考研数学高等数学笔记(辅导班)
2023考研数学高等数学每章知识点汇总精品

2023考研数学高等数学每章知识点汇总精品高等数学基础知识篇一1、函数、极限与连续重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。
2、一元函数积分学重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。
3、一元函数微分学重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。
4、向量代数与空间解析几何(数一)主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。
5、多元函数微分学重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。
另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
6、多元函数积分学重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。
此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。
7、无穷级数(数一、数三)重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。
8、常微分方程及差分方程重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。
此外,数三考查差分方程的基本概念与一介常系数线形方程求解方法。
2021年考研--高等数学强化课,知识笔记完整版(详细版)

●欢迎大家关注【公众号:南关OUT】●武忠祥老师的强化班课程●函数极限连续●函数●基本要素:定义域,对应规则●函数形态●单调性判定●定义●导数,●单调性应用●根的个数●证明不等式●奇偶性判定●定义●可导●原函数奇函数>导函数偶函数●原函数偶函数>导函数奇函数●连续●周期性判定●定义●可导的周期函数其导函数是周期函数●周期函数的原函数不一定为周期函数●f(x)连续且以T为周期●周期函数的原函数是周期函数的充要条件是在一个周期上的积分为0●有界性判定●定义●闭区间连续●开区间连续,左端点右极限和右端点左极限存在●导数●极限●概念●数列极限●极限值等于多少与数列前有限项无关●与项数无关●函数极限●趋于无穷●趋于有限值●极限存在与该点无关,只与该点的去心领域有关●分左右极限求●分段函数在分段处极限,两侧极限不一样●特殊函数●2●性质●局部有界性●保号性注意等号●与无穷小之间的关系●极限存在准则●夹逼●单调有界●单调有界函数一定有极限,单增上有界、单减下有界●无穷小●比较●性质●无穷大●常用无穷大比较指幂对(大到小)●无穷大与无界变量●与无穷小互为倒数●求极限方法●有理运算法则●基本极限●等价无穷小●常用●积分情况●代换原则●乘除直接换●加减有条件减不为正 1 ,加不为-1●洛必达●泰勒公式●常用●夹逼●积分定义:先提取可爱因子再确定被积函数和积分区间●单调有界●函数极限题型●0/0 0比0型●拉格朗日中值定理●加减 x 来凑常用等价无穷小●无穷 / 无穷●洛必达●分子分母同时除以分子分母各项中最高阶的无穷大●无穷—无穷●0 · 无穷●1 的无穷次方●无穷的0次方,0的无穷次方●数列极限●不定式●和求函数极限式一样,但是不可以直接使用洛必达法则,在可以使用洛必达的地方,将数列极限写成函数极限,再使用洛必达极限●n 项和的数列极限●夹逼定理●定积分定义●级数求和●常用结论●n 项连乘的数列极限●夹逼●取对数化为n项和●递推关系●数列存在单调性●收敛(单调有界准则) > 令极限取A > 带回递推关系取极限得到A●数列不具有单调性或者单调性很难判定●先令极限为A,带回递推关系得到A的值,最后再证明极限为A●单调性判定(直接,比值,函数)●无穷小量阶的比较●洛必达●等价无穷小●泰勒公式●常用结论及举例●连续●连续●间断点●连续函数的性质●连续题型●讨论连续性及间断点类型●函数连续不代表可以取到整个实域的所有值●如果题目中间是抽象函数,只给了条件,没给具体函数,可以将函数令为简单的函数来排除选项,如函数等于1,|x|等●间断点多为使得分母为0的点,分段函数的分界点,多注意无穷(正负),0点●介值定理,最值定理,零点定理证明●一元函数微分●导数微分●导数定义●等价形式●注意分段函数●微分定义●连续、可导、可微之间的关系●求导公式●求导法则●有理运算法则●复合函数求导●隐函数求导●反函数求导●参数方程求导●高阶导数●对数求导法则●多个因式的乘除、乘幂构成,或者幂指函数的形式,可以先取对数再求导●●题型:导数与微分的概念●利用导数定义求极限●利用导数定义求导数●分段函数在分界点处的导数一般都要用定义求●利用导数定义判定可导性●导数几何意义●导数与微分计算●复合函数求导●导数与奇偶性●复合函数在一点的导数值●乘积的极限不一定等于极限的乘积,当两个极限都存在的时候才可以●高阶导数●公式●一阶二阶之后归纳●泰勒公式和泰勒级数●导数应用●微分中值定理●罗尔定理●拉格朗日定理 ---建立函数在区间上的变化与该区间内一点导数的关系●柯西定理●泰勒定理(拉格朗日余项)●极值最值●极值的必要条件●极值的充分条件●第一充分条件●第二充分条件●第三充分条件●凹向拐点●判定●必要条件●充分条件●渐近线●水平渐近线●垂直渐近线●斜渐近线●方程的根的存在性及个数●方法●注意把函数化到一边来求零点●将含有参数的式子参数分离出来●罗尔定理●证明函数不等式●方式方法●单调性●最大最小值●拉格朗日定理●泰勒公式●凹凸性●注意以及常用基本不等式●不等式●微分中值定理有关的证明题●证明存在一个点●构造辅助函数 P 82●证明存在两个中值点 p 85●方法●证明存在一个中值点 p 87●带拉格朗日余项的泰勒公式●一元函数积分●不定积分●原函数●原函数的存在性●f(x)在区间连续,有原函数●有第一类间断点,f(x)没有原函数●基本公式●公式●积分法●第一类换元法●第二类换元法●分部积分●定积分●概念●与积分变量无关●可积性●必要条件存在必有界●充分条件●连续必存在●有界,有限个间断点必存在●有限个第一类间断点必存在●计算●方法●奇偶性和周期性●公式 sin cos 公式注意上下限●变上限积分 p 105●公式●变上限积分函数及其应用●连续性●可导性●奇偶性●处理变上限积分有关极限问题方法●洛必达法则●等价无穷小代换●积分中值定理●图像●性质●不等式●大小●积分中值定理●广义积分中值定理●积分不等式问题●变量代换●积分中值定理●变上限积分●柯西积分不等式●反常积分●定义●无界函数●常用结论●定积分应用●平面图形面积●空间体体积●计算●曲线弧长●计算就是计算 d s●旋转体侧面积●常微分方程●一阶●齐次●线性方程●全微分方程●可降阶的高阶方程●形式●高阶线性微分方程●解的结构●定理一●定理二●定理三●定理四●常系数齐次线性微分方程●二阶常系数线性齐次微分方程解的形式●常系数非齐次线性微分方程●求特解●一●二●多元函数微分●●重极限●任意方式趋近时,函数都是一个值才可以,否则极限不存在●y = k x y = x x (x的方)●求重极限●连续●性质●偏导数●定义●代表斜率●二阶偏导数连续●全微分●定义非常重要●等价●注意,这个ρ 的高阶无穷小是关于ρ 的函数,但是里面的ρ 一般最低是 1 次方(此时需要刚好为0值),是高次方的时候直接使用●可微性判定●可微推出偏导数存在●偏导数连续推出可微●可微推出偏导数存在偏导数连续推出可微●计算●连续、可导、可微关系●偏导数与全微分计算●复合函数求导●全微分形式不变●隐函数求导●极值最值●无条件极值●定义对任意p(x,y)●必要条件存在偏导,且点就是极值点●充分条件领域内有二阶连续偏导,一阶导为0●二元函数在偏导数不存在的点也可能取得极值●条件极值二元函数的条件极值转换为三元函数的无条件极值计算●二重积分●二重积分概念●几何意义积分域D为底,曲面 z=f(x,y) 为曲顶的曲顶柱体的体积●二重积分性质●不等式性质●函数之间的关系●最大最小值●绝对值●二重积分计算●直角坐标●先 y 后 x●先 x 后 y●极坐标●极坐标计算●适合极坐标计算的被积函数●适合极坐标计算的积分域●对称性和奇偶性●奇偶性●变量对称性●无穷级数●级数的概念●无穷级数●部分和●级数收敛●级数发散●级数性质●收敛级数的倍数是极限s的倍数●收敛级数的求和●级数求和●收敛+发散 = 发散●发散+发散 = 敛散性不确定●在级数中去掉、加上有限项不会改变级数的敛散性●收敛级数加括号仍然收敛且和不变●级数加括号以后收敛,原级数不一定收敛●级数加括号以后发散,原级数不一定发散●级数收敛必要条件(反过来不一定成立)●级数的审敛准则●正向级数 u n > 0●比较判别法●比较法极限形式●使用比较法和比较法的极限形式时,需要适当的选择一个已知敛散性的级数作为比较准则●比值法●根值法●交错级数●充分条件●任意项级数●条件收敛●绝对收敛●基本结论●常用结论●等价无穷小代换只适用正向级数●幂级数●定义●阿贝尔定理●绝对收敛(端点收敛则里面收敛)●发散(端点发散则外面发散)●可能性●收敛半径、收敛区间、收敛域●定理3●定理4●有理运算性质●运算●分析性质●连续性●可导性(逐项求导)●可积性●函数的幂级数展开●展开式唯一●泰勒级数●常用展开式●傅里叶级数●定义●展开●方向导数和梯度●方向导数●定义●计算●梯度●定义●多元微分几何应用●曲面的切平面与法线●曲面的切线和法平面●常见曲面●旋转面●柱面平行于 z 轴就是消去 z●多元积分学●三重积分●定义●计算●直角坐标●柱坐标●●线积分●对弧长的线积分(第一类)与积分路径无关●计算(平面)●利用奇偶性曲线关于哪个轴对称,就把哪个变量当作常数,然后来看另外一个变量的奇偶性●利用对称性 x y 可以互换●对坐标的线积分(第二类线积分)与积分路径有关●计算方法●直接法●格林公式●补线用格林公式●利用线积分与路径无关●线积分与路径无关的判定以下四条等价●计算●该换路径●利用原函数●计算方法●斯托克斯公式●面积分●对面积的面积分(第一类面积分)与积分曲面的方向无关●直接法●利用奇偶性●对坐标的面积分(底二类面积分)与积分曲面的方向有关●性质●计算●直接法●高斯公式●常用●多元积分应用●场论。
高等数学笔记(含数一内容)

隐函数求导
参数方程确定的函数求导
分段函数求导
先讨论关键点是否连续,确定连续后再判断函数各个部分是否可导。
求函数高阶导
一般使用数学归纳法解决。
微分
可微
定义:设y=f(x) (x∈D),x₀∈D。若∆y=A∆x+৹(∆x),则称f(x)在x=x₀处可微。
性质
可微一定可导,可导一定可微(充要条件)
若∆y=A∆x+৹(∆x),则A=f'(x₀),即dy∣₍x=x₀₎=f'(x₀)dx
二阶线性微分方程解的结构 齐+齐=齐 齐 + 非齐 = 非齐 非齐 + 非齐 = 齐 (拆解性质)对于方程**,若f(x)=f1(x)+f2(x)(即可拆成两部分),则分别构造两个二阶非齐次线性微分方程,且φ1(x),φ2(x)分别为它们的特解,则 有原方程特解为:
y=φ1(x)+φ2(x) (系数和的特点)设φ1(x),φ2(x),...,φn(x),为方程**的解,则通解的组合形式为y=k1φ1(x)+k2φ2(x)+...+knφn(x) 若y为方程*的通解,则k1+k2+...+kn=0(系数和为0) 若y为方程**的通解,则k1+k2+...+kn=1(系数和为1) (二阶常系数线性微分方程通解形式推导定理)
函数f(x)∈ c【a,b】的性质(函数在区间内恒连续)
性质1:∃最大值 M 和最小值 m (最值); 性质2:∃M₀>0,使得∣f(x)∣≤M₀(有界);
性质3: ∀η ∈【m,M】,∃ξ∈【a,b】,使得f(ξ)=η(介值定理);
性质4:若 f(a)*f(b)<0,则∃c∈(a,b),使得f(c)=0(零点定理)。 连续函数的运算
高等数学第十章曲线积分与曲面积分(考研辅导班内部资料)

ds L ( L 表示曲线 L 的弧长 ) .
L
积函数可用积分曲线方程作变换.
( 6) 奇偶性与对称性 如果积分弧段 L (AB ) 关于 y 轴对称,
f (x, y)ds 存在,则
L( AB )
f ( x, y)ds
L ( AB )
0,
f ( x, y) 关于 x是奇函数 ,
2
f ( x, y)ds,f ( x, y) 关于 x是偶函数 .
切线的方向余弦是一个常量。 所以, 当积分曲线是直线时, 可能采用两类不同的曲线积分的
转换。
定理 4 (格林公式)
设 D 是由分段光滑的曲线 L 围成,函数 P( x, y), Q (x, y) 及其一阶偏导数在 D 上连续,
则有
P(x, y)dx Q (x, y)d y
Q P dxdy
L
Dx x
设 L (AB ) 的平面曲线: 其参数方程: x
分别是 和 ,则
(t), y
(t) ,起点和终点对应的参数取值
Pdx Qdy
L ( AB)
{ P( (t ), (t)] (t) Q[( (t), (t )] (t )}dt
设 L (AB ) 的空间曲线 :其参数方程: x (t), y (t ), z w(t ) ,起点和终点对应的
表示曲线的线密度。 定义 2 第二类曲线积分(对坐标的曲线积分)
( 1)平面曲线 L( AB) 的积分:
P(x, y)dx Q( x, y)dy
L ( AB )
( 2)空间曲线 L( AB) 的积分:
n
lim
(T ) 0
[ f ( k , k ) xk
k1
f ( k , k ) yk ]
考研高等数学基础知识点归纳

考研高等数学知识点归纳本文档适用于考前复习查漏补缺和考场前快速回顾知识点使用目录第一章函数极限连续 (1).三角函数常用公式 (1).函数奇偶性 (2).重要的极限 (2).定积分公式 (2)x (2)·常用的等价无穷小0.无穷小比阶 (2).复合函数的等价无穷小 (2)第二章导数与微分 (4).导数的定义式 (4).基本求导公式 (4).导数有理运算法则 (4).复合函数求导法 (4).隐函数求导法 (4).反函数的导数 (4).参数方程求导法 (4)第三章微分中值定理及导数应用 (5)3.1微分中值定理 (5).费马引理 (5).罗尔定理 (5).拉格朗日中值定理 (5).柯西中值定理 (5).泰勒公式 (6)3.2导数的应用 (7).函数的单调性 (7).函数的极值 (7).函数的最大值与最小值 (7).函数的凹凸性 (8).曲线的渐近线 (8)第四章不定积分 (9)4.1不定积分的性质 (9).原函数存在定理 (9).不定积分的性质 (9).常用积分公式 (9)4.2不定积分的计算方法 (10).第一换元积分法 (10).第二换元积分法 (10).分部积分公式 (10).“积不出”的积分 (11).三类常见可积函数积分 (11)第五章定积分 (12)5.1定积分的定义与性质 (12).定积分的定义 (12).定积分存在的充分条件 (12).定积分的不等式性质 (12).定积分的中值定理 (12)5.2积分上限函数 (12).积分上限函数的定义 (12).积分上限函数的奇偶性 (12)5.3定积分的计算方法 (13).牛顿一莱布尼茨公式 (13).换元积分法 (13).分部积分法 (13).利用奇偶性和周期性 (13).利用已有公式 (13).具有几何意义的积分 (13).变上限积分求导方法 (13).区间再现法 (13)5.3反常积分 (14).无穷区间上的反常积分 (14).比较判别法 (14).比较判别法的极限形式 (14).无界函数的反常积分 (14).比较判别法 (14).比较判别法的极限形式 (14)第六章定积分的应用 (15)6.1几何应用 (15).平面图形的面积 (15).旋转体体积 (15).曲线弧长 (15).旋转体侧面积 (15)第七章微分方程 (16)7.1常微分方程的基本概念 (16)7.2一阶微分方程 (16)7.3可降阶的高阶方程 (17)7.4高阶线性微分方程 (17).线性微分方程的解的结构 (17).常系数齐次线性微分方程 (17).常系数非齐次线性微分方程 (17)第八章多元函数微分学 (19)8.1多元函数的基本概念 (19).多元函数的极限 (19).多元函数的连续性 (19).偏导数 (19).全微分 (20).连续、可偏导、可微之间的关系 (21)8.2多元函数的微分法 (21).复合函数微分法 (21).隐函数微分法 (21)8.3多元函数的极值与最值 (21).无约束极值 (21).条件极值及拉格朗日乘数法 (22).最大最小值 (22)第九章二重积分 (23)9.1二重积分的概念及性质 (23).二重积分的概念 (23).二重积分的性质 (23)9.2二重积分的计算 (23).几何意义 (23).利用直角坐标计算 (23).利用极坐标计算 (23).利用函数的奇偶性计算 (24).利用变量的轮换对称性计算 (24)第十章无穷级数 (25)10.1常数项级数 (25).级数的概念 (25).级数的性质 (25).级数的审敛准则 (25).一些收敛关系和级数收敛性 (26)10.2幂级数 (27).幂级数的定义 (27).阿贝尔定理 (27)·幂级数n nn a x∞=∑的收敛性 (27).求收敛半径方法 (27).有理运算性质 (27).分析性质 (28).函数的幂级数展开 (28).函数展开为幂级数的两种方法 (29)10.3傅里叶级数 (29).傅里叶系数和傅里叶级数 (29).收敛定理(狄利克雷) (29).周期为2 的函数的展开 (29).周期为2l的函数的展开 (30)第十一章向量代数与空间解析几何及多元微分学在几何上的应用 (31)11.1向量代数 (31).数量积 (31).向量积 (31).混合积 (31)11.2空间平面与直线 (32).平面方程 (32).直线方程 (32).平面与直线的位置关系(平行、垂直、夹角) (32).点到面的距离 (32).点到直线的距离 (32)11.3曲面与空间曲线 (32).曲面方程 (32).空间曲线 (32).常见曲面 (32)11.4多元微分学在几何上的应用 (33).曲面的切平面与法线 (33).曲线的切线与法平面 (33)第十二章多元积分学及其应用 (34)12.1三重积分 (34)12.2曲线积分 (35).对弧长的线积分(第一类线积分) (35).对坐标的线积分(第二类线积分) (35)12.3曲面积分 (37).对面积的面积分(第一类面积分) (37).对坐标的面积分(第二类面积分) (37)12.4多元积分应用 (38)12.5场论初步 (39)第一章函数极限连续·三角函数常用公式倒数关系sin csc 1θθ⋅=cos sec 1θθ⋅=tan cot 1θθ⋅=平方关系22sin cos 1θθ+=221tan sec θθ+=221cot csc θθ+=和角公式sin()sin cos cos sin αβαβαβ±=±cos()cos cos sin sin αβαβαβ±= tan tan tan()1tan tan αβαβαβ++=-cot cot 1cot()cot cot αβαβαβ-+=+倍角公式2222cos2cos sin 2cos 112sin θθθθθ=-=-=-3cos34cos 3cos θθθ=-sin 22sin cos θθθ=3sin33sin 4sin θθθ=-22tan tan 21tan θθθ=-21cot cot 22cot θθθ-+=半角公式sin 2α=cos 2α=sin 1cos tan 21cos sin ααααα-==+万能公式22tan 2sin 1tan 2ααα=+221tan 2cos 1tan 2ααα-=+22tan 2tan 1tan 2ααα=-积化和差公式1sin sin [cos()cos()]2αβαβαβ=-+--1cos cos [cos()cos()]2αβαβαβ=++-1sin cos [sin()sin()]2αβαβαβ=++-1cos sin [sin()sin()]2αβαβαβ=+--和差化积公式sin sin 2sin cos 22θϕθϕθϕ+-+=sin sin 2cos sin 22θϕθϕθϕ+--=cos cos 2cos cos 22θϕθϕθϕ+-+=cos cos 2sin sin 22θϕθϕθϕ+--=-sin cos arctan b a b a θθθ⎛⎫+=+ ⎪⎝⎭反三角函数arcsin arccos 2πθθ+=arctan arccot 2πθθ+=arctan arctan arctan(1x y x y xy±±=·函数奇偶性设函数()f x 的定义域D 关于原点对称奇函数:()()f x f x -=-偶函数:()()f x f x -=+=奇奇奇+=偶偶偶=⨯奇奇偶=⨯偶偶偶=⨯奇偶奇·常用函数大小关系0x ≥时sin x x ≤0x >时ln(1)x x+<·重要的极限1lim(1)x x e x →∞+=11lim(1)x x e x -→∞-=lim(1)x a x a e x→∞+=10lim(1)x x x e→+=110lim(1)x x x e -→-=0sin lim 1x x x→=·定积分公式1011111lim lim ()n n n n i i i i f f f x dx n n n n →∞→∞==-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭∑∑⎰·常用的等价无穷小0x →()~sin ~tan ~arcsin ~arctan ~ln 1~1x x x x x x x e +-()log 1~ln a x x a +1~ln x a x a -211cos ~~sec 12x x x --21cos ~2a a x x -31sin ~6x x x -31tan ~3x x x -()21ln 1~2x x x -+31arcsin ~6x x x -31arctan ~3x x x -()11~a x ax +-推广得:若()()()0,0x x x ααβ→→则()()()()()11~x x x x βααβ+-·无穷小比阶加减法时低阶吸收高阶o ±o =o ,=m s 乘法时阶数累加o ∙o =o r ,∙o =o r 非零常数相乘不影响阶数o =o B =∙o ,≠0且为常数·复合函数的等价无穷小当0x →时,若()~m f x ax 、()~n g x bx ,且()f x 、()g x 、a 、b 均不为0,则[()]~m mnf g x ab x·一些求解极限的思路(1)(1)~()e e e e e αββαββαβ--=--,0αβ→(2)1∞型①指数化②1lim lim(1)lim(1)~e αββαβααα⋅⋅+=+,0α→,β→∞·一些常用极限1n =第二章导数与微分·导数的定义式00000000())()())(l d (lim im x x x x x y f x dx f x x f x f x f x x x x →∆→='+∆-==-=∆-·基本求导公式()0C '=1()a a x ax -'=()x x e e '=l )(n x x a a a'=1(ln )x x '=1(log )ln a x x a '=(sin )cos x x '=(cos )sin x x'=-221(tan )(sec )(cos )x x x '==221(cot )(csc )(sin )x x x '=-=-(sec )sec tan x x x '=(csc )csc cot x x x'=-(arcsin )x '(arccos )x '=2(arctan )1x x '=+2(arccot )1x x '=-+·导数有理运算法则设()u u x =,()v v x =在x 处可导,则()u v u v '''±=±()uv u v uv '''=+2u u v uv v v '''-⎛⎫= ⎪⎝⎭·复合函数求导法设()u x ϕ=在x 处可导,()y f u =在对应点处可导则复合函数[()]y f x ϕ=在x 处可导,且d d d ()()d d d y y u f u x x u xϕ''=⋅=·隐函数求导法设()y f x =是由方程(,)0F x y =所确定的可导函数,为求得y '可在方程(,)0F x y =两边对x 求导,可得到一个含有y '的方程,从中解出y '·反函数的导数若()y f x =在某区间内单调可导,且()0f x '≠,则其反函数()x y ϕ=在对应的区间也可导,且1()()y f x ϕ'=',即dx 1d d dxy y =·参数方程求导法设()y y x =是由参数方程(),()(),x t t y t ϕαβψ=⎧<<⎨=⎩确定的函数,则(1)若()t ϕ和()t ψ都可导,且()0t ϕ'≠,则d ()d ()y t x t ψϕ'='(2)若()t ϕ和()t ψ二阶可导,且()0t ϕ'≠,则223d d ()1()()()()d d ()()()y t t t t t x t t t t ψψϕϕψϕϕϕ'''''''⎛⎫-=⋅= ⎪'''⎝⎭第三章微分中值定理及导数应用3.1微分中值定理·费马引理设()f x 在点0x 处可导,如果()f x 在点0x 处取得极值,那么0()0f x '=·罗尔定理如果()f x 满足以下条件:(1)在闭区间[,]a b 上连续,(2)在开区间(,)a b 内可导,(3)()()f a f b =则在(,)a b 内至少存在一点ξ,使得()0f ξ'=·拉格朗日中值定理如果()f x 满足以下条件:(1)在闭区间[,]a b 上连续(2)在开区间(,)a b 内可导则在(,)a b 内至少存在一点ξ,使得()()()()f b f a f b a ξ'-=-推论:如果在(,)a b 内恒有()0f x '=,则在(,)a b 内()f x 为常数·柯西中值定理如果()f x ,()F x 满足以下条件:(1)在闭区间[,]a b 上连续(2)在开区间(,)a b 内可导,且()F x '在(,)a b 内每一点处均不为零则在(,)a b 内至少存在一点ξ,使得()()()()()()f b f a f F b F a F ξξ'-='-罗尔、拉格朗日、柯西中值定理的作用:建立了()f x 与()f x '的联系罗尔、拉格朗日、柯西中值定理的关系:罗尔拉格朗日柯西推广推广特例特例罗尔、拉格朗日、柯西中值定理的图像:罗尔定理拉格朗日中值定理柯西中值定理·泰勒公式皮亚偌型余项泰勒公式如果()f x 在点0x 有直至n 阶的导数,则有2()0000000011()()()()()()()()[()]2!!n n n f x f x f x x x f x x x f x x x o x x n '''=+-+-++-+- 常称0()[()]nn R x o x x =-为皮亚诺型余项拉格朗日型余项泰勒公式设函数()f x 在含有0x 的开区间(,)a b 内有直到1n +阶的导数,则当(,)x a b ∈时有(1)2()10000000011()()()()()()()()()()2!!(1)!n n nn f f x f x f x x x f x x x f x x x x x n n ξ++'''=+-+-++-+-+ 其中(1)10()()()(1)!n n n f R x x x n ξ++=-+这里ξ介于0x 与x 之间,称为拉格朗日型余项若00x =则得麦克劳林公式:2()11()(0)(0)(0)(0)()2!!n n n f x f f x f x f x o x n '''=+++++ 共同点:①利用多项式逼近函数②建立()f x 与()()n f x 的联系不同点:①条件皮亚诺型余项:n 阶拉格朗日型余项:1n +阶②余项皮亚诺型余项→局部用于求解:①极限②极值拉格朗日型余项→整体用于求解:①最值②不等式常用泰勒公式:2111()2!!x n n e x x x o x n =+++++ 32121sin (1)()3!(21)!n nn x x x x o x n ++=-++-++ 2422cos 1(1)()2!4!(2)!n n n x x x x o x n =-+-+-+ ()331tan 3x x x o x =++()331arcsin 6x x x o x =++()331arctan 3x x x o x =-+211()1n n x x x o x x =+++++- 211(1)()1n n n x x x o x x=-+-+-++ 231ln(1)(1)()23nn n x x x x x o x n -+=-+-+-+ 2(1)(1)(1)(1)1()2!!a nn a a a a a n x ax x x o x n ---++=+++++3.2导数的应用·函数的单调性设()y f x =在[,]a b 上连续,在(,)a b 内可导(1)若在(,)a b 内()0f x '>,则()f x 在[,]a b 上单调增(2)若在(,)a b 内()0f x '<,则()f x 在[,]a b 上单调减·函数的极值定义:设()f x 在点0x 的某邻域内有定义,如果对于该邻域内任何x 恒有0()()f x f x ≤(0()()f x f x ≥)则称0x 为()f x 的一个极大值点(极小值点),称0()f x 为()f x 的极大值(极小值),极大(小)值统称为极值,极大(小)值点统称为极值点导数为零的点称为函数的驻点极值的必要条件:设()y f x =在点0x 处可导,如果0x 为()f x 的极值点,则0()0f x '=极值的第一充分条件:设()y f x =在点0x 的某去心邻域内可导,且0()0f x '=(或()f x 在0x 处连续)(1)若0x x <时,()0f x '>,0x x >时,()0f x '<,则0x 为()f x 的极大值点(2)若0x x <时,()0f x '<,0x x >时,()0f x '>,则0x 为()f x 的极小值点(3)若()f x '在0x 的两侧同号,则0x 不为()f x 的极值点极值的第二充分条件:设()y f x =在点0x 处二阶可导,且0()0f x '=(1)若0()0f x ''<,则0x 为()f x 的极大值点(2)若0()0f x ''>,则0x 为()f x 的极小值点(1)若0()0f x ''=,则此方法不能判定0x 是否为极值点极值的第三充分条件:设()y f x =在点0x 处可导,且()()()01,2,,1m o f x m n ==- ,()0()0n f x ≠,则①当n 为偶数且()0()0n f x <时,()f x 在0x 处取得极大值②当n 为奇数且()0()0n f x >时,()f x 在0x 处取得极小值极值点与驻点的关系:极值点驻点例:x 有极值点但无驻点3x 有驻点但无极值点可能的极值点:①()0f x '=的点②()f x '不存在的点注意:端点不可是极值点,因为只有一侧邻域·函数的最大值与最小值定义:设()f x 在闭区间[,]a b 上有定义,0[,]x a b ∈。
(完整版)考研高等数学知识点总结(最新整理)

du u dx u dy u dz x y z
全微分的近似计算:z dz f x (x, y)x f y (x, y)y 多元复合函数的求导法:
z f [u(t),v(t)]
dz z u z v dt u t v t
z f [u(x, y),v(x, y)]
z z u z v x u x v x
x2 a2 dx x x2 a2 a2 ln x x2 a2 C
2
2
a2 x2 dx x a2 x2 a2 arcsin x C
2
2
a
sin
x
2u 1u
2
, cos
x
1 1
u u
2 2
, u
tg
x , dx 2
2du 1 u2
1 / 13
一些初等函数:
两个重要极限:
双曲正弦 : shx ex ex 2
当u u(x, y),v v(x, y)时,
du u dx u dy x y
dv v dx v dy x y
隐函数的求导公式:
隐函数F (x,
y)
0, dy dx
Fx Fy
, d 2 y dx 2
x
(
Fx Fy
)+
y
(
Fx Fy
)
dy dx
隐函数F (x, y, z) 0, z Fx , z Fy
x
x
三角函数公式: ·诱导公式:
函数 角A -α 90°-α 90°+α 180°-α 180°+α 270°-α 270°+α 360°-α 360°+α
sin cos tg ctg
-sinα cosα cosα sinα -sinα -cosα -cosα -sinα sinα
考研数学的学科知识点总结

考研数学的学科知识点总结一、高等数学1.极限与连续(1)函数极限的定义及其性质(2)无穷大量与无穷小量(3)函数的连续性(4)洛必达法则2.微分学(1)导数的概念及性质(2)高阶导数及其应用(3)隐函数及参数方程的微分(4)微分中值定理及其应用3.积分学(1)不定积分的性质及计算方法(2)定积分的定义及性质(3)换元积分法(4)分部积分法(5)定积分的应用4.级数(1)级数的收敛性(2)常数项级数(3)幂级数(4)级数的性质5.微分方程(1)常微分方程的解法(2)一阶线性微分方程(3)高阶微分方程的解法(4)常系数齐次线性微分方程6.多元函数微积分(1)偏导数及其应用(2)多元函数的极值(3)多元函数的积分(4)梯度、散度和旋度二、线性代数1.向量空间(1)向量及其线性运算(2)向量组的线性相关性(3)向量空间及其性质2.矩阵及行列式(1)矩阵的概念及运算法则(2)矩阵的秩(3)行列式的概念及性质(4)行列式的应用3.线性方程组(1)线性方程组的解法(2)矩阵的秩与线性方程组的解的关系(3)特解和通解4.线性空间与线性变换(1)线性空间的定义及性质(2)线性变换的概念及性质(3)矩阵表示与特征值特征向量5.内积空间(1)内积的定义及其性质(2)正交性(3)正交矩阵(4)施密特正交化方法三、概率论与数理统计1.概率及其性质(1)事件与概率(2)概率的基本运算法则(3)条件概率与独立性(4)全概率公式与贝叶斯公式2.随机变量及其分布(1)随机变量的概念及其性质(2)离散型随机变量(3)连续型随机变量(4)常见分布的特征及应用3.数理统计(1)抽样及其样本统计量(2)点估计(3)区间估计(4)假设检验四、常微分方程1.一阶常微分方程(1)可分离变量的微分方程(2)一阶线性微分方程(3)恰当微分方程(4)常见微分方程的解法2.高阶常微分方程(1)有限阶、线性、常系数微分方程(2)拉普拉斯变换解法(3)常见高阶微分方程的解法(4)特解与通解五、离散数学1.命题逻辑(1)命题与命题的联结词(2)真值表及其等值演算(3)逻辑推理法则2.集合 theory(1)集合及其运算(2)集合的等价关系与划分(3)集合的运算律3.函数与关系(1)函数的概念及性质(2)函数的复合与反函数(3)关系及其性质4.图论(1)图的定义及运算(2)完全图和酷颠图(3)图的遍历与回路5.格 theory(1)格的定义及性质(2)分配格和布尔格(3)集合与乘积格以上是考研数学学科的知识点总结,希望对大家有所帮助!。
考研高数知识点总结

考研高数知识点总结高等数学是研究数与其变化规律的一门基础课程,是理工科学生学习的重要课程之一。
在考研数学中,高等数学是必考科目之一,占有较大比重。
下面就考研高等数学知识点进行总结,希望对考生们有所帮助。
一、函数与极限1. 基本概念:函数、反函数、复合函数、有界函数、周期函数等。
2. 极限的定义:数列极限的定义、函数极限的定义等。
3. 极限的性质:极限的唯一性、有界性、局部有界原理等。
4. 极限运算法则:加减乘除、复合函数的极限等相关运算法则。
5. 无穷大与无穷小:无穷大和无穷小的概念、性质及相关推论。
二、导数与微分1. 导数的定义:函数在某一点的导数、导数的几何意义、物理意义等。
2. 基本导数公式:多项式函数、三角函数、指数函数、对数函数等基本函数的导数。
3. 高阶导数:二阶导数、高阶导数及其相关概念。
4. 微分中值定理:拉格朗日中值定理、柯西中值定理等。
5. 隐函数与参数方程的导数:隐函数的导数、参数方程的导数等相关内容。
三、微分中的应用1. 函数的极值与最值:函数的极值点的判定、极值、最值等相关概念。
2. 函数的单调性与凹凸性:函数的单调区间、凹凸区间等相关概念。
3. 泰勒公式与泰勒展开:泰勒公式的表达形式、泰勒展开的求解方法及应用。
4. 微分的应用:函数的近似计算、误差估计、最优化问题等。
四、不定积分1. 不定积分的概念:定义、性质及运算法则。
2. 基本不定积分公式:多项式函数、三角函数、指数函数、对数函数等基本函数的不定积分公式。
3. 换元积分法:第一类换元法、第二类换元法及其应用。
4. 分部积分法:分部积分法的原理、应用条件及相关例题。
5. 有理函数积分法:有理函数积分的基本思路及方法。
五、定积分及其应用1. 定积分的定义:定积分的严格定义及其几何意义。
2. 定积分的性质:定积分的线性性、定积分的区间可加性等性质。
3. 定积分的基本定理:牛顿-莱布尼茨公式及其几何意义。
4. 定积分的应用:面积、定积分表示的物理量、定积分的几何应用等。