热释放量(热值)、燃烧热释放速率、烟密度(SDR)、烟气生成速率、燃烧产物烟气毒性及火焰传播等。
新颁布的《建筑材料燃烧性能分级方法》(GB8624-2006)(以下简称《新标准》)分级体系是完全参照欧盟EN13501-1:2002标准,它规定了其试验方法及等级标准,并对部分级别另规定了附加燃烧生成物的毒性试验要求。
新的分级体系是基于材料在真实火灾场景中的燃烧特性所建立的一套评价体系,试验的设计和数据的采集建立在火灾基础理论上,并以实际火灾为参考场景。
新的分级体系以墙角实体试验(ISO-9705)为参考场景,主要采用ISO-1182不燃性试验(SBI),ISO-9239铺地材料燃烧性能测定——辐射热源法试验,以及CA.132-1996规定的毒性试验,用于对材料的产烟毒性评价、火灾场景毒性评价以及由成分分析结果推测的烟气毒性危险等。
通过上述一系列测试标准,以实体火灾为参考场景,可测得一系列与潜在火灾危险性相关的参数:燃烧热释放速率、产烟量、产烟速率、烟气毒性、火焰传播等。
用这些参数可以全面、系统地描述火灾发生时3个阶段的3个火灾情景。
第1阶段:指制品被点燃的着火阶段,即用小火焰施加于制品的局部区域;第2阶段:指火灾逐步扩大发展直至轰燃阶段;第3阶段:轰燃后,所有可燃制品成为火灾荷载。
用这些参数可将建筑材料分为A1、A2、B、C、D、E、F7个级别,新的分级体系中的试验方法对材料的燃烧性更为科学、更为合理。
《新标准》中,规定了一些试验方法要有实际火灾场景,又要考虑材料的最终用途,也就是PU泡沫在不同建筑物和建筑物的不同部位使用时,其火灾危险性是不一样的。
因此《新标准》可以说是目前世界上最为科学、合理,且同国际先进标准直接接轨的国家标准。
此标准一方面能正确评价PU泡沫塑料在真正火灾中的燃烧性能,同时也能预测PU泡沫在火灾中的危险程度,从而找到如何正确、安全使用这种易燃PU泡沫塑料合理的科学根据。
1.3《新标准》为中国聚氨酯工业发展创造了机遇我国GB8624标准于1988年首次发布,其后1997年发布修订版标准,此标准主要非等同采用德国工业标准DIN4102-81第1部分《建筑材料分级的要求和试验》。
在修订过程中,材料阻燃级别是相互对应的。
但在B1级材料(难燃级)的指标要求中,我国增加了对烟密度的标准要求,这在技术指标上要高于德国的DIN4102标准。
因此,1997年颁布的《标准》中对PU硬泡B1等级防火指标是目前世界最高的,这无形之中形成了一个技术壁垒,国外同类制品达不到中国PU硬泡B1等级防火指标就进不了中国市场。
双面铝箔聚氨酯复合板材与风管技术最早起源于意大利,并在世界各地应用了20多年,在国际上列为节能、绿色环保产品。
90年代初由意大利P3公司、ALP公司打入了中国市场,并进行了技术推广与培训工作,获得了国内认可。
但由于中国关于聚氨酯B1等级防火标准的要求,使2家公司的推广工作受阻,进不了中国聚氨酯市场。
中国企业家从2000年开始仿造、研制意大利P3公司、ALP公司产品,投巨资成功研制开发了难燃B1等级聚氨酯泡沫塑料,在不到5年时间内,国内出现了十几条轻质、保温复合型风管生产线,既能生产酚醛型复合风管又能生产聚氨酯型复合风管,打出了十几个品牌,并初步形成了一个新兴产业。
其中个别企业真正掌握了PU硬泡B1等级风管生产的技术,初步形成拥有自己知识产权的品牌产品,并出口国际市场。
我国颁布的《新标准》是对《标准》的修订,除全部采用欧盟EN1350-1:2002规定的试验方法和等级划分外,对部分级别还规定了附加燃烧生成物的毒性试验要求,这充分说明了中国消防安全要求十分严格。
我国颁布的防火体系标准始终高于国外同类体系的标准。
《新标准》的颁布具有双重意义:对外来讲,其给中国PU产品直接打入国际市场开辟了一条绿色通道;对内来讲,中国PU产品某些指标要高于国外同类产品,这无形之中形成了一个技术壁垒。