磁控溅射生产线工作原理
磁控溅射的原理及应用

磁控溅射的原理及应用1. 什么是磁控溅射磁控溅射是一种常用的薄膜沉积技术,通过利用磁场将材料原子或离子从靶材表面释放出来,形成一个薄膜层,沉积在基底表面上的一种方法。
这种方法可以在真空环境中进行,可以用于各种材料包括金属、合金、氧化物等。
2. 磁控溅射的原理磁控溅射的原理基于带电粒子在磁场中的运动规律。
溅射系统通常由一个靶材和一个基底组成,它们被放置在真空室中。
磁控溅射的过程包括以下几个步骤:1.靶材表面被离子轰击,其中的原子或离子被释放出来。
2.磁场控制离子在真空室中的运动轨迹。
3.基底表面上的原子或离子吸附并形成一个薄膜层。
这个过程中,磁场是十分重要的。
磁场会引导离子沿着特定的轨迹运动,使得离子沉积在基底的特定位置上。
磁场还可以控制离子的能量和方向,从而影响薄膜的性质和微结构。
3. 磁控溅射的应用磁控溅射是一种多功能的薄膜沉积技术,广泛应用于各种领域。
3.1 表面涂层磁控溅射可以用于向基底表面沉积各种薄膜层。
这些薄膜层可以具有不同的功能,如防腐、耐磨、导电等。
它们可以用于改善材料的性能和外观。
3.2 光学薄膜磁控溅射可以制备高质量的光学薄膜。
这些薄膜可以应用于光学器件,如镜片、滤光片、反射镜等。
因为磁控溅射是在真空环境中进行的,所以这些光学薄膜可以具有良好的光学性能。
3.3 金属薄膜磁控溅射可以制备金属薄膜。
这些薄膜可以具有高导电性和优良的机械性能,可用于电子器件、导电材料等领域。
3.4 磁性材料磁控溅射还可以制备磁性材料薄膜。
这些薄膜可以具有特定的磁性性能,如高矫顽力、高饱和磁感应强度等。
它们可以应用于磁存储器件、传感器等领域。
4. 总结磁控溅射是一种重要的薄膜沉积技术,通过利用磁场控制离子运动和沉积位置,可以制备各种功能薄膜。
它在表面涂层、光学薄膜、金属薄膜和磁性材料等领域有着广泛的应用。
磁控溅射技术的发展,为材料科学和工程领域提供了新的可能性,为各种应用提供了高性能的薄膜材料。
磁控溅射

磁控溅射仪1.磁控溅射原理;磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;新电子飞向基片,Ar离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。
在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似一条摆线。
若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的Ar 来轰击靶材,从而实现了高的沉积速率。
随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下最终沉积在基片上。
由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低。
磁控溅射是入射粒子和靶的碰撞过程。
入射粒子在靶中经历复杂的散射过程,和靶原子碰撞,把部分动量传给靶原子,此靶原子又和其他靶原子碰撞,形成级联过程。
在这种级联过程中某些表面附近的靶原子获得向外运动的足够动量,离开靶被溅射出来。
2.磁控溅射构造磁控溅射薄膜沉积系统包括:气路、真空系统、循环水冷却系统、控制系统。
其中(1) 气路系统:与PECVD系统类似,磁控溅射系统应包括一套完整的气路系统。
但是,与PECVD 系统不同的是,PECVD系统中,气路中为反应气体的通道。
而磁控溅射系统气路中一般为Ar、N2等气体。
这些气体并不参与成膜,而是通过发生辉光放电现象将靶材原子轰击下来,使靶材原子获得能量沉积到衬底上成膜。
(2) 真空系统:与PECVD系统类似,磁控溅射沉积薄膜前需要将真空腔室抽至高真空。
因此,其真空系统也包括机械泵、分子泵这一高真空系统。
(3) 循环水冷却系统:工作过程中,一些易发热部件(如分子泵)需要使用循环水带走热量进行冷却,以防止部件损坏。
磁控溅射工作原理

磁控溅射工作原理
磁控溅射是一种常用的薄膜制备技术,其工作原理主要包括磁场控制和离子控制两部分。
具体的工作原理如下:
1. 磁场控制:磁控溅射系统中一般有一个磁控溅射靶,靶材通常为金属或合金。
该靶材被放置在真空腔室中,并通过电源提供一个较大的直流电流。
这个直流电流会在靶材上产生一个电弧,随后靶材表面的原子会被电弧的高温高能所击打。
2. 离子控制:一个电子枪会产生一个束流的电子,该束流电子被加速,并进入到真空腔室中。
这些高速运动的电子会和靶材表面被击打出来的原子发生碰撞,产生溅射过程。
在这个过程中,靶材上的原子会离开靶材表面,并以高速沉积到待膜的基底材料上。
通过以上两个过程的共同作用,磁控溅射技术可以实现薄膜材料的制备。
在具体操作中,可以通过调节电弧电流、电子束流密度和速度等参数来控制溅射的行为和薄膜的性质。
磁控溅射技术具有简单、灵活、无毒污染等优点,因此在材料制备和表面修饰等领域得到广泛应用。
磁控溅射技术的原理及应用

磁控溅射技术的原理及应用1. 磁控溅射技术简介磁控溅射技术是一种常用的薄膜沉积技术,通过将金属靶材溅射生成粒子或原子,在表面形成均匀且致密的薄膜覆盖层。
磁控溅射技术具有高效、环保、可控厚度等特点,广泛应用于材料科学、半导体制造、光学镀膜等领域。
2. 磁控溅射技术的原理磁控溅射技术基于电离溅射原理,通过磁场控制靶材离子的行为,使其垂直击打到靶材表面,从而产生溅射现象。
主要的原理包括以下几个方面:•靶材电离:在磁控溅射设备中,将靶材通电,使其产生离子。
电离的方式包括直流电离、射频电离等,通过电离可使靶材中的金属原子或粒子脱离束缚并形成等离子体。
•磁场控制:通过磁铁或电磁铁产生磁场,使得等离子体中的离子在磁场的作用下呈现螺旋轨道运动。
磁场对离子运动的控制可改变其飞行路径,使其垂直击打到靶材表面,并增加溅射效率。
•沉积膜形成:靶材表面被离子击打后,产生大量的金属原子或粒子,它们在靶材表面扩散并沉积形成均匀的薄膜。
溅射过程中的离子能量、离子束流密度等参数的调控可以影响薄膜的组成、结构和性能。
3. 磁控溅射技术的应用磁控溅射技术具有广泛的应用领域和潜力,主要包括以下几个方面:3.1 材料科学•薄膜制备:磁控溅射技术可以制备各种材料的薄膜,如金属薄膜、氧化物薄膜、氮化物薄膜等。
这些薄膜具有良好的致密性和附着力,在材料科学领域中起着重要作用。
•合金制备:通过磁控溅射技术,可以将两种或多种材料溅射在一起,制备出各种复合材料或合金。
这些合金具有独特的力学、电磁等性能,广泛应用于航空航天、汽车制造等领域。
3.2 半导体制造•集成电路制备:磁控溅射技术可以制备半导体材料的薄膜,作为集成电路的关键材料。
薄膜的制备过程中可以调控其成分和结构,从而改变其电学、光学等性能,满足集成电路的需求。
•光罩制备:在半导体工艺中,磁控溅射技术还可以制备光罩。
光罩是半导体制造中的重要工艺设备,用于制作集成电路的图案,对半导体工艺的精度和稳定性要求非常高。
磁控溅射原理详细介绍

图1 溅射率与Ar气压强的关系
5
第一部分 真空镀膜基础
1.3 €è•þˆ?ŒÊƒ6
(2)沉积薄膜的纯度 (2)沉积薄膜的纯度 为了提高沉积薄膜的纯度,必须尽量减少沉积到基片上的杂质的量。这里所说的杂质主要是指真空 室的残余气体。因为通常有约百分之几的溅射气体分子注入沉积薄膜中,特别是在基片加偏压时。欲降 低残余气体压力,提高薄膜的纯度,可采取提高本底真空度和增加送氢量这两项有效措施。 (3)沉积过程中的污染 (3)沉积过程中的污染 众所周知,在通入溅射气体之前,把真空室内的压强降低到高真空区内是很有必要的,因此原有 工作气体的分压极低。即便如此,仍可存在许多污染源: (a)真空室壁和真空室中的其他零件可能会有吸附气体,如水蒸气和二氧化碳等。由于辉光放电中 电子和离子的轰击作用,这些气体可能重新释出。因此,可能接触辉光的一切表面都必须在沉积过程中 适当冷却,以便使其在沉积的最初几分钟内达到热平衡。 (b)在溅射气压下,扩散泵抽气效力很低,扩散泵油的回流现象十分严重。由于阻尼器各板间的距 离相当于此压强下平均自由程的若干倍,故仅靠阻尼器将不足以阻止这些气体进入真空室。因此,通常 需要在放电区与阻尼器之间进行某种形式的气体调节,例如在系统中利用高真空阀门作为节气阀,即可 轻易地解决这一问题。另外,如果将阻尼器与涡轮分子泵结合起来,代替扩散泵,将会消除这种污染。 (C)基片表面的颗粒物质将会使薄膜产生针孔和形成沉积污染,因此,沉积前应对基片进行彻底清 洗,尽可能保证基片不受污染或不携带微粒状污染物。
9
第二部分 溅射及辉光放电
2.2 辉光放电
使真空容器中Ar气的压力保持为,并逐渐提高两个电极 之间的电压。在开始时,电极之间几乎没有电流通过,因为 这时气体原子大多仍处于中性状态,只有极少量的电离粒子 在电场的作用下做定向运动,形成极为微弱的电流,即图2(b) 中曲线的开始阶段所示的那样。 随着电压逐渐地升高,电离粒子的运动速度也随之加快, 即电流随电压上升而增加。当这部分电离粒子的速度达到饱 和时,电流不再随电压升高而增加。此时,电流达到了一个 饱和值(对应于图曲线的第一个垂直段)。 当电压继续升高时,离子与阴极之间以及电子与气体分子 之间的碰撞变得重要起来。在碰撞趋于频繁的同时,外电路 转移给电子与离子的能量也在逐渐增加。一方面,离子对于 阴极的碰撞将使其产生二次电子的发射,而电子能量也增加 到足够高的水平,它们与气体分子的碰撞开始导致后者发生 电离,如图2(a)所示。这些过程均产生新的离子和电子,即 碰撞过程使得离子和电子的数目迅速增加。这时,随着放电 电流的迅速增加,电压的变化却不大。这一放电阶段称为汤 汤 生放电。 生放电 在汤生放电阶段的后期,放电开始进入电晕放电阶段。这 时,在电场强度较高的电极尖端部位开始出现一些跳跃的电 晕光斑。因此,这一阶段称为电晕放电 电晕放电。 电晕放电
磁控溅射工作原理

磁控溅射工作原理
磁控溅射是一种常用的薄膜沉积技术,它利用磁场控制等离子
体中的离子运动,从而实现对靶材的溅射和沉积。
磁控溅射工作原
理主要包括离子轰击、溅射、沉积等过程。
下面将详细介绍磁控溅
射的工作原理。
首先,当工作气体(通常是惰性气体,如氩气)被加热并注入
到真空室中时,气体分子会与电子发生碰撞,从而产生等离子体。
接着,通过在靶材表面施加负电压,离子在电场的作用下加速并轰
击靶材表面,使得靶材表面的原子被击出。
这个过程称为离子轰击。
随后,通过在真空室中设置磁场,可以将离子束聚集并限制在
靶材表面附近,从而增加溅射效率。
在磁场的作用下,离子的轨迹
会呈螺旋状,这样可以使得离子更多地击中靶材表面,并提高溅射
效率。
同时,磁场还可以帮助维持等离子体的稳定性,防止等离子
体扩散到其他区域。
最后,被击出的靶材原子在气体的作用下沉积到基板表面,形
成薄膜。
在沉积过程中,通过控制基板的温度和离子轰击的能量,
可以调控薄膜的结构和性能。
此外,通过改变靶材的成分和形状,
还可以实现对薄膜成分和形貌的调控。
总的来说,磁控溅射工作原理是通过控制离子轰击和溅射过程,实现对薄膜沉积的精确控制。
磁场的作用使得离子束聚集并稳定,
从而提高了溅射效率和沉积质量。
因此,磁控溅射在材料科学和工
程领域有着广泛的应用前景,可以制备出具有特定结构和性能的功
能薄膜材料。
磁控溅射原理

磁控溅射原理磁控溅射是一种常用的薄膜沉积技术,广泛应用于半导体、光电子、信息存储、显示器件等领域。
磁控溅射原理是指在磁场作用下,通过离子轰击靶材使其表面原子或分子脱离并沉积在基底表面形成薄膜的过程。
本文将从磁控溅射的基本原理、设备结构和工艺特点等方面进行介绍。
首先,磁控溅射的基本原理是利用离子轰击靶材,使靶材表面的原子或分子脱离,并沉积在基底表面形成薄膜。
在磁控溅射系统中,通常采用惰性气体(如氩气)作为溅射气体,通过电离产生的离子轰击靶材,使靶材表面的原子或分子脱离。
同时,通过外加磁场的作用,使得离子在靶材表面形成螺旋状轨迹,增加了沉积薄膜的均匀性和致密性。
其次,磁控溅射设备通常由真空室、靶材、基底架、溅射源、磁控装置和辅助加热装置等组成。
真空室用于提供高真空环境,保证溅射过程中的稳定性和纯净度;靶材是溅射的原料,可以是金属、合金、化合物等材料;基底架用于放置基底材料,通常需要加热以提高薄膜的结晶度和致密性;溅射源是产生离子的地方,通常采用直流或射频电源产生电弧,将靶材表面的原子或分子脱离;磁控装置用于产生磁场,控制离子轨迹,增加薄膜的均匀性和致密性;辅助加热装置用于提高基底的温度,促进薄膜的结晶生长。
最后,磁控溅射具有工艺简单、成本低、薄膜均匀致密、沉积速率快等特点,广泛应用于半导体器件、光学镀膜、信息存储介质、显示器件等领域。
在半导体工业中,磁控溅射被用于制备金属薄膜、氧化物薄膜、氮化物薄膜等,用于制备电极、金属层、光学膜等功能材料。
在光学镀膜领域,磁控溅射被用于制备反射膜、透射膜、滤光膜等,用于改善光学器件的性能。
在信息存储介质领域,磁控溅射被用于制备磁记录介质膜,用于制备磁盘、磁带等存储介质。
在显示器件领域,磁控溅射被用于制备透明导电膜、光学膜、阻挡层等,用于制备液晶显示器、有机发光二极管等显示器件。
总之,磁控溅射作为一种重要的薄膜沉积技术,具有广泛的应用前景和重要的科学研究意义。
随着材料科学和工艺技术的不断发展,磁控溅射技术将在更多领域发挥重要作用,推动相关领域的发展和进步。
磁控溅射工作原理

磁控溅射工作原理
磁控溅射(Magnetron sputtering)是一种常用的薄膜制备技术,其中利用磁控电子束加速器和靶材的相互作用实现。
在磁控溅射过程中,会有一种称为靶材的材料被置于真空腔室中。
通常,该靶材是被称为电子束阴极的磁控源。
真空腔中放置有基板,它是需要被涂层的目标表面。
为了开始溅射过程,通过引入工作气体(如氩气)使真空腔压力降至非常低的级别,通常为10^-6至10^-3毫巴(1毫巴
=100帕)。
然后,在靶材上施加直流或脉冲电源,产生磁场
和电子束。
这些电子束击中靶材表面,加速释放出的离子,将其溅射到基板上,从而形成薄膜。
靶材上的电荷量形成一个环状的磁场,这被称为靶材区域。
这种磁场的存在使能够将带有正电荷的离子定向到工作表面。
此外,电子束在该磁场中被定向,从而形成一个环绕靶材的螺旋形低密度电子云。
这是通过磁透镜形成的,它将电子束束缚在靶材区域。
当电子束和磁场共同作用时,电子与标靶表面相互作用,启动了溅射过程。
在这个过程中,束流的动能转移到靶材的原子、离子和中性气体原子上,使它们从靶面溅射到基板上,从而形成薄膜。
磁控溅射技术具有可控性、均匀性和高质量的优势,可用于各种领域的薄膜制备,如光学、电子器件、显示器件等。
通过调
整靶材、工作气体、工作压力和溅射时间等参数,可以实现所需的薄膜特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁控溅射生产线工作原理Post By:2009-8-26 18:28:09
应用范围
主要用于在大平板玻璃上镀制金属单层质膜、合金膜或金属化合物膜,经镀膜的玻璃具有遮阳、保温、节能和装饰作用。
结构特点
1、采用新型的平面和柱状磁控溅射射靶技术,提高镀膜效果和效率。
2、配备高精度的磁控电源、气体流量和速度控制,自动化程度高,操作简便,性能稳定。
3、膜层均匀性好、附着力强、硬度高、抗腐蚀性好,可镀多种颜色的膜系。
4、真空室有传统的立式设计和高效的卧式设计,满足不同层次客户的需要。
产品特征:
1.上料工位
可供应手动装玻璃板的滚筒式传送带或自动装料系统。
2.入口清洗机
为获得高牢固性、无针孔、色泽鲜艳均匀的高品质膜层,清洗机设置了两组立刷洗涤,三组滚刷清洗,二组自来水冲洗,二组去离子水冲洗和四个风刀吹干机构,使玻璃特别清洁。
3.入口等待室
清洗过的玻璃保存在这里等待入口锁定室给出的接受讯号。
等待室保持有微量正压,防止空气中尘埃进入。
4.入口锁定室
基片快速由入口等待室送入入口锁定室,由大抽速真空系统将该室真空抽至1Pa。
5.入口缓冲室
入口缓冲室作为入口锁定室和溅射室之间的过渡,真空度在1Pa至lO-1Pa之间。
6.溅射室
溅射室可分为结构相同的多个室,每室装壹个靶子,室与室之间工艺气体相互良好隔离。
根据不同工艺要求,每室靶材及工艺气体可任意更换。
玻璃基片通过靶子时,玻璃表面镀上单层或多层膜。
7.出口缓冲室
镀好的基片从缓冲室快速送入出口锁定室。
8.出口锁定室
当该室真空度达1Pa以上时,缓冲室与锁定室间阀门打开,基片快速送人锁定室。
阀门自动关闭后,该室快速放气到105Pa,锁定室与下料等待台间阀门打开,基片快速送出。
9.出口等待室
玻璃片在此保存等待进入出口清洗机。
10.在线检验室
由一组光学测量系统及一组光源系统在线测量镀膜玻璃的透射率与反射率。
11.卸料工位
卸料工位可装备人工卸料机构成自动卸料装置。
12.磁控溅射电源
采用先进的电源技术,使溅射过程非常稳定,具有自动保护及自动复位功能。
13.电控系统
采用两台上位计算机和PLC系统对整个系统的重要工艺参数进行动态控制和显示,报警和报表打印。
生产线上的多道光学监测装置均与计算机联网,实现自动测色,测膜厚。