全等三角形证明题题型归类训练(供参考)
完整版)全等三角形基础练习证明题

完整版)全等三角形基础练习证明题1.已知三角形ABC中,AD为中线,BE⊥AD,CF⊥AD,证明BE=CF。
2.已知四边形ACBD中,AC=BD,AE=CF,BE=DF,证明AE∥CF。
3.已知四边形ABCD中,AB=CD,BE=DF,AE=CF,证明AB∥CD。
4.已知四边形ABCD中,AB=CD,AD=CB,证明AB∥CD。
5.已知两个三角形中,∠BAC=∠DAE,∠1=∠2,BD=CE,证明三角形ABD≌三角形ACE。
6.已知四边形ABED中,CD∥AB,DF∥EB,DF=EB,证明AF=CE。
7.已知四边形BEFC中,BE=CF,AB=CD,∠B=∠C,证明AF=DE。
8.已知四边形ABED中,AD=CB,∠A=∠C,AE=CF,证明EB∥DF。
9.已知三角形ABC中,M为AB的中点,∠1=∠2,MC=MD,证明∠C=∠D。
10.已知四边形ABFE和CDFE中,AE=DF,BF=CE,AE∥DF,证明AB=CD。
11.已知四边形ABCD中,∠1=∠2,∠3=∠4,证明AC=AD。
12.已知四边形ABCD中,∠E=∠F,∠1=∠2,AB=CD,证明AE=DF。
13.已知四边形ABCDEF中,ED⊥AB,EF⊥BC,BD=EF,证明BM=ME。
14.已知三角形ABC中,高AD与BE相交于点H,且AD=BD,证明三角形BHD≌三角形ACD。
15.已知四边形ABCDE中,∠A=∠D,AC∥FD,AC=FD,证明AB∥DE。
16.已知三角形ABC和三角形ADE中,AC=AB,AE=AD,∠1=∠2,证明∠3=∠4.17.已知三角形ABC和三角形DEF中,EF∥BC,AF=CD,AB⊥BC,DE⊥EF,证明三角形ABC≌三角形DEF。
18.已知四边形ABED中,AD=AE,∠B=∠C,证明AC=AB。
19.已知三角形ABC中,AD⊥BC,BD=CD,证明AB=AC。
20.已知三角形ABC和三角形BAD中,∠1=∠2,BC=AD,证明三角形ABC≌三角形BAD。
证明题题型

《全等三角形》证明题题型归类训练题型1:全等+等腰性质1、如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O. 求证:(1) △ABC ≌△AED ; (2) OB =OE .2、已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE =CF ,∠B =∠C . 求证:OA =OD .题型2:两次全等1、AB=AC ,DB=DC ,F 是AD 的延长线上的一点。
求证:BF=CFFDCBA2、已知如图,E 、F 在BD 上,且AB =CD ,BF =DE ,AE =CF ,求证:AC 与BD 互相平分O C E BDAA B E O F D C3、如图,在四边形ABCD 中,AD ∥BC ,∠ABC=90°DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC.求证:BG=FG题型3:直角三角形全等(余角性质)1、如图,在等腰Rt △ABC 中,∠C =90°,D 是斜边上AB 上任一点,AE ⊥CD 于E ,BF ⊥CD 交CD 的延长线于F ,CH ⊥AB 于H 点,交AE 于G . 求证:BD =CG .2、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.3、如图,∠ABC =90°,AB =BC ,D 为AC 上一点,分别过A 、C 作BD 的垂线,垂足分别为E 、F 求证:EF =CF -AEAFCBDEGA BC FD E4、在△ABC中,︒=∠90ACB,BCAC=,直线MN经过点C,且MNAD⊥于D,MNBE⊥于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①ADC∆≌CEB∆;②BEADDE+=;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.5、如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB。
全等三角形证明经典30题

全等三角形证明经典30题1. 根据SSS全等定理,如果两个三角形的三边分别相等,则这两个三角形全等。
2. 根据SAS全等定理,如果两个三角形的两边和它们夹角相等,则这两个三角形全等。
3. 根据ASA全等定理,如果两个三角形的两角和它们夹边相等,则这两个三角形全等。
4. 根据AAS全等定理,如果两个三角形的两角和一边或两边相等,则这两个三角形全等。
5. 根据HL全等定理,如果两个右三角形的一条直角边和斜边长度相等,则这两个三角形全等。
6. 根据正弦定理和余弦定理,如果两个三角形的三条边的比例相等,则这两个三角形全等。
7. 如果三角形的两边相等,则它们所对的角也相等。
8. 如果三角形的两角相等,则它们所对的边也相等。
9. 如果一个三角形的两边和夹角分别等于另一个三角形的两边和夹角,则这两个三角形相似。
10. 如果一个三角形的两角和一边与另一个三角形的两角和一边成比例,则这两个三角形相似。
11. 如果一个三角形的两边成比例,且这两个三角形所夹的角也成比例,则这两个三角形相似。
12. 如果一个三角形的一边与另一个三角形的一边成比例,且这两个三角形所对的角也成比例,则这两个三角形相似。
13. 如果两个三角形有一个角相等,则这两个三角形的相似比例等于这个角的正弦值。
14. 如果两个三角形的对角线成比例,则这两个三角形相似。
15. 如果两个三角形有两条相似的边,则这两个三角形相似。
16. 如果两个三角形的高成比例,则这两个三角形相似。
17. 如果两个三角形的中线成比例,则这两个三角形相似。
18. 如果两个三角形的内切圆半径成比例,则这两个三角形相似。
19. 如果两个三角形的外接圆半径成比例,则这两个三角形相似。
20. 如果两个三角形的垂心、重心、外心、内心在同一条直线上,则这两个三角形相似。
21. 如果两个三角形的面积成比例,则这两个三角形相似。
22. 如果一个三角形的内角平分线与另一个三角形的内角平分线成比例,则这两个三角形相似。
全等三角形证明题专项练习题五篇

全等三角形证明题专项练习题五篇第一篇:全等三角形证明题专项练习题证明三角形全等专项练习试题1.如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证: ABE≌△CAD;(2)求∠BFD的度数.2.如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC, BC、DE 交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.E3.如图,在△ABC和△DCB中,AB = DC,AC = DB,AC与DB 交于点M.(1)求证:△ABC≌△DCB ;(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.BN4.在⊿ABC中,∠ACB的平分线交AB于E,过E点作BC的平行线交AC于F,交外角∠ACD的平分线于G。
求证:F为EG的中点。
5.在⊿ABC中,∠B=60。
,∠BAC和∠BCA的平分线AD和CF交于I点。
试猜想:AF、CD、AC三条线段之间有着怎样的数量关系,并加以证明。
18.在直角⊿ABC中,CA=CB,BD为AC上的中线,作∠ADF=∠CDB,如图,连结CF交BD于E,求证:CF⊥BD。
(提示:作AC 的中线CO)ABDC20.以⊿ABC的边AB、AC为边向形外作等边⊿ABM、⊿CAN,BN 和CM交于一点P。
试判断:∠APM、∠APN的大小关系,并加以证明。
21.在∆ABC中,AB=AC,DE∥BC.(1)试问∆ADE是否是等腰三角形,说明理由.(2)若M为DE上的点,且BM平分∠ABC,CM平分∠ACB,若∆ADE的周长20,BC=8.求∆ABC的周长.AMDECB26.如图, 已知: 等腰Rt△OAB中,∠AOB=900, 等腰Rt△EOF中,∠EOF=900, 连结AE、BF.求证:(1)AE=BF;(2)AE⊥BF.27.如图,△ABC中,D是BC的中点,过D点的直线GF交AC 于点F,交AC的平行线BG于点G,DE⊥GF交AB于点E,连接EG。
全等三角形证明经典30题

全等三角形经典题目精选1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠24. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CC D B B ACD F21 EAC D EF 21 D AB AD B CA6. 已知:AC 平分∠BAD ,CE ⊥AB,∠B+∠D=180°,求证:AE=AD+BE7. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
8.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C9.已知:AB=CD ,∠A=∠D ,求证:∠B=∠C10.P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB11.已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE P DA CB A BC DDCB A F E12.已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC13.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .14.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N.求证:∠OAB =∠OBA15.如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .PED CB A16.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠BF A E DCBDCBA17.如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.18.已知:如图,DC∥AB,且DC=AE,E为AB的中点,(1)求证:△AED≌△EBC.(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明):OEDCBA19.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.FEDCBA20、如图:DF=CE ,AD=BC ,∠D=∠C 。
(完整版)全等三角形证明经典100题

1.已知: AB=4 ,AC=2 , D 是 BC 中点, AD 是整数,求 AD AB CD12. 已知: D 是 AB 中点,∠ ACB=90 °,求证:CD AB2ADC B3.已知: BC=DE ,∠ B= ∠E,∠ C= ∠ D, F 是 CD 中点,求证:∠ 1=∠ 2A21B EC F D4.已知:∠ 1=∠ 2, CD=DE , EF//AB ,求证: EF=ACA12FCDEB5.已知: AD 均分∠ BAC , AC=AB+BD ,求证:∠ B=2 ∠ CACB D6.已知: AC 均分∠ BAD , CE⊥ AB ,∠ B+ ∠D=180 °,求证: AE=AD+BE7.已知: AB=4 ,AC=2 , D 是 BC 中点, AD 是整数,求 AD AB CD8. 已知: D 是 AB 中点,∠ ACB=90 °,求证:CD 1 AB2ADC B9.已知: BC=DE ,∠ B= ∠E,∠ C= ∠ D, F 是 CD 中点,求证:∠ 1=∠ 2A21B EC F D10. 已知:∠ 1=∠ 2, CD=DE , EF//AB ,求证: EF=ACA12FCDEB11.已知: AD 均分∠ BAC , AC=AB+BD ,求证:∠ B=2 ∠ CACB D12. 已知: AC 均分∠ BAD , CE⊥ AB ,∠ B+ ∠D=180 °,求证: AE=AD+BE12.如图,四边形 ABCD 中, AB ∥ DC ,BE、 CE 分别均分∠ ABC 、∠ BCD ,且点 E 在 AD上。
求证: BC=AB+DC 。
13.已知: AB//ED ,∠ EAB= ∠ BDE , AF=CD , EF=BC ,求证:∠ F=∠ CE DCFA B14.已知: AB=CD ,∠ A= ∠ D,求证:∠ B= ∠ CADB C15.P 是∠ BAC 均分线 AD 上一点, AC>AB ,求证: PC-PB<AC-AB CAP DB16. 已知∠ ABC=3 ∠ C,∠ 1=∠2, BE⊥ AE ,求证: AC-AB=2BE17.已知, E 是 AB 中点, AF=BD , BD=5 , AC=7 ,求 DCDF A CE B18.( 5 分)如图,在△ABC 中, BD=DC ,∠ 1=∠ 2,求证: AD ⊥ BC.19.( 5 分)如图, OM 均分∠ POQ ,MA⊥ OP,MB ⊥OQ , A、B 为垂足, AB 交 OM 于点N.求证:∠ OAB=∠OBA(完满版)全等三角形证明经典100题20.( 5 分)如图,已知AD ∥BC,∠ PAB 的均分线与∠ CBA 的均分线订交于E, CE 的连线交 AP 于 D.求证: AD+BC=AB.PCEDA B21.( 6 分)如图,△ ABC 中, AD 是∠ CAB 的均分线,且AB=AC+CD,求证:∠ C=2∠ BACD B22.( 6 分)如图①, E、F 分别为线段AC 上的两个动点,且DE ⊥AC 于 E, BF⊥AC 于 F ,若 AB=CD , AF=CE, BD 交 AC 于点 M.(1)求证: MB=MD , ME =MF(2)当 E、F 两点搬动到如图②的地址时,其余条件不变,上述结论可否成立?若成立请恩赐证明;若不成立请说明原由.23.( 7 分)已知:如图,DC ∥AB,且 DC =AE, E 为 AB 的中点,( 1)求证:△ AED≌△ EBC.( 2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):AE O DB C24.( 7 分)如图,△ABC 中,∠ BAC=90 度, AB=AC, BD 是∠ ABC 的均分线, BD 的延长线垂直于过 C 点的直线于 E,直线 CE 交 BA 的延长线于 F .求证: BD =2CE.F25、( 10 分)如图: DF=CE, AD=BC,∠ D=∠ C。
全等三角形证明经典40题含答案(供参考)

1.已知:AB=4, AC=2, D是BC中点,AD是整数,求AD的长.解:延长AD到E使AD=DEYD是BC中点ABD=DC^EAACD和厶BDE中AD=DEZBDE=ZADCBD=DCAAACD^ABDEAAC=BE=2•••在△ ABE 中AB-BE<AE<AB+BEVAB=4即4・2V2ADV4+21<AD<3AAD=22.已知:BC=ED, ZB二ZE, ZC=ZD, F 是CD 中点,求证:Z1 = Z2证明:连接BF和EF••• BC=ED.CF=DE ZBCF=ZEDF・•.三角形BCF全等于三角形EDF(边角边)••• BF=EEZCBF=ZDEF连接BE在三角形BEF中,BF=EF••• ZEBF=ZBEFo••• ZABC=ZAEDc••• ZABE=ZAEBo/. AB=AEo在三角形ABF和三角形AEF中AB=AE.BF=EEZABF=ZABE+ZEBF=ZAEB+ZBEF=ZAEF ・•.三角形ABF和三角形AEF全等。
••• ZBAF=ZEAF(Zl=Z2)o3.已知:Z1=Z2, CD=DE, EF//AB,求证:EF=AC过C作CG〃EF交AD的延长线于点GCG/7EF,可得,ZEFD=CGDDE=DCZFDE=ZGDC (对顶角)•••△ EFD^ACGDEF=CGZCGD=ZEFD又,EF〃AB•••, ZEFD=Z1Z1=Z2AZCGD=Z2・•・△ AGC为等腰三角形,AC=CG又EF=CG・・・EF=AC4.已知:AD 平分ZBAC, AC=AB+BD,求证:ZB=2ZC证明:延长AB取点E,使AE=AC,连接DE TAD 平分ZBAC •••ZEAD=ZCADVAE=AC, AD=ADAAAED^AACD (SAS)AZE=ZCVAC=AB+BDAAE = AB+BDVAE = AB+BE•••BD = BEAZBDE=ZEAZABC=2ZEAZABC=2ZC5.已知:AC 平分ZBAD, CE丄AB, ZB+ZD=180° ,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CFICE丄ABAZCEB = ZCEF=90°VEB=EF, CE=CE,AACEB^ACEF(SAS)AZB = ZCFEVZB4-ZD=180° , ZCFE+ZCFA=180°AZD=ZCFAVAC 平分ZBADAZDAC=ZFACVAC=ACAAADC^AAFC (SAS)•••AD = AF•••AE=AF+FE=AD+BE6.如图,四边形ABCD中,AB〃DC, BE、CE分别平分ZABC、ZBCD,且点E在AD 上。
《全等三角形》证明题题型归类训练

《全等三角形》证明题题型归类训练题型1:全等+等腰性质1、如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O. 求证:(1) △ABC ≌△AED ; (2) OB =OE 。
2、已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE =CF ,∠B =∠C . 求证:OA =OD .题型2:两次全等1、AB=AC ,DB=DC ,F 是AD 的延长线上的一点。
求证:BF=CFFDCBA2、已知如图,E 、F 在BD 上,且AB =CD ,BF =DE,AE =CF,求证:AC 与BD 互相平分O C E BDAA B E O F D C3、如图,在四边形ABCD 中,AD ∥BC ,∠ABC=90°DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC.求证:BG=FG题型3:直角三角形全等(余角性质)1、如图,在等腰Rt △ABC 中,∠C =90°,D 是斜边上AB 上任一点,AE ⊥CD 于E ,BF ⊥CD 交CD 的延长线于F ,CH ⊥AB 于H 点,交AE 于G . 求证:BD =CG .2、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A,B 两点分别作直线的垂线,垂足分别为D,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.3、如图,∠ABC =90°,AB =BC ,D 为AC 上一点,分别过A 、C 作BD 的垂线,垂足分别为E 、F 求证:EF =CF -AEAFCBDEGA BC FD E4、在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时, 求证: ①ADC ∆≌CEB ∆;②BE AD DE +=;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.5、如图:BE ⊥AC,CF ⊥AB ,BM=AC,CN=AB 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《全等三角形》证明题题型归类训练题型1:全等+等腰性质1、如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O. 求证:(1) △ABC ≌△AED ; (2) OB =OE .2、已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE =CF ,∠B =∠C . 求证:OA =OD .题型2:两次全等1、AB=AC ,DB=DC ,F 是AD 的延长线上的一点。
求证:BF=CF2、已知如图,E 、F 在BD 上,且AB =CD ,BF =DE ,AE =CF ,求证:AC 与BD 互相平分3、如图,在四边形ABCD 中,AD ∥BC ,∠ABC=90°DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC.求证:BG=FG题型3:直角三角形全等(余角性质)1、如图,在等腰Rt △ABC 中,∠C =90°,D 是斜边上AB 上任一点,AE ⊥CD 于E ,BF ⊥CD 交CD 的延长线于F ,CH ⊥AB 于H 点,交AE 于G . 求证:BD =CG .2、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.3、如图,∠ABC =90°,AB =BC ,D 为AC 上一点,分别过A 、C 作BD 的垂线,垂足分别为E 、F 求证:EF =CF -AE4、在△ABC中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E.(1)当直线MN 绕点C 旋转到图1的位置时, ①ADC ∆≌CEB ∆;②BE AD DE +=; (2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由5、如图:BE ⊥AC ,CF ⊥AB ,BM=AC ,CN=AB 。
求证:(1)AM=AN ;(2)AM ⊥AN 。
题型4:连接法(构造全等三角形)1、已知:如图所示,AB =AD ,BC =DC ,E 、F 分别是DC 、BC 的中点,求证:AE =AF 。
AFCBDEGA BEO FDCA BCFD E2、如图,直线AD 与BC 相交于点O ,且AC=BD ,AD=BC .求证:CO=DO .3、如图 11-30,已知AB =AE ,∠B =∠E ,BC =ED ,点F 是CD 的中点.求证:AF ⊥CD.4、在正ABC ∆内取一点D ,使DA DB =,在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.5、如图所示,BD=DC,DE ⊥BC,交∠BAC 的平分线于E ,EM ⊥AB,EN ⊥AC,求证:BM=CN6、如图,在△ABD 和△ACD 中,AB=AC ,∠B=∠C .求证:△ABD ≌△ACD .题型5:全等+角平分线性质1、如图,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB=DC ,求证:EB=FC2、已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,PN ⊥CD 于N ,判断PM 与PN 的关系.题型6:倍长中线(线段)造全等前言:要求证的两条线段AC 、BF不在两个全等的三角形中,因此证AC=BF 困难,考虑能否通过辅助线把AC 、BF 转化到同一个三角形中,由AD 是中线,常采用中线倍长法,故延长AD 到G ,使DG=AD ,连BG ,再通过全等三角形和等线段代换即可证出。
1、已知:如图,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且 AE=EF ,求证:AC=BFC2、已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF3、已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________.AC NE M BDPDAC BM N4、在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( ) A 、1<AB<29 B 、4<AB<24 C 、5<AB<19 D 、9<AB<195、已知:AD 、AE 分别是△ABC 和△ABD 的中线,且BA=BD , 求证:AE=21ACCE6、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.7、已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE8、如图23,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE ⊥DF ,交AB 于点E ,连结EG 、EF. ⑴求证:BG=CF⑵请你判断BE+CF 与EF 的大小关系,并说明理由。
9、如图,AD 为ABC ∆的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F. 求证:EF CF BE >+10、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小.11、已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF // 交AE 于点F ,DF=AC.求证:AE 平分BAC ∠题型7:截长补短1、已知,四边形ABCD 中,AB ∥CD ,∠1=∠2,∠3=∠4。
求证:BC =AB +CD 。
2、如图,AD ∥BC ,点E 在线段AB 上,∠ADE=∠CDE ,∠DCE=∠ECB.求证:CD=AD+BC.3、已知:如图,在△ABC 中,∠C =2∠B ,∠1=∠2.求证:AB=AC+CD.4、如图,在△ABC 中,∠BAC=60°, AD 是∠BAC 的平分线,且AC=AB+BD ,求∠ABC 的度数5、如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=OD6、已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.7、如图,已知在ABC 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ分别是BAC ∠,ABC ∠的角平分线。
求证:BQ+AQ=AB+BP8、如图在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任意一点,求证;AB-AC >PB-PC 9、如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?题型8:角平分线上的点向角两边引垂线段1、如图,在四边形ABCD 中,BC >BA,AD =CD ,求证:∠BAD+∠C=180°2、如图,四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,AD+AB=2AE ,则∠B 与∠ADC 互补.为什么?3、如图,在△ABC 中,∠ABC=100°,∠ACB=20°,CE 平分∠ACB ,D 是AC 上一点,若∠CBD=20°,求∠ADE 的度数.4、已知,AB >AD ,∠1=∠2,CD =BC 。
求证:∠ADC +∠B =180°。
5、如图,在△ABC 中∠A BC,∠A CB 的外角平分线交P.求证:AP 是∠BAC 的角平分线6、如图,∠B=∠C=90°,AM 平分∠DAB,DM 平分∠ADC 求证:点M 为BC 的中点题型9:作平行线1、已知△ABC ,AB=AC ,E 、F 分别为AB 和AC 延长线上的点,且BE=CF ,EF 交BC 于G .求证:EG=GF .2、如图,在△ABC 中,AB=AC ,BD 平分∠ABC ,DE ⊥BD 于D ,交BC 于点E .求证:CD=1BE 题型10:延长角平分线的垂线段1、如图,在△ABC 中,AD 平分∠BAC ,CE ⊥AD 于E .求证:∠ACE=∠B+∠ECD .2、如图,△ABC 中,∠BAC=90度,AB=AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD=2CE .3、如图:∠BAC=90°,CE ⊥BE ,AB=AC ,BD 是∠ABC 的平分线,求证:BD=2EC4、已知,如图34,△ABC 中,∠ABC=90º,AB=BC ,AE 是∠A 的平分线,CD ⊥AE 于D .求证:CD=21AE . 题型11:面积法1、如图所示,已知D 是等腰△ABC 底边BC 上的一点,它到两腰AB 、AC 的距离分别为DE 、DF,CM ⊥AB,垂足为M,请你探索一下线段DE 、DF 、CM 三者之间的数量关系, 并给予证明.2、己知,△ABC 中,AB=AC ,CD ⊥AB ,垂足为D ,P 是BC 上任一点,PE ⊥AB ,PF ⊥DBEACAC 垂足分别为E 、F ,求证:① PE+PF=CD PE – P F=CD.题型12:旋转型1、如图,正方形ABCD 的边长为1,G 为CD 边上一动点(点G 与C 、D 不重合), 以CG 为一边向正方形ABCD 外作正方形GCEF ,连接DE 交BG 的延长线于H 。
求证:① △BCG ≌△DCE② BH ⊥DE2、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连结DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC ⊥BE .3、(1)如图,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小;(2)如图,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.4、如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。
求证:(1)EC=BF ;(2)EC ⊥BFF EDC ABGP图1 图2 CBODAEFEDABGPF ED CABG H B CE5、 正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF ,求∠EAF 的度数.6、D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F 。