电表的扩程与校准实验报告
电表的改装与校准实验报告样本最新版

实验报告【实验目的】1、测量表头内阻及满度电流2、将1 mA表头改将成5mA的电流表,学会校准电流表基本方法3、将1 mA表头改将成1.5V的电压表,学会校准电压表基本方法4、设计一个R中=1500 Q的欧姆表,要求E在1.3~1.6V范围内使用能调零(选做)【实验原理】1、表头的主要参数(量程和内阻)的测定测量内阻R g的方法很多,本实验采用替代法。
如图1所示。
当被改电流计(表头)接在电路中时,选择适当的电压E和R W值使表头满偏,记下此时标准电流表的读数l a ;不改变电压E和R W的值,用电阻箱R13替代被测电流计,调节电阻箱R13的阻值使标准电流表的读数仍为l a , 此时电阻箱的阻值即为被测电流计的内阻R g。
图12、毫安表改装成电流表微安表并联分流电阻R p,使被测电流大部分从分流电阻流过, 表头仍保持原来允许通过的最大电流]g。
并联分流电阻大小(1)3、毫安表改装成电压表微安表串联分压电阻R s,使大部分电压降落在串联的分压电阻上,而微安表上的电压降仍不超过原来的电压量程| g R g。
串联分压电阻大小I g I g g(2)4、毫安表改装成欧姆表(选做)在图4中,当a、b端接入被测电阻R x后,电路中的电流为,这时指针在表对于给定的表头和线路, R g 、R W 、R 3都是常量,由此可见,当电源端电压 E 保持不变时, 被测电阻和电流一一对应。
因此,只要在表头的电流刻度上侧标上相应的电阻刻度, 就可以用来测量电阻了。
当Rx =0时,适当调节 R W 的值可使表头指针满偏,此时E 1当 R ^Rg R W R3 时,‘R g R W ・R 3 R x^g头的中间位置,对应的阻值称为中值电阻,显然 = R g + R W + R 3当Rx =::时,|=0,即指针在表头的机械零位。
5、电表标称误差和校正 改装 使被校电表与标准电表同时测量一定的电流(电压),看其指示值与相应的标准值相符的程 度。
电表改装与校准实验报告

电表改装与校准实验报告1. 引言电表是测量电能消耗的重要仪器,在电力系统中起到了至关重要的作用。
然而,由于设备老化、使用不当等原因,电表的准确性可能会受到影响。
因此,对电表进行改装与校准是必要的。
本实验旨在通过改装电表,并对其进行校准,提高电表的准确性。
2. 改装电表2.1 选取适当的电表在改装电表之前,我们需要选择合适的电表。
根据实验要求,我们选择了一款具备高精度、稳定性好的电表进行改装。
2.2 电表改装步骤1.打开电表外壳:使用螺丝刀拧开电表外壳上的螺丝。
2.识别电表内部结构:了解电表内部结构,确定需要改装的部分。
3.拆卸原有元件:将需要改装的元件进行拆卸,如电流互感器、电压互感器等。
4.安装改装元件:根据实验需求,选取合适的改装元件进行安装。
5.连接电线:将改装元件与电表内部电路进行适当的连接。
6.固定改装元件:使用螺丝将改装元件固定在电表内部。
7.关闭电表外壳:将电表外壳盖好,并拧紧螺丝。
3. 电表校准实验3.1 实验前准备在进行电表校准实验之前,我们需要做一些准备工作:1.确保实验室环境稳定,温度、湿度等因素不会对实验结果产生影响。
2.准备标准电源及标准电表:我们需要一台高精度的标准电源和一个经过准确校准的标准电表作为参考。
3.配置测试电路:根据实验需求配置相应的测试电路,包括电压源、电流源等。
3.2 校准步骤1.连接电路:根据实验需要,将待校准的电表与标准电源、标准电表以及测试电路连接起来。
2.校准电流测量:通过调节标准电源的输出,使电流在不同量级下均匀变化,记录待校准电表和标准电表的测量值,并进行比较。
3.校准电压测量:通过调节标准电源的输出,使电压在不同量级下均匀变化,记录待校准电表和标准电表的测量值,并进行比较。
4.校准功率测量:通过调节标准电源的输出,使功率在不同量级下均匀变化,记录待校准电表和标准电表的测量值,并进行比较。
5.校准能量测量:通过长时间稳定供电,记录待校准电表和标准电表的能量计量值,并进行比较。
电表的扩程与校准

图 1
替代法
测量原理图见图2。当被测 电流计接在电路中时,用十 进位电阻箱替代它,且改变 电阻值,当电路中的电压不 变时,且电路中的电流(标准 表读数)亦保持不变,则电阻 箱的电阻值即为被测电流计 内阻。替代法是一种运用很 广的测量方法,具有较高的 测量准确度。
图
2
2、改装为大量程电流表
根据电阻并联规律可知,如果在表头两端并联上一个阻值 适当的电阻R2,如下图所示,可使表头不能承受的那部分 电流从R2上分流通过。这种由表头和并联电阻R2组成的整 体(图中虚线框住的部分)就是改装后的电流表。如需将量 程扩大n倍,则不难得出:R2=Rg/(n-1)
电表的扩程与校准
【实验目的】
1、测量表头内阻及满度电流。
2、掌握将1mA表头改成较大量程的电流表和电压 表的方法。 3、设计一个R中=1500Ω 的欧姆表,要求E在 1.3~1.6V范围内使用能调零。
4、用电阻器校准欧姆表,画校准曲线,并根据校 准曲线用组装 好的欧姆表测未知电阻。 5、学会校准电流表和电压表的方法。
4、改装毫安表为欧姆表
欧姆表原理图
串联分压式
并联分流式
【实验内容】
1、用中值法或替代法测出表头的内阻,按图1或图2 接线。Rg= Ω。 2、将一个量程为1mA的表头改装成5mA量程的电流表。 3、将一个量程为1mA的表头改装成1.5V量程的电压表。 4、改装欧姆表及标定表面刻度。
【思考与讨论】
【实验仪器】
1、DH4508型电表改装与校准实验仪
2、ZX21电阻箱(可选用)
【实验原理 】
1、电流计允许通过 的最大电流称为电 流计的量程,用Ig 表示,电流计的线 圈有一定内阻,用 Rg表示,Ig与Rg是 两个表示电流计特 性的重要参数
电表的改装和校准实验总结

电表的改装和校准实验总结一、引言电表是我们日常生活中使用最为普遍的仪器之一,其作用是测量电流、电压和功率等电力参数。
然而,在长时间使用后,电表可能存在误差,需要进行改装和校准,以确保准确度。
本文将总结电表的改装和校准实验过程和结果。
二、改装实验1. 改装目的改装电表是为了提高其准确度和可靠性。
我们选择了一种常见的电表进行改装,选用的部件有:新一代电源供给模块、高精度ADC芯片和信号放大器。
改装后,电表将在测量电流、电压和功率等参数时更加精确。
2. 实验步骤首先,我们拆开了电表外壳,取下原有的电源供给模块,并安装新一代电源供给模块。
接着,我们连接高精度ADC芯片和信号放大器,确保信号输入到芯片和放大器后能够正确地转换和放大。
最后,将电表外壳重新装上,并进行电源调试和外观检查。
3. 实验结果经过实验,我们发现改装后的电表在测量电流、电压和功率等参数时,准确度有了明显的提高。
与改装前相比,改装后的电表误差范围在指定的允许误差范围内,且具有更好的稳定性和耐用性。
三、校准实验1. 校准目的校准电表是为了检验其测量结果与已知标准值之间的差异。
我们使用标准电压源和标准电流源,对电表进行校准,以便减小测量误差。
2. 实验步骤为了校准电表,我们首先将标准电压源与电表的电压输入端连接,并设置电压源的输出值为已知标准值。
然后,我们观察电表的读数,并记录其误差。
接着,我们将标准电流源与电表的电流输入端连接,并设置电流源的输出值为已知标准值。
同样地,我们观察电表的读数,并记录其误差。
最后,我们根据误差值进行调整,以使电表的测量结果更加准确。
3. 实验结果经过校准实验,我们发现电表在标准电压和标准电流输入下,测量结果与已知标准值之间的误差在可接受范围内。
校准后的电表具有良好的准确度和稳定性。
四、结论通过改装和校准实验,我们成功地提高了电表的准确度和可靠性。
改装后的电表在测量电流、电压和功率等参数时,误差范围在允许误差范围内。
电表改装与校准实验报告

电表改装与校准实验报告电表改装与校准实验报告引言:电表作为测量电能消耗的仪器,对于电力行业和家庭用电管理至关重要。
然而,由于长期使用或制造过程中的一些因素,电表的准确性可能会出现偏差。
为了保证电表的准确性,我们进行了电表改装与校准实验,以探索改进电表精度的方法。
一、实验目的本实验旨在通过改装电表,提高其准确性,并通过校准实验验证改装后电表的准确性。
二、实验材料与方法1. 实验材料:- 电表:我们选择了市场上常见的电能表进行改装与校准实验。
- 校准仪器:使用了高精度的电流表和电压表进行校准。
2. 实验方法:- 改装电表:我们首先对电表进行了改装,主要包括以下步骤:a. 清洁电表:将电表内部的灰尘和杂质清除干净,以确保准确读数。
b. 电路优化:对电表内部的电路进行优化,以提高电路的稳定性和准确性。
c. 磁场屏蔽:在电表周围添加磁场屏蔽材料,减少外部磁场对电表的干扰。
d. 温度补偿:根据电表使用环境的温度变化,进行温度补偿调整,以提高准确性。
- 校准实验:改装后的电表进行校准实验,主要包括以下步骤:a. 电流校准:通过将已知电流通过电表,并与高精度电流表进行对比,以确定电表的误差。
b. 电压校准:通过将已知电压输入电表,并与高精度电压表进行对比,以确定电表的误差。
c. 功率因数校准:通过将已知功率因数的负载连接到电表上,并与高精度功率因数表进行对比,以确定电表的误差。
三、实验结果与分析经过改装和校准实验后,我们得到了以下结果:1. 改装电表的准确性得到了显著提升。
在校准实验中,与高精度仪器对比后,改装电表的误差范围在允许范围内。
2. 温度补偿的应用对电表的准确性有重要影响。
通过对电表进行温度补偿调整,可以有效减少温度变化对电表读数的影响。
3. 磁场屏蔽的改进可以减少外部磁场对电表的干扰,提高电表的准确性。
四、实验结论通过电表改装与校准实验,我们得出以下结论:1. 改装电表可以显著提高其准确性,对于电力行业和家庭用电管理具有重要意义。
电表的改装与校正实验报告数据

电表的改装与校正实验报告数据篇一:电表的改装与校正实验报告实验四电表的改装和校准实验目的1.掌握电表扩大量程的原理和方法; 2.能够对电表进行改装和校正; 3.理解电表准确度等级的含义。
实验仪器:微安表,滑线变阻器,电阻箱,直流稳压电源,毫安表,伏特表,开关等。
实验原理:常用的直流电流表和直流电压表都有一个共同部分,即表头。
表头通常是磁电式微安表。
根据分流和分压原理,将表头并联或串联适当阻值的电阻,即可改装成所需量程的电流表或电压表。
一将微安表改装成电流表微安表的量程Ig很小,在实际应用中,若测量较大的电流,就必须扩大量程。
扩大量程的方法是在微安表的两端并联一分流电阻RS。
如图1 所示,这样就使大部分被测电流从分流电阻上流过,而通过微安表的电流不超过原来的量程。
设微安表的量程为Ig,内阻为Rg,改装后的量程为I,由图1,根据欧姆定律可得,(I - Ig)RS= IgRg RS=设n = I /Ig, 则RS=Rgn?1IgRgI?Ig(1)由上式可见,要想将微安表的量程扩大原来量程的n 倍,那么只须在表头上并联一个分流电阻,其电阻值为RS= Rgn?1。
图1 图2二将微安表改装成电压表我们知道,微安表虽然可以测量电压,但是它的量程为IgRg,是很低的。
在实际应用中,为了能测量较高的电压,在微安表上串联一个附加电阻RH,如图2所示,这样就可使大部分电压降在串联附加电阻上,而微安表上的电压降很小,仍不超过原来的电压量程IgRg。
设微安表的量程为Ig,内阻为Rg,欲改装电压表的量程为U,由图2,根据欧姆定律可得,Ig(Rg+ RH)=U RH =三改装表的校准改装后的电表必须经过校准方可使用。
改装后的电流表和电压表的校准电路分别如图3和图4所示。
首先调好表头的机械零点,再把待校的电流表(电压表)与标准表接入图3(或图4)中。
然后一一校准各个刻度,同时记下待U? Rg(2)Ig校电流表(或电压表)的示值I(或U)和标准表的示值和IS(或US)。
电表改装与校准实验报告

电表改装与校准实验报告一、实验目的本实验旨在掌握电表改装和校准的基本原理和方法,了解电表的结构和工作原理,掌握电流、电压、功率的测量方法,并通过实验掌握电表测量误差的计算方法。
二、实验仪器1. 万用表2. 直流稳压电源3. 变压器4. 电阻箱5. 单相交流电能表三、实验内容及步骤3.1 电表改装1)将单相交流电能表拆开,并找到其内部的计量机构。
2)将计量机构中的线圈换成与直流稳压电源连接时所需的线圈。
3)将计量机构中的磁环换成与直流稳压电源连接时所需的磁环。
4)重新组装单相交流电能表。
5)使用万用表检查改装后单相交流电能表各项指标是否正常。
3.2 电表校准1)使用变压器调节输入交流电源,使其输出恒定的交流电压。
2)使用万用表测量输入交流电源输出的交流电压值,记录下来作为基准值。
3)将单相交流电能表接入变压器输出端,记录下单相交流电能表显示的电压值。
4)根据万用表记录的基准值和单相交流电能表显示的电压值计算出单相交流电能表的测量误差。
5)使用电阻箱调节变压器输出端的负载,重复以上步骤,得到不同负载下单相交流电能表的测量误差。
四、实验结果及分析4.1 电表改装经过改装后,单相交流电能表可以进行直流稳压电源连接时所需的线圈和磁环,并且各项指标正常。
改装后的单相交流电能表可以用于测量直流稳压电源输出时的功率、电压和电流等参数。
4.2 电表校准在不同负载下,单相交流电能表测量误差存在一定差异。
通过计算可以得出,当负载为10欧姆时,单相交流电能表测量误差最小,在正常使用过程中应尽可能保持负载在此范围内。
五、实验结论本实验通过对单相交流电能表进行改装和校准,掌握了其基本原理和方法。
在实验中还发现了不同负载下单相交流电能表测量误差存在一定差异,需要在实际使用中注意负载的选择。
本实验对电表改装和校准有了深入的了解,为今后的实际应用提供了基础。
电表的改装与校准实验报告

电表的改装与校准实验报告一、实验目的1、掌握将微安表头改装成较大量程电流表和电压表的方法。
2、学会校准电流表和电压表的基本方法,了解电表的等级和精度。
二、实验原理1、微安表头的内阻$R_g$ 和满偏电流$I_g$ 通常是已知的。
将微安表头改装成大量程电流表时,需要并联一个分流电阻$R_s$,使得通过表头的电流仍为满偏电流$I_g$ 时,总电流变为更大的值$I$。
根据并联电路的特点,有:$I_g R_g =(I I_g) R_s$解得:$R_s =\frac{I_g R_g}{I I_g}$2、将微安表头改装成电压表时,需要串联一个分压电阻$R_v$,使得表头两端的电压达到满偏电压$U_g = I_g R_g$ 时,总电压变为更大的值$U$。
则有:$R_v =\frac{U U_g}{I_g}$3、校准电表时,以标准电表的读数为准确值,改装电表的读数与之比较,得出改装电表的误差。
三、实验器材微安表头、电阻箱、滑动变阻器、直流电源、标准电流表、标准电压表、开关、导线若干。
四、实验步骤1、测量微安表头的内阻$R_g$ 和满偏电流$I_g$(1)将微安表头与电阻箱、滑动变阻器、电源等组成电路,调节滑动变阻器,使表头指针达到满偏。
(2)改变电阻箱的阻值,使表头指针半偏,此时电阻箱的阻值即为表头的内阻$R_g$。
(3)记录此时通过表头的电流,即为满偏电流$I_g$。
2、改装电流表(1)根据要改装的量程$I$ 和已测的$I_g$、$R_g$,计算出分流电阻$R_s$ 的阻值。
(2)将计算得到的分流电阻$R_s$ 与微安表头并联,组成改装后的电流表。
3、改装电压表(1)根据要改装的量程$U$ 和已测的$I_g$、$R_g$,计算出分压电阻$R_v$ 的阻值。
(2)将计算得到的分压电阻$R_v$ 与微安表头串联,组成改装后的电压表。
4、校准电流表(1)将标准电流表、改装电流表与电源、滑动变阻器等组成电路,调节滑动变阻器,使电流在改装表量程范围内变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电表的扩程与校准实验报告
电表的扩程与校准实验报告
一、引言
电表作为电力系统中重要的测量仪器,用于测量电能消耗。
然而,由于电能消耗的范围广泛,传统的电表往往无法满足高功率负载下的测量需求。
为了解决这一问题,本实验旨在通过扩程和校准电表,提高其测量范围和准确度。
二、扩程实验
1. 实验目的
通过改变电表的内部电路结构,使其能够承受更高的电流和电压,从而扩展其测量范围。
2. 实验步骤
首先,根据电表的型号和规格,了解其最大电流和电压的限制。
然后,打开电表外壳,找到电路板上的扩程开关。
根据电表使用说明书,调整扩程开关的位置,使其适应所需测量范围。
最后,将电表外壳盖好,进行实验验证。
3. 实验结果
经过扩程实验后,电表的测量范围得到了显著提升。
在高功率负载下,电表能够准确测量电流和电压,满足实际需求。
三、校准实验
1. 实验目的
由于电表在长期使用过程中,可能会因为环境变化、内部元器件老化等原因而导致测量准确度下降。
因此,校准电表是保证其测量精度的重要步骤。
2. 实验步骤
首先,选择一台已经校准合格的标准电表作为参照。
然后,将标准电表与待校准电表同时连接到同一电路中,通过对比测量结果,确定待校准电表的误差。
接下来,根据误差大小,调整待校准电表的校准系数,使其测量结果与标准电表一致。
最后,对校准后的电表进行验证测试,确保其准确度达到要求。
3. 实验结果
经过校准实验后,电表的测量准确度得到了有效提高。
与标准电表相比,待校准电表的误差显著减小,能够满足精确测量的要求。
四、结论
通过扩程和校准实验,我们成功地提高了电表的测量范围和准确度。
扩程实验使电表能够适应更高功率负载下的测量需求,而校准实验则保证了电表的测量准确度。
这对于电力系统的正常运行和能源管理具有重要意义。
需要注意的是,扩程和校准实验应由专业人员进行,并遵循相关的安全操作规程。
此外,定期对电表进行扩程和校准是必要的,以确保其长期稳定和可靠的测量性能。
五、参考文献
[1] 电表扩程与校准实验方法与技术要求. 中国电力出版社, 2012.
[2] 张三, 李四. 电表扩程与校准技术研究. 电力科学与工程, 2015, 29(3): 45-52.。