《整式的加减1》教案

合集下载

整式的加减教案设计

整式的加减教案设计

整式的加减教案设计整式的加减教案设计「篇一」一、知识目标:理解整式的加减实质就是去括号,合并同类项,其结果仍然是整式;掌握学生在掌握合并同类项、去括号与添括号的基础上,掌握整式加减的一般步骤;能够正确地进行整式的加减运算。

二、能力目标:经历用字母表示数量关系的过程,发展符号感;培养用代数的方法解决实际生活中的问题的能力和口头表达能力。

三、情感目标:渗透教学知识来源于生活,又要为生活而服务的辩证观点;整式的加减实质上就是去括号,合并同类项,结果总是比原来简洁,体现了数学的简洁美。

教学重难点:利用去括号、合并同类项进行整式的加减运算;根据实际问题中的数量关系列出算式,并求出结果;教材处理与数学方法1.调动学生自觉性与积极性,由浅入深地传授知识,提高学生学习兴趣。

2.运用启发式教学,让学生自行归纳出整式的加减的步骤。

3.利用不同记号标出各同类项,有助学生合并同类项。

4.让学生在实际解题过程中,体会到整式的加减实际上就是已经学过的去括号法则与合并同类项这两个知识的综合,这样更有利于学生学会将新知转化为旧知,不断更新知识结构。

5.充分利用教学时间,在课堂上进行针对性辅导,把共性问题与典型题目展示,引导学生发现问题与纠错能力。

四、(一)复习旧知识1、合并同类项定义、法则;2、去括号法则。

3、基础训练计算(1)(2x-3y)-(5x+4y)(2) -3ab-4a2+3 a2 -(-2ab)(3) (3 a2 -ab+7)-(-4 a2+2ab+7)(4) (-x+2x2+5)+(4x2-3-6x)4、列式计算(1) 2x2-3x+1与-3x2+5x-7 的和;(2)-x2+3xy-2y2 与-2x2+4xy-y2 的差;(3)一个多项式加上5x2+4x-1 得-8x2+6x+2 ,求这个多项式;5、求值:2a2-b2+(2b2-a2)-(a2+2b2),其中a=1/3,b=3。

五、归纳小结1.整式的加减实际上就是______________________。

整式的加减教案

整式的加减教案

整式的加减教案§15.1.2整式的加减(1)教学目的:1. 解字母表示数量关系的过程,发展符号感。

2、会实行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达水平。

教学重点:会实行整式加减的运算,并能说明其中的算理。

教学难点:准确地去括号、合并同类项,及符号的准确处理。

教学过程:•课前练习:1、填空:整式包括和2、单项式的系数是、次数是3、多项式是次项式,其中二次项系数是一次项是,常数项是4、下列各式,是同类项的一组是()(A)与(B)与(C)与5、去括号后合并同类项:•探索练习:1、如果用a 、b分别表示一个两位数的十位数字和个位数字,那么这个两位数能够表示为交换这个两位数的十位数字和个位数字后得到的两位数为这两个两位数的和为2、如果用a 、b、c分别表示一个三位数的百位数字、十位数字和个位数字,那么这个三位数能够表示为交换这个三位数的百位数字和个位数字后得到的三位数为这两个三位数的差为●议一议:在上面的两个问题中,分别涉及到了整式的什么运算?说说你是如何运算的?▲整式的加减运算实质就是运算的结果是一个多项式或单项式。

•巩固练习:1、填空:(1)与的差是(2)、单项式、、、的和为(3)如图所示,下面为由棋子所组成的三角形,一个三角形需六个棋子,三个三角形需()个棋子,n个三角形需个棋子2、计算:3、(1)求与的和(2)求与的差1. 先化简,再求值:其中2. 提升练习:3. 若A是五次多项式,B是三次多项式,则A+B一定是4. 五次整式(B)八次多项式(C)三次多项式(D)次数不能确定2、足球比赛中,如果胜一场记3a分,平一场记a分,负一场记0分,那么某队在比赛胜5场,平3场,负2场,共积多少分?3、一个两位数与把它的数字对调所成的数的和,一定能被14 整除,请证明这个结论。

4、如果关于字母x的二次多项式的值与x的取值无关,试求m、n的值。

1. 小结:整式的加减运算实质就是去括号和合并同类项。

初中七年级数学《整式的加减》教案3篇

初中七年级数学《整式的加减》教案3篇

初中七年级数学《整式的加减》教案3篇学问与技能:1、在现实情境中理解整式的加减实际就是合并同类项,有意识地培育他们有条理的思索和语言表达力量。

2、了解同类项的定义及合并法则,且会运用此法则进展整式加减运算。

3、知道在求多项式的值时,一般先合并同类项再代入数值进展计算。

过程与方法:通过详细情境的观看、思索、类比、探究、沟通和反思等数学活动培育学生创新意识和分类思想,使学生把握讨论问题的方法,从而学会学习。

情感与态度与价值观:通过学生自主学习探究出合并同类项的定义和法则,培育了学生的自学力量和探究精神,提高学习兴趣。

感受数学的形式美、简洁美,感受学数学是美的享受,爱学、乐学数学。

教学重点:娴熟地进展合并同类项,化简代数式。

教学难点;如何推断同类项,正确合并同类项。

教学用具:多媒体或小黑板、教学过程:一、创设情景问题:在甲、乙两面墙壁上,各挖去一个圆形空洞安装窗花,其余局部刷油漆,请依据图中的尺寸,算出:(1)甲乙油漆面积的和。

(2)甲比乙油漆面积大多少。

(处理方式:①学生思索片刻②找学生代表沟通自己的解答③教师汇总学生的解答)板书:(1)(2ab-πr2)+(ab-πr2)或(2ab+ab)-(πr2+πr2 )(2) (2ab-πr2)-(ab-πr2)(此时提问学生:这3个式子都是什么式子?在学生答复的根底上引出课题—从本节课开头来学习:2.3整式的加减。

并板书)二、探求新知教师自问:如何计算(1)和(2)两个式子呢?接着解答:本节课来学习2.2.1合并同类项(此时板书课题——1.合并同类项)1、同类项的概念观看多项式(2ab+ab)-(πr2+πr2 )中的项:2ab、ab 的特点。

学生沟通、争论。

③师生总结:(这就是我们今日所要介绍的同类项,此时板书:1.同类项的概念)所含字母一样并且一样字母的指数也一样的项叫做同类项。

几个常数项也是同类项。

强调:①所含字母一样②一样字母的指数也一样简称“两同”。

整式的加减教案(最新8篇)

整式的加减教案(最新8篇)

整式的加减教案(最新8篇)整式的加减教案篇一一、教学目标:【知识与技能目标】会用代数式表示简单问题中的数量关系,并能利用去括号、合并同类项等法则验证所探索的规律。

【过程与方法目标】通过观察、分析、总结等一系列过程,经历探索数量关系、运用符号表示规律、运算验证规律的过程,进一步培养学生的数学逻辑思维。

【情感态度与价值观目标】通过学生动手操作、观察、思考、猜想等过程,体验数学活动是充满着探索性和创造性的过程,通过合作交流,体会在解决问题的过程中与他人合作的重要性。

二、教学重点与难点:重点:学会探索数量关系,运用符号表示规律。

难点:学会从不同角度探索数量关系表示规律。

三、教学方法:教师引导式与学生探究、合作交流式相结合的方法。

四、教学用具:日历、粉笔、黑板、多媒体等。

五、教学过程:1、新课引入小时侯我们都玩过搭积木的游戏,今天我们不妨重拾童年趣事,利用手中的火柴棒搭建一些常见的图形,探索规律。

2、合作交流,探索规律:活动一:探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表:⑴照这样的规律搭建下去,搭n个这样的三角形需要多少根火柴棒?⑴注意引导学生概括探索规律的一般步骤:寻找数量关系;用代数式表示规律验证规律。

⑴练习:四棱柱有几个顶点、几条棱、几个面?五棱柱呢?十棱柱呢?n棱柱呢?活动二:探索具体情景下事物的规律问题1.若有两张长方形的桌子,把它们拼成一张大的长方形桌子,有几种拼法?问题2.若按图2方式摆放桌子和椅子⑴一张桌子可坐6人,2张桌子可坐人。

⑴按照上图方式继续排列桌子,完成下表:问题3.如果按图3的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人?3张呢?n张呢?⑴教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人。

⑴在⑴中,改成每8张桌子拼成1张大桌子,则共可坐人。

活动三:探索图表的规律下面是20xx年五月份的日历:1.日历图彩色方框中九个数之和与方框正中间的数有什么关系?通过计算找出这个关系。

《整式的加减》教案

《整式的加减》教案

《整式的加减》教案《整式的加减》教案「篇一」一、知识与技能(1)了解同类项、合并同类项的概念,掌握合并同类项法则,•能正确合并同类项。

(2)能先合并同类项化简后求值。

二、过程与方法经历类比有理数的运算律,探究合并同类项法则,培养学生观察、探索、分类、归纳等能力。

三、情感态度与价值观掌握规范的解题步骤,养成良好的学习习惯,通过比较两种求代数式值的方法,体会合并同类项的作用。

教学重、难点与关键1.重点:掌握合并同类项法则,熟练地合并同类项。

2.难点:多字母同类项的合并。

3.关键:正确理解同类项概念和合并同类项法则。

教具准备投影仪。

四、教学过程,新课引入有理数可以进行加减计算,那么整式能否可以加减运算呢?怎样化简呢?我们来看本章引言中的问题(2)。

在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段所需的时间就是2.1t小时,则这段铁路的全长是100t+1202.1t,即100t+252t1.类比数的运算,我们应如何化简式子100t+252t呢?五、新授(1)运用有理数的运算律计算:1002+2522=______;100(-2)+252(-2)=________。

1002+2522=(100+252)2=3522100(-2)+252(-2)=(100+252)(-2)=352(-2)我们知道字母可以表示数,如果用t表示上述算术中的数2(或-•2)•就有,•100t+252t=(100+252)t=352t。

《整式的加减》教案「篇二」一、素质教育目标(一)知识教学点1.理解:整式的加减实质就是去括号,合并同类项。

2.掌握:学生在掌握合并同类项、去括号与添括号的基础上,掌握整式加减的一般步骤。

3.运用:能够正确地进行整式的加减运算。

(二)能力训练点1.培养用代数的方法解决实际生活中的问题的能力和口头表达能力。

2.培养学生用代数方法解几何问题的思路。

(三)德育渗透点渗透教学知识来源于生活,又要为生活而服务的辩证观点。

3.4整式的加减第1课时教案

3.4整式的加减第1课时教案
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整式的加减》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算多个物品价格总和的情况?”(例如,购物时计算多件商品的总价)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索整式加减的奥秘。
最后,总结回顾环节,我通过提问的方式检验了学生们的学习效果,发现大部分学生能够掌握今天的教学内容。但也有学生提出了疑问,这让我意识到在教学中,可能需要更加关注学生的个体差异,对于学习有困难的学生,需要给予更多的关注和指导。
3.4整式的加减第1课时教案
一、教学内容
《数学》七年级上册,3.4整式的加减,第1课时。本节课主要内容包括:
1.掌握整式的概念,了解整式是由数字、字母和四则运算符号组成的代数式;
2.掌握同类项的定义,了解同类项的字母部分相同,且各字母的指数也分别相同;
3.掌握合并同类项的法则,即同类项相加(或相减)时,只需将其系数相加(或相减),字母部分保持不变;
3.成果展示:每个小组将向全班展示他们的讨论成果和整式计算的过程及结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“整式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“整式加减可以解决哪些实际问题?”
-掌握同类项的定义:学生需明白同类项的判断标准,即字母相同且相应字母的指数也相同,这是进行整式加减的前提。
-合并同类项的法则:学生应熟练掌握合并同类项的方法,即只对系数进行加减运算,字母和字母的指数保持不变。

整式的加减 第一课时_教案2022-2023学年人教版数学七年级上册

整式的加减 第一课时_教案2022-2023学年人教版数学七年级上册

《2.2整式加减(1)》教学设计一、教学目标1. 认识同类项,能判断两个式子是否是同类项.2. 能独立完成合并同类项,求多项式的值.3.能用整式表示生活中的数量关系,解决生活中问题.二、重点难点重点:理解同类项的概念;正确合并同类项.难点:根据同类项的概念在多项式中找同类,正确合并同类项.三、教学过程(一)情境引入问题1:在西宁到拉萨路段,列车在冻土地段的行驶速度是100 km/h,在非冻土地段的行驶速度是120 km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍,如果通过冻土地段需要t h,你能用含t的式子表示这段铁路的全长吗?列式:100t+120×2.1t==100t+252t教师追问:这个式子还能化简吗?设计意图:引入实际问题,使学生感受到学习含有字母的式子的运算是实际需要,理解化筒100t+252t的方法是运用有理数的运算律“分配律”,初步体会“数式通性”,促使学生的学习形成正迁移.(二)类比探究1.运用有理数的运算律计算:⑴100×2+252×2=⑵100×(-2)+252×(-2)=归纳:3个式子的结构相同,整式中的字母表示数,可以类比数的运算,运用数的运算法则和运算律进行整式运算.设计意图:通过用分配律进行有理数的运算,帮助学生理解用分配律化简式子100t + 252t 的方法,为进一步类比学习整式的运算提供方法上的借鉴.通过引导学生观察比较,发现三个算式的联系,理解由于式子100t+252t中的字母表示数,因此可以依据分配律对式子进行化简,理解整式的运算与有理数的运算具有一致性,为更一般的同类项的合并提供方法上指导.体会由“数”到“式”是由特殊到一般的思想方法,初步感受“数式通性”和类比的数学思想. 2.运用刚才方法填空:①100252t t-②2232x x+③2234ab ab-观察:上述各多项式的项有什么共同特点?同类项:⑴所含字母相同;⑵相同字母的指数也分别相同.设计意图:进一步引导学生类比前面关于式子100t+252t 的化简,讨论更一般的同类项(多项式中的项的次数高于1,字母不止一个等)的合并,进一步理解分配律的运用,体会“数式通性”和类比的数学思想,通过几组不同形式的同类项,感受不同类型式子的组成,突出同类项的特点,为归纳同类项的概念和合并同类项法则做好铺垫.3.观察多项式100252t t-,2232x x+,2234ab ab-上述多项式中同类项的运算过程有什么共同特点?归纳:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变.设计意图:在观察、比较中,发现各多项式的项的共同特征,分析运算特点,归纳出同类项、合并同类项的定义及合并同类项的法则.(三)例题讲解例:4x2+2x+7+3x-8x2-2解:=4x2-8x2+2x+3x+7-2 (交换律)=(4x2-8x2 )+(2x+3x)+(7-2) (结合律)=(4-8)x2+(2+3)x+(7-2) (分配律)=-4x2+5x+5 (按字母x的指数从大到小顺序排列)归纳步骤:(1)找出同类项并做标记;(2)运用交换律、结合律将多项式的同类项结合;(3)合并同类项;(4)按同一个字母的降幂(或升幂)排列.设计意图:归纳化简多项式的一般步骤.例2 (1)求多项式22225432x x x x x-++--的值,其中=12x;22)45()312(234522222--=-+-+-+=--++-x x x x x x x x 解:25-2-21-21===时,原式当x方法总结:在求多项式的值时,可以先将多项式化简(同类项合并),然后再求值. (2)求多项式 22113333a abc c a c +--+ 的值,其中16a =-,2b = , 3c =- . 设计意图:归纳化简求值的方法,先将多项式化简,然后再求值.使运算更简便.例3: (1)水库中水位第一天连续下降了a 小时,每小时平均下降2cm ;第二天连续上升了a 小时,每小时平均上升0.5cm ,这两天水位总的变化情况如何?(2)某商店原有5袋大米,每袋大米为x 千克. 上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?解:(1)把下降的水位变化量记为负,把上升的水位变化量记为正.则有:-2a + 0.5a = -1.5a答:这两天水位总的变化情况为下降了1.5a cm.(2)把进货的数量记为正,售出的数量记为负.则有:5x -3x +4x =6x答:进货后这个商店有大米6x 千克.设计意图: 本题让学生体会到数学知识之间的相互联系,同时体会到数学在生活中处处存在,数学来源于生活又服务于生活.(四)巩固提升1.判断同类项:(1) -5ab 3 与 3a 3b( ) (2) 3xy 与 3x( ) (3) -5m 2n 3 与 2n 3m 2( ) (4) 53 与 35( ) (5) x 3 与 53( )判断同类项要注意:① 字母 相同 ,相同字母的指数也 相同 .② 与 系数 无关,与 字母顺序 无关.③常数都是同类项.2. 单项式236ab c -的同类项可以是 . 3. 5x 2y 和42y m x n 是同类项,则 m=_______, n=________.4.判断下列计算是否正确?y 2x 5xy y 3x (4)02ba 2ab (3)32y 5y (2)5ab2b 3a (1)22222-=-=-=-=+注意:1.多项式中只有同类项才能合并;2.若两个同类项的系数互为相反数,则两项的和等于零.5. 下列运算,正确的是 (填序号).①2235a a a += ; ② 22532a b ab ab -= ;③ 22232x x x -= ;④22651m m -=. 6.–x m-3y 与 45y n+1x 3是同类项,则 m=_____,n=______.7.填空(1)x 的4倍与x 的5倍的和是多少?(2)x 的3倍比x 的一半大多少?8.如图,大圆的半径是R,小圆的面积是大圆面积的 94,求阴影部分的面积.9. 用式子表示十位上的数是a ,个位上的数是b 的两位数,再把这个两位数的十位上的数与个位上的数交换位置,计算所得数与原数的和.解:原来的两位数为:10a +b ,新的两位数为:10b +a两个数的和为:10a+b+10b+a=11a+11b所得数与原数的和能被11整除吗?∵11a+11b=11(a+b)∴所得数与原数的和能被11整除.设计意图:设置有梯度的练习题,加深对同类项和合并同类项法则的理解和运用,提高运算能力.(五)课堂小结1.回顾本节课的学习过程.2.本节课运用了什么思想方法研究问题?3.化简求值4.把实际问题抽象为数学模型5.挖掘已知条件,构造所求整式设计意图:通过小结,使学生梳理本节课所学内容,掌握本节课的核心一同类项的概念、合并同类项的概念和法则,感受“数式通性”和类比的数学思想.(六)巩固提高已知m是绝对值最小的有理数,且11m ya b++-与33x a b是同类项,求2222 23639x xy x mx mxy my -+-+-的值.设计意图:提高学生对同类项概念的理解.。

七年级数学《整式的加减1(同类项)》教案

七年级数学《整式的加减1(同类项)》教案
2、观察下列各单项式,把你认为相同类型的式子归为一类。
8x2y,-mn2,5a,-x2y,7mn2, ,9a,- ,0,0.4mn2, ,2xy2。
由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示。
要求学生观察归为一类的式子,思考它们有什么共同的特征?
请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类。
1、同类项的定义:
所含字母相同,并且相同字母的指数也分别相等的项叫做同类项。另外,所有的常数项都是同类项。
2.例1:判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。
(1)3x与3mx是同类项。()(2)2ab与-5ab是同类项。( )
(3)3x2y与- yx2是同类项。( ) (4)5ab2与-2ab2c是同类项。( )
中学“育本课堂”育人设计方案
时间
年 月 日
第 周星期
年级学科
七年级数学
课题
第62—63页,2.2整式的加减:1.同类项。
课程标准
理解同类项的概念,在具体情景中,认识同类项。
育人目标
通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力。
核心问题
初步体会数学与人类生活的密切联系。
通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对象,并称它们为同类项
师生共同完成
(5)23与32是同类项。( )
例2:指出下列多项式中的同类项:
(1)3x-2y+1+3y-2x-5;(2)3x2y-2xy2+ xy2- yx2。
解:(1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项。
(2)3x2y与- yx2是同类项,-2xy2与 xy2是同类项。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《整式的加减一》教案
教学目标
1.通过实例让学生自己发现去括号的规律.
2.理解去括号就是将分配律用于代数式运算.
3.掌握去括号法则.
4.会利用去括号、合并同类项将整式化简.
重点和难点
本节教学的重点是去括号法则.例1的代数式比较复杂,化简的步骤较多,并涉及求代数式的值,是本节教学的难点.
设计思路
通过实际情境,体会去括号的必要性,在教师的引导和学生的观察、思考下,明白去括号的依据,归纳出法则,通过练习促进对法则的掌握和运用.
教学过程
一、创设情境、引入新课(投影显示)
如图4-7,要计算这个图形的面积,
你有几种不同的方法?请计算结果
用不同方法得到的结果应当相当.你
发现了什么?图4-7
(引导学生分析题意,列代数式,感受不同角度看待问题,体会去括号的必要性.)
二、观察思考、揭示实质
从上面的讨论我们得到3(x+3)=3x+9
问题1:观察这条式子,等边从左边到右边发生了什么变化?
问题2:根据已有知识,你能明白运算的依据吗?
(引导学生观察、讨论思考,明白运算的依据:运算的分配律,并进一步体会去括号的必要性,培养学生的观察力和表达能力.)
根据分配律,你能去括号吗?
(1)+(a-b+c) (2)-(a-b+c)
如果把+(a-b+c)看做1x(a-b+c),-(a-b+c)看做(-1)x(a-b+c),运用分配律就可以去括号+(a-b+c)=a-b+c,-(a-b+c)= -a+b-c.
问题1:观察这两个算式,看看去括号前后,括号里各项的符号有什么变化?
(引导学生观察、比较,给学生以充分的时间去交流和归纳,关注学生对法则的表述,
培养学生的归纳和表达能力.)
通过上述讨论,归纳出去括号法则:
括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变号;括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.
这一法则可编成一句顺口溜:
去括号,看符号;是“+”号,不变号;是“-”号,全变号.
三、步步深入,掌握法则(投影显示)
例2:化简并求值:2(a2-ab)-3(a2-ab),其中a=-2,b=3
注意先运用去括号法则去括号,再合并同类项化简,最后代入求值.
师生共同分析去括号的注意点(幻灯投影):
1.去括号时应将括号前的符号连同括号一起去掉.
2.要注意括号前的符号,特别括号前面是“-”号时,去掉括号后,括号内的各项都要改变符号,不能只改变括号内第一项或者某几项的符号.
3.当括号里第一项是省略“+”号的正数时,去掉括号和它前面的“+”号后,要补上原先省略的“+”号.
4.若括号前有数字因数时,应利用分配律去括号,特别要注意符号.
四、巩固练习
教材第103页课内练习
五、课堂小结
谈谈通过本节课的学习,你有何体会?
六、布置作业
教材104作业题.。

相关文档
最新文档