概率论和数理统计的Matlab 实现
matlab在概率统计中的应用

实验八matlab在概率统计中的应用一、实验目的1、掌握利用MATLAB处理简单的概率问题;2、掌握利用MATLAB处理简单的数理统计问题。
二、实验内容1、对下列问题,请分别用专用函数和通用函数实现。
(1)X服从[3, 10]上均匀分布,计算P{X≤4},P{X>8};已知P{X>a}=0.4,求a。
(2) X服从正态分布N(2, 9),计算P{|X|≤1},P{|X|>5};已知P{X<b}=0.9,求b。
(3) X服从自由度为9的t分布,计算P{-2<X≤1};已知P{X<c}=P{X>c},求c。
2、绘制下列图形,并比较参数变化对图形的影响。
(1)()2μσ,为(-1,1),(0,0.4),(0,6),(1,1)时正态分布的概率密度函数图形;(2)参数n为1,2,3,4,5时2χ分布的概率密度函数图形。
3、设样本数据为110.1,25.2,39.8,65.4,50.0,98.1,48.3,32.2,60.4,40.3,求该样本的均值、方差、标准差、中位数、几何均值、最大值、最小值、极差并绘出数据的直方图及圆饼图。
4、下表一列出某高校自动化专业研究生招生规模及生源情况请用常用的MATLAB统计作图函数,分析表一中的数据,能否得出近四年招生规模缩小, 总体生源质量下降的结论?5、某高校自动化学院现有教师80人。
其中,教授24人,副教授32人;博士生导师18人,硕士生导师40人;教师队伍中具有博士学位的39人。
请用三维圆饼图描述教师的组成,并在图中显示相应的人数及所占比例。
6、有两组(每组100个元素)正态随机数据,其均值为10,均方差为2,求95%的置信区间和参数估计值。
7、分别使用金球和铂球测定引力常数。
(1)用金球测定观察值为:6.683 6.681 6.676 6.678 6.679 6.672;(2)用铂球测定观察值为:6.661 6.661 6.667 6.667 6.664。
14MATLAB在概率统计中的应用

(2) (X,Y)落在x+y=1,x=0,y=0所围成的区域内的概率。
程序:
>> syms x y
>> f=exp(-x-y);
>> P_XY=int(int(f,y,0,1),x,0,1)
>> P_G=int(int(f,y,0,1-x),x,0,1)
运行结果显示如下:
P_XY= exp(-2)-2*exp(-1)+1
0.1 0.08 0.06 0.04 0.02
0 0
5
10
15
20
25
30
图 2-1
4.指数分布 例4-10 >>x = 0:0.1:10; >>y = exppdf(x,2); >>plot(x,y)
0.正态分布 例4-16 >> x=-3:0.2:3; >> y=normpdf(x,0,1); >> plot(x,y)
k 1
k 1
的和为随机变量X的数学期望,记为E(X),即
E(X) xkpk (1) k1
说明: (1)E的 X 求 E (X 法 ) x : kpk k1
(2)数学期望 存在性的判断:
看 级 数 xk pk是 否 绝 对 收 敛 。 k 1 即 xk pk是 否 收 敛 ? k1
例1:某厂产品的次品率为0.2 ,每生产一件
解:设h为车门高度,X为身高,求满足条件 P{X>h}0.01的h,即P{X<h}0.99。
程序:
>> h=norminv(0.99,175,6)
结果:
h= 188.9581
Matlab在《概率论与数理统计》教学中的应用

Matlab在《概率论与数理统计》教学中的应用
Matlab提供了丰富的概率分布函数,可以帮助学生更好地理解不同的概率分布。
学生可以使用Matlab生成正态分布、二项分布、泊松分布等不同的概率分布,并画出相应的概率密度函数、累积分布函数等图形。
通过实际的计算和绘图,学生可以更直观地看到不同概率分布的特点,加深对概率分布的理解。
Matlab提供了各种统计函数,可以方便地进行数据的描述性统计和推断性统计。
学生可以使用Matlab计算样本的平均值、方差等描述性统计量,还可以使用Matlab进行假设检验、置信区间估计等推断性统计。
通过实际的计算和分析,学生可以更好地掌握统计学中的概念和方法。
Matlab还可以进行模拟实验,帮助学生理解概率和统计的原理。
学生可以使用Matlab 模拟抛硬币的实验,验证概率的定义和性质。
学生还可以使用Matlab模拟中心极限定理,观察样本均值的分布趋于正态分布的情况。
通过实际的模拟实验,学生可以更深入地理解抽样分布和极限定理等重要概念。
Matlab还可以用于数据的可视化。
学生可以使用Matlab绘制直方图、散点图、箱线图等图形,展示数据的分布和变化。
通过可视化的方式,学生可以更好地理解数据的特点和规律,并能够更直观地展示和解释统计分析的结果。
Matlab在《概率论与数理统计》教学中具有广泛的应用价值。
通过利用Matlab进行计算、模拟和可视化等任务,可以帮助学生更好地理解概率和统计的概念和方法,提高学习效果。
在教学中合理地使用Matlab可以有效地促进学生对概率论与数理统计的学习和理解。
Matlab在数理统计中的运用

Matlab在数理统计中的运用摘要:概率论与数理统计是现代数学的重要分支,近年来随着计算机的普及,概率论在经济,管理,金融,保险,生物,医学等方面都发挥着越来越大的作用。
使得概率统计成为今天各类各专业大学生最重要的数学必修课之一。
然而,传统的概率统计教学过于偏重理论的阐述、公式的推导、繁琐的初等运算;同时,缺乏与计算机的结合,给学生的学习带来很多困难。
本文介绍概率统计中的主要问题在Matlab中的实现,让我们从繁琐的计算中解放出来,把更多的时间和精力用于基本概念和基本理论的思考和方法的创新,从而提高教师的教学效率和学生的学习效率。
关键词:区间估计,matlab,概率统计一、常用概率密度的计算Matlab中计算某种概率分布在指定点的概率密度的函数,都以代表特定概率分布的字母开头,以pdf (probability density function)结尾,例如:unid pdf(X, N):计算1到N上的离散均匀分布在X每一点处的概率密度;poisspdf(X, Lambda):计算参数为Lambda的泊松分布在X每一点处的概率密度;exppdf(X, mu):计算参数为mu的指数分布在X每一点处的概率密度;normpdf(X, mu, sigma):计算参数为mu, sigma的正态分布在X每一点处的概率密度。
其他如连续均匀分布、二项分布、超几何分布等也都有相应的计算概率密度的函数。
除计算概率密度的函数外,Matlab中还有计算累积概率密度、逆概率分布函数及产生服从某分布的随机数的函数,分别以cdf,inv和rnd结尾。
下面我们来用一个具体的例子说明一下:例1:计算正态分布N(0,1)的随机变量X在点0.6578的密度函数值。
解:>> pdf('norm',0.6578,0,1)ans =0.3213例2:自由度为8的卡方分布,在点2.18处的密度函数值。
解:>> pdf('chi2',2.18,8)ans = 0.0363二、随机变量数字特征的计算(一)数学期望与方差对离散型随机变量,可利用Matlab矩阵运算计算出其数学期望和方差;而对于连续型随机变量,则可以利用Matlab符号运行计算。
如何在Matlab中进行概率统计分析

如何在Matlab中进行概率统计分析在科学研究和数据分析领域,概率统计分析是一项重要的工具。
Matlab作为一种功能强大的数值计算和数据分析的软件平台,在概率统计分析方面有着广泛的应用。
本文将探讨如何在Matlab中进行概率统计分析,并介绍一些常用的技巧和方法。
一、数据导入和预处理在进行概率统计分析之前,首先需要将数据导入Matlab中,并对数据进行预处理。
Matlab提供了各种函数和工具箱,可以简化数据导入和预处理的过程。
例如,使用`xlsread`函数可以将Excel中的数据导入Matlab,使用`csvread`函数可以导入CSV格式的数据。
在数据预处理阶段,常见的操作包括数据清洗、去除异常值、填充缺失值等。
Matlab中的统计工具箱提供了一系列函数,如`fillmissing`、`rmoutliers`等,可以方便地进行数据预处理。
二、描述性统计分析描述性统计分析是对数据的基本特征进行总结和描述,如均值、方差、百分位数等。
Matlab提供了一系列函数,如`mean`、`std`、`prctile`等,可以方便地进行描述性统计分析。
下面以一个示例来说明如何使用Matlab进行描述性统计分析。
假设我们有一组身高数据,可以使用`mean`和`std`函数计算平均身高和身高的标准差:```matlabheight = [165, 170, 175, 180, 185];mean_height = mean(height);std_height = std(height);```三、概率分布拟合概率分布拟合是将观察到的数据拟合到一个概率分布模型中,以了解数据的分布特征。
Matlab中的统计工具箱提供了丰富的函数,可以进行概率分布的拟合和参数估计。
常见的概率分布包括正态分布、指数分布、泊松分布等。
下面以正态分布为例,演示如何在Matlab中进行概率分布拟合:```matlabdata = randn(1000, 1); % 生成1000个服从正态分布的随机数pd = fitdist(data, 'Normal'); % 拟合正态分布mu = pd.mu; % 估计的均值sigma = pd.sigma; % 估计的标准差```四、假设检验假设检验是概率统计分析的重要内容,用于验证关于总体参数的假设。
第8章 matlab 概率论与数理统计问题的求解

8.1.3 概率问题的求解
图4-9
• 例:
>> b=1; p1=raylcdf(0.2,b); p2=raylcdf(2,b); P1=p2-p1 P1 = 0.8449
>> p1=raylcdf(1,b); P2=1-p1 P2 = 0.6065
• 例:
>> syms x y; f=x^2+x*y/3; >> P=int(int(f,x,0,1/2),y,0,1/2) P= 5/192 >> syms x y; f=x^2+x*y/3; P=int(int(f,x,0,1),y,0,2) P= 1
8.1.2.3
பைடு நூலகம்
分布
• 例:
>> x=[-0.5:.02:5]‘; %x=[-eps:-0.02:-0.5,0:0.02:5]; x=sort(x’);替代 >> y1=[]; y2=[]; a1=[1,1,2,1,3]; lam1=[1,0.5,1,2,1]; >> for i=1:length(a1) y1=[y1,gampdf(x,a1(i),lam1(i))]; y2=[y2,gamcdf(x,a1(i),lam1(i))]; end >> plot(x,y1), figure; plot(x,y2)
8.1.2.2 正态分布
正态分布的概率密度函数为:
• 例:
>> x=[-5:.02:5]'; y1=[]; y2=[]; >> mu1=[-1,0,0,0,1]; sig1=[1,0.1,1,10,1]; sig1=sqrt(sig1); >> for i=1:length(mu1) y1=[y1,normpdf(x,mu1(i),sig1(i))]; y2=[y2,normcdf(x,mu1(i),sig1(i))]; end >> plot(x,y1), figure; plot(x,y2)
(完整版)Matlab概率论与数理统计
Matlab 概率论与数理统计、matlab 基本操作 1. 画图【例01.01】简单画图hold off; x=0:0.1:2*pi; y=sin (x);plot(x,y, '-r'); x1=0:0.1:pi/2; y1=s in( x1); hold on;fill([x1, pi/2],[y1,1/2],'b');【例01.02】填充,二维均匀随机数hold off ;x=[0,60];y0=[0,0];y60=[60,60]; x1=[0,30];y1=x1+30; x2=[30,60];y2=x2-30;plot(x,y0, 'r' ,y0,x, plot(x1,y1, 'r' ,x2,y2, yr=u nifrnd (0,60,2,100);plot(yr(1,:),yr(2,:), axis( 'on'); axis( 'square' ); axis([-20 80 -20 80 ]);xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0]; fill(xv,yv, 'b');hold on ;'r' ,x,y60, 'r' ,y60,x,'r')'r');'m.')2. 排列组合kC=nchoosek(n,k) : CC n ,例 nchoosek(5,2)=10, nchoosek(6,3)=20.prod(n1:n2):从 n1 至U n2 的连乘【例01.03】至少有两个人生日相同的概率365 364|||(365 rs 1)rs365365 364 365 rs 1 365 365365rs=[20,25,30,35,40,45,50]; %每班的人数p1= on es(1,le ngth(rs)); p2=on es(1,le ngth(rs));%用连乘公式计算for i=1:le ngth(rs) p1(i)=prod(365-rs(i)+1:365)/365A rs(i); end%用公式计算(改进) for i=1:le ngth(rs)for k=365-rs(i)+1:365p2(i)=p2(i)*(k/365); end ; end%用公式计算(取对数) for i=1:le ngth(rs)p1(i)=exp(sum(log(365-rs(i)+1:365))-rs(i)*log(365)); end公式计算P 1n!C NN nN!1 (N n)!1N nN (N 1) (N n 1)、随机数的生成3. 均匀分布随机数rand(m,n);产生m行n列的(0,1)均匀分布的随机数rand(n);产生n行n列的(0,1)均匀分布的随机数【练习】生成(a,b)上的均匀分布4. 正态分布随机数randn(m,n); 产生m行n列的标准正态分布的随机数【练习】生成N(nu,sigma42)上的正态分布5. 其它分布随机数三、一维随机变量的概率分布1. 离散型随机变量的分布率(1) 0-1分布(2) 均匀分布_ k k n k(3) 二项分布:binopdf(x,n,p),若X ~ B(n, p),则P{X k} C n p (1 p),x=0:9 ;n=9;p=0.3;y= bin opdf(x ,n, p);plot(x,y,'b-',x,y,'r*')y=[ 0.0404, 0.1556, 0.2668, 0.2668, 0.1715, 0.0735, 0.0210, 0.0039, 0.0004, 0.0000 ]当n较大时二项分布近似为正态分布x=0:100; n=100;p=0.3;y= bin opdf(x ,n, p);plot(x,y,'b-',x,y,'r*')ke⑷泊松分布:piosspdf(x, lambda),若X ~ (),贝U P{ X k}k!x=0:9; lambda = 3;y= poisspdf (x,lambda);plot(x,y,'b-',x,y,'r*')y=[ 0.0498, 0.1494, 0.2240, 0.2240, 0.1680, 0.1008, 0.0504, 0.0216, 0.0081,0.0027]k 1⑸几何分布:geopdf (x, p),贝U P{X k} p(1 p)x=0:9;p=0.3y= geopdf(x,p);plot(x,y,'b-',x,y,'r*')y=[ 0.3000, 0.2100, 0.1470, 0.1029, 0.0720, 0.0504, 0.0353, 0.0247, 0.0173, 0.0121 ] x=0:10;N=20;M=8; n=4;y= hygepdf(x,N,M, n); plot(x,y,'b-',x,y,'r*')y=[ 0.1022, 0.3633, 0.3814, 0.1387, 0.0144, 0, 0, 0, 0, 0, 0 ]2. 概率密度函数(1)均匀分布:unifpdf(x,a,b) , f (x)其它a=0;b=1;x=a:0.1:b; y= uni fpdf (x,a,b);1 2 厂(x )2 ■厂ex=-10:0.1:12;mu=1;sigma=4;y= no rmpdf(x,mu,sigma);rn=10000;z= normrnd (mu,sigma,1,rn); % 产生 10000 个正态分布的随机数 d=0.5;a=-10:d:12;b=(hist(z,a)/rn)/d;%以a 为横轴,求出10000个正态分布的随机数的频率(6)超几何分布:hygepdf(x,N,M,n),则 P{Xk}C k nM CNC N(2)正态分布:normpdf(x,mu,sigma) , f (x)plot(x,y,'b-',a,b,'r.')1 _x⑶指数分布:exppdf(x,mu), f (x)其它x=0:0.1:10;mu=1/2;■ t京■I_ey= exppdf(x,mu); plot(x,y,'b-',x,y,'r*')1n i F⑷2分布:chi2pdf(x,n) , f (x; n) 2n ^( n 2) % e x 0hold onx=0:0.1:30;n=4;y= chi2pdf(x, n);plot(x,y,'b');%blue n=6;y= chi2pdf(x, n);plot(x,y,'r');%red n=8;y=chi2pdf(x ,n );plot(x,y,'c');%cya n n=10;y= chi2pdf(x, n);plot(x,y,'k');%black lege nd(' n=4', 'n=6', 'n=8', 'n=10');n 1((n 1) 2) x2 2⑸t 分布:tpdf(x,n) , f (x; n) ------------------ 1 -J n (n. 2) nhold onx=-10:0.1:10;n=2;y= tpdf(x, n);plot(x,y,'b');%bluen=6;y= tpdf(x, n);plot(x,y,'r');%redn=10;y= tpdf(x ,n );plot(x,y,'c');%cya nn=20;y= tpdf(x, n);plot(x,y,'k');%black lege nd(' n=2', 'n=6', 'n=10', 'n=20');((m山m 门2n2) 2)小2% 2 1 5 % 2(n2 2) n2n2x 0(6) F 分布:fpdf(x,n1,n2) , f (x; n「n2) (E 2)0 x 0hold onx=0:0.1:10;n1=2; n2=6;y= fpdf(x, n1, n2);plot(x,y,'b');%bluen1=6; n2=10;y= fpdf(x, n1, n2);plot(x,y,'r');%red n1=10; n2=6;y= fpdf(x, n1, n2);plot(x,y,'c');%cyann1=10; n2=10;y= fpdf(x, n1,n 2);plot(x,y,'k');%black legend(' n仁2; n2=6', ' n1= 6; n2=10', ' n仁10;n2=6', ' n仁10; n2=10');3.分布函数F(x) P{X x}【例03.01】求正态分布的累积概率值设X ~ N(3,22),求 P{2 X 5}, P{ 4 X 10}, P{ X 2}, P{X 3},14.逆分布函数,临界值y F(x) P{X x} , x F (y) , x称之为临界值【例03.02】求标准正态分布的累积概率值y=0:0.01:1;x=normin v(y,0,1);【例03.03】求2(9)分布的累积概率值hold offy=[0.025,0.975];x=ch i2in v(y,9);n=9;x0=0:0.1:30;y0=chi2pdf(x0, n); plot(x0,y0, 'r'); x1=0:0.1:x(1);y1=chi2pdf(x1, n);x2=x(2):0.1:30;y2=chi2pdf(x2 ,n);hold onfill([x1, x(1)],[y1,0], 'b');fill([x(2),x2],[0,y2], 'b');【练习1.1】二项分布、泊松分布、正态分布(1)对n 10, p 0.2二项分布,画出b(n,p)的分布律点和折线;(2)对np,画出泊松分布()的分布律点和折线;(3)对np, 2叩(1 p),画出正态分布N( , 2)的密度函数曲线;(4)调整n, p,观察折线与曲线的变化趋势。
概率论与数理统计MATLAB上机实验报告
《概率论与数理统计》MATLAB上机实验实验报告一、实验目的1、熟悉matlab的操作。
了解用matlab解决概率相关问题的方法。
2、增强动手能力,通过完成实验内容增强自己动手能力。
二、实验内容1、列出常见分布的概率密度及分布函数的命令,并操作。
概率密度函数分布函数(累积分布函数) 正态分布normpdf(x,mu,sigma) cd f(‘Normal’,x, mu,sigma);均匀分布(连续)unifpdf(x,a,b) cdf(‘Uniform’,x,a,b);均匀分布(离散)unidpdf(x,n) cdf(‘Discrete Uniform’,x,n);指数分布exppdf(x,a) cdf(‘Exponential’,x,a);几何分布geopdf(x,p) cdf(‘Geometric’,x,p);二项分布binopdf(x,n,p) cdf(‘Binomial’,x,n,p);泊松分布poisspdf(x,n) cdf(‘Poisson’,x,n);2、掷硬币150次,其中正面出现的概率为0.5,这150次中正面出现的次数记为X(1) 试计算X=45的概率和X≤45 的概率;(2) 绘制分布函数图形和概率分布律图形。
答:(1)P(x=45)=pd =3.0945e-07P(x<=45)=cd =5.2943e-07(2)3、用Matlab软件生成服从二项分布的随机数,并验证泊松定理。
用matlab依次生成(n=300,p=0.5),(n=3000,p=0.05),(n=30000,p=0.005)的二项分布随机数,以及参数λ=150的泊松分布,并作出图线如下。
由此可以见得,随着n的增大,二项分布与泊松分布的概率密度函数几乎重合。
因此当n足够大时,可以认为泊松分布与二项分布一致。
4、 设22221),(y x e y x f +−=π是一个二维随机变量的联合概率密度函数,画出这一函数的联合概率密度图像。
概率论matlab实验报告
概率论matlab实验报告概率论与数理统计matlab上机实验报告班级:学号:姓名:指导⽼师:实验⼀常见分布的概率密度、分布函数⽣成[实验⽬的]1. 会利⽤MATLAB软件计算离散型随机变量的概率,连续型随机变量概率密度值。
2.会利⽤MATLAB软件计算分布函数值,或计算形如事件{X≤x}的概率。
3.会求上α分位点以及分布函数的反函数值。
[实验要求]1.掌握常见分布的分布律和概率密度的产⽣命令,如binopdf,normpdf2. 掌握常见分布的分布函数命令,如binocdf,normcdf3. 掌握常见分布的分布函数反函数命令,如binoinv,norminv[实验内容]常见分布的概率密度、分布函数⽣成,⾃设参数1、X~B(20,0.4)(1)P{恰好发⽣8次}=P{X=8}(2)P{⾄多发⽣8次}=P{X<=8}(1)binopdf(8,20,0.4)ans =0.1797(2)binocdf(8,20,0.4)ans =0.59562、X~P(2)求P{X=4}poisspdf(4,2)ans =0.09023、X~U[3,8](1)X=5的概率密度(2)P{X<=6}(1)unifpdf(5,3,8)ans =0.2000(2)unifcdf(6,3,8)ans =0.60004、X~exp(3)(1)X=0,1,2,3,4,5,6,7,8时的概率密度(2)P{X<=8}注意:exp(3)与教材中参数不同,倒数关系(1)exppdf(0:8,3) ans =Columns 1 through 30.3333 0.2388 0.1711Columns 4 through 60.1226 0.0879 0.0630Columns 7 through 90.0451 0.0323 0.0232(2)expcdf(8,3)ans =0.93055、X~N(8,9)(1)X=3,4,5,6,7,8,9时的概率密度值(2)X=3,4,5,6,7,8,9时的分布函数值(3)若P{X<=x}=0.625,求x(4)求标准正态分布的上0.025分位数(1)normpdf(3:9,8,3)ans =Columns 1 through 30.0332 0.0547 0.0807 Columns 4 through 60.1065 0.1258 0.1330 Column 70.1258(2)normcdf(3:9,8,3)ans =Columns 1 through 30.0478 0.0912 0.1587 Columns 4 through 60.2525 0.3694 0.5000 Column 70.6306(3)norminv(0.625,8,3)ans =8.9559(4)norminv(0.975,0,1)ans =1.96006、X~t(3)(1)X=-3,-2,-1,0,1,2,3时的概率密度值(2)X=-3,-2,-1,0,1,2,3时的分布函数值(3)若P{X<=x}=0.625,求x(4)求t分布的上0.025分位数(1)tpdf(-3:3,3)ans =Columns 1 through 30.0230 0.0675 0.2067 Columns 4 through 60.3676 0.2067 0.0675 Column 70.0230(2)tcdf(-3:3,3)ans =Columns 1 through 30.0288 0.0697 0.1955 Columns 4 through 60.5000 0.8045 0.9303 Column 70.9712(3)tinv(0.625,3)ans =0.3492(4)tinv(0.975,3)ans =3.18247、X~卡⽅(4)(1)X=0,1,2,3,4,5,6时的概率密度值(2)X=0,1,2,3,4,5,6时的分布函数值(3)若P{X<=x}=0.625,求x(4)求卡⽅分布的上0.025分位数(1)chi2pdf(0:6,4)ans =Columns 1 through 30 0.1516 0.1839 Columns 4 through 6 0.1673 0.1353 0.1026 Column 70.0747(2)chi2cdf(0:6,4)ans =Columns 1 through 30 0.0902 0.2642 Columns 4 through 6 0.4422 0.5940 0.7127 Column 70.8009(3)chi2inv(0.625,4)ans =4.2361(4)chi2inv(0.975,4)ans =11.14338、X~F(4,9)(1)X=0,1,2,3,4,5,6时的概率密度值(2)X=0,1,2,3,4,5,6时的分布函数值(3)若P{X<=x}=0.625,求x(4)求F分布的上0.025分位数(1)fpdf(0:6,4,9)ans =Columns 1 through 30 0.4479 0.1566 Columns 4 through 6 0.0595 0.0255 0.0122 Column 70.0063(2)fcdf(0:6,4,9)ans =Columns 1 through 30 0.5442 0.8218Columns 4 through 60.9211 0.9609 0.9788Column 70.9877(3)finv(0.625,4,9)ans =1.1994(4)finv(0.975,4,9)ans =4.7181实验⼆概率作图[实验⽬的]1.熟练掌握MATLAB软件的关于概率分布作图的基本操作2.会进⾏常⽤的概率密度函数和分布函数的作图3.会画出分布律图形[实验要求]1.掌握MATLAB画图命令plot2.掌握常见分布的概率密度图像和分布函数图像的画法[实验内容]任选四种分布,⾃设参数(已画⼋种分布图像,可熟悉各分布特点)1、X~B(20,0.4)代码:x=0:20;y=binopdf(x,20,0.4)plot(x,y,'.')结果:2、X~exp(3)概率密度图像代码:x=0:0.01:15;y=exppdf(x,3)plot(x,y)结果:分布函数代码:x=-1:0.01:15; y=expcdf(x,3)plot(x,y)结果:3、X~P(4)概率密度图形代码:x=0:10;y=poisspdf(x,4)plot(x,y,'.')结果:分布函数图形代码:x=0:0.01:10; y=poisscdf(x,4) plot(x,y)结果:4、X~U(3,8)概率密度图形代码:x=0:0.01:10;y=unifpdf(x,3,8)plot(x,y,'.')结果:分布函数图形代码:x=0:0.01:10;y=unifcdf(x,3,8) plot(x,y)结果:5、X~N(4,9) 概率密度图形代码:x=-10:0.01:18;y=normpdf(x,4,3); plot(x,y)结果:分布函数图形代码:x=-10:0.01:18;y=normcdf(x,4,3); plot(x,y)结果:同⼀坐标系,均值是4,标准差分别为1,2,3的正态分布概率密度图形代码:x=-5:0.01:15;y1=normpdf(x,4,1);y2=normpdf(x,4,2);y3=normpdf(x,4,3);plot(x,y1,x,y2,x,y3)结果:6、X~t(3)概率密度图形代码:x=-10:0.01:10;y=tpdf(x,3);plot(x,y)结果:分布函数图形代码:x=-10:0.01:10; y=tcdf(x,3); plot(x,y)结果:。
数理统计方法的Matlab实现(6.5版)
数理统计的Matlab实现
[H,SIG,CI]=ttest2 (x, y, ,tail) 对两个正态总 体的均值作检验 若tail=0, 表示 H 1 : 1 2 若tail=1, 表示 H 1 : 1 2 若tail=-1,表示 H 1 : 1 2 结论:H=0,表示接受原假设 H 0 : 1 2 H=1,表示拒绝原假设 H 0 : 1 2 SIG为犯错误的概率,CI为均值差的置信区间。
因素A 因素B B1 B2 B3
A1 95 93 85 86 72 76 A2 A3 A4
97 96 87 89 90 91 89 90 84 87 92 90 75 73 85 86 88 89
AB2=[95 93 97 96 87 89 90 91;85 86 89 90 84 87 92 90;72 76 75 73 85 86 88 89 ] anova2(AB2',2)
数理统计的Matlab实现
例2自动包装机包装出的产品服从正态分 布 N (0.5 , 0.0152 ) ,从中抽取出9个样品,它们的 重量是 0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512 问包装机的工作是否正常? ( =0.05) x=[0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512]; [H,SIG]=ztest(x, 0.5, 0.015, 0.05,0)
数理统计的Matlab实现
其中 y:y的 n 1 数据向量 x:x的数据 n m 矩阵 b: b0 , b1 ,, bm 的估计值 bint:b的置信区间 r:残差 rint :r的置信区间 stats:第一个值是回归方程的置信度,第二值是F统 计量的值,第三值小说明所建的回归方程有意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
expcdf 函数 功能:计算累加指数分布函数。 语法:P = expcdf(X,MU) 描述:expcdf(X,MU) 计算参数为 MU 的数据 X 的累加指数分布函数。指数 MU 必须为
正。 累加指数分布函数的计算公式为:
概率论和数理统计的 Matlab 实现
1概 述
自然界和社会上会发生各种各样的现象,其中有的现象在一定条件下是一定要发生的, 有的则表现出一定的随机性,但总体上又有一定的规律可循。一般称前者为确定性事件, 后者为不确定性事件(或称随机事件)。概率论和数理统计就是研究和揭示不确定事件统计 规律性的一门数学学科。
f (x |l) =
lx x!
e-l
I (0,1,K )
(x)
y=
f (x | b) =
x b2
çæ - x 2 ÷ö
eçè 2b2 ÷ø
y
=
f
(x
| v)
=
Gçæ è
v
+ 2
1
÷ö ø
Gçæ è
v 2
÷ö ø
1
1
vp
ççèæ1 +
v +1
x2 v
÷÷øö
2
y=
f (x | N) =
1 N
I (1,..., N ) ( x)
y
=f(x|r,p)
=
ççèæ
r
+
x x
+
1÷÷øö
p
x
q
x
I
(
0,1,...)
(
x)
其中, q = 1 - p
Y=nbinpdf(X,R,P)
假设随机变量 c12 (m) 服从自由度为 f1 、
非中心参数为
m
的非中心卡方分布,
c
2 2
服从自由度为 f 2 的卡方分布,且 c12 (m)
和
c
2 2
相互独立,则随机变量
ncfpdf
nctpdf
对应的分 布
数学意义
调用格式
贝塔分布
y=
f (x | a,b) =
1 B(a,b)
x a-1(1 -
x)b-1 I(0,1) ( x)
(0< x<1)
Y = betapdf(X,A,B)
二项分布 卡方分布
y
=
f (x | n, p)
=
ççèæ
n x
÷÷øö
p
x
q
(1-
x
)
I
(
-1-
2 概率分布
试验得到的数据通常呈现一定的规律性,引入随机变量以后,可以将随机数据表达为
随机变量的函数。常见的随机变量有离散型随机变量和连续型随机变量两种。
● 当变量全部可以取到的值是有限个或可列无限多个时,称为离散型随机变量。
● 如果对于随机变量 x 的分布函数 F(x),存在非负函数 f(x),使得对于任意实数 x
作为一门实用性很强的数学分支,概率论和数理统计的理论和方法已经广泛应用于管 理、经济、心理、教育、体育、医学、生物、化学、机械、水文、地质、林业、气象、工 业生产、建筑、通讯、自动控制等几乎所有社会和科学技术领域。
Matlab6.0 的统计工具箱相对于前面一些版本,改进较大。目前已经可以与 SPSS、SAS 等软件的统计功能相媲美。具体而言,它包括下面几个方面的内容:
几何分布
y = f ( x | p) = pqx I(0,1,K ) ( x) 其中, q = 1 - p
Y=geopdf(X,P)
超几何分布
y
=
f (x | M ,K,n) =
ççèæ
K x
÷÷øöççèæ
M n
-
K x
÷÷øö
ççèæ
M n
÷÷øö
Y=hygepdf(X,M,K,N)
正态(高斯) 分布
F (-¥) = lim F ( x) = 0, x ®-¥
-5-
F (¥) = lim F ( x) = 1, x ®¥
● F ( x + 0) = F( x) ,即 F(x)是右连续的。
2.2.2 相关函数介绍
normcdf 函数 功能:计算累加正态分布函数。 语法:P = normcdf(X,MU,SIGMA) 描述:normcdf(X,MU,SIGMA) 计算服从参数为 MU 和 SIGMA 的正态分布数据 X 的累加
● 概率分布 给出了常见的 20 种概率分布类型的概率密度函数、累加分布函数(分 布函数)、逆累加分布函数、参数估计函数、随机数生成函数和统计量计算函数。
● 参数估计 提供了多种分布类型分布参数及其置信区间的估计方法。 ● 样本描述 提供了描述中心趋势和离中趋势的统计量函数,缺失数据条件下的样本
描述方法以及其它一些统计量计算函数。 ● 方差分析 包括单因子方差分析、双因子方差分析和多因子方差分析。 ● 多元方差分析 包括单因素多元方差分析、分组聚类和多元比较等。 ● 回归分析 包括多元线性回归(包括逐步回归)、岭回归、一般线性模型拟合、多
结果 p 为源于指数分布的单个观测量落在区间[0 x]中的概率。 举例:
指数为 µ 的指数分布数据的中值等于 µ*log(2),下例进行演示。 mu = 10:10:60; p = expcdf(log(2)*mu,mu) p=
中心参数为 m 的非中心 t 分布。
如 果 随 机 变 量 Xi 服 从 参 数 为 mi
(i=1,…,v)和 s 2 的正态分布,并且相
互独立,则随机变量
c
2
(
m
)
=
(
X
2 1
+L+
X
2 v
)
/s
2
所服从的分
布称为自由度为 v、非中心参数为
m2
=
( m12
+L+
m
2 v
)
/s
2
的非中心
c2
分
布。
y=
Y=ncfpdf(X,NU1,NU2,DELTA)
F
=
c12 (m) / f1
c
2 2
/
f2
的分布称为自由度为(
f1 ,
f 2 )、非中心参数为 m 的非中心 F 分布。
如果 U 服从参数为 m 和 1 的正态分布,
c2 (v)
服从自由度为
v
的
c
2
分布,并且
U
Y=nctpdf(X,V,DELTA)
与
y = f ( x | m,s ) =
1
-( x-m)2
e 2s 2
s 2p
Y=normpdf(X,MU,SIGMA)
对数正态分 布
y = f (x | m,s ) =
1
-(ln x -m )2
e 2s 2
xs 2p
Y=lognpdf(X,MU,SIGMA)
负二项分布 非中心 F 分布 非中心 t 分布
P{X=xk}=pk, k=1,2,… pk 即称为分布律。它有下面两个性质:
● pk ³ 0, k = 1,2,...;
¥
å pk = 1.
● k =1
2.1.2 相关函数介绍 对于连续型概率分布函数,表 2 给出了对应函数的概率密度函数及其数学意义和调用
-2-
格式。下面选择正态分布概率密度函数和指数分布概率密度函数进行重点介绍。
有
ò F (x) = x f (t)dt, -¥
(1)
则称 X 为连续型随机变量。
对应于离散型随机变量和连续型随机变量,有离散型概率分布函数和连续型概率分布函数。
2.1 概率密度函数
2.1.1 基本数学原理
对于离散型概率分布和连续型概率分布,二者的概率密度函数定义有所不同。上面(1) 式中,函数 f(x)称为 X 的概率密度函数。该函数具有以下性质:
y=
f (x | a,b) =
1 b-a
I[a,b] ( x)
y = f ( x | a, b) = abxb-1e-axb I (0,¥) ( x)
Y=ncx2pdf(X,V,DELTA)
Y=poisspdf(X,LAMBDA) Y=raylpdf(X,B) Y=tpdf(X,V) Y=unidpdf(X,N) Y=unifpdf(X,A,B) Y=weibpdf(X,A,B)
Gêëé
v1
+ 2
v2
ù úû
Gçæ è
v1 2
÷öGçæ øè
v2 2
÷ö ø
ççèæ
v1 v2
v1
÷÷øö 2
v1 -2
x2
v1 + v2
é ê1 êë
+
ççèæ
v1 v2
÷÷øö
x
ù ú úû
2
y
=
f (x | a,b) =
1 b a G(a)
x e a-1
-
x b
Y=fpdf(X,V1,V2) Y=gampdf(X,A,B)
2.2 累加分布函数
2.2.1 基本数学原理
对于连续型随机变量,其分布函数的定义为:若 X 为随机变量,x 为任意实数,则函 数
F ( x) = p{X £ x} 称为 X 的分布函数。如果知道 X 的分布函数,就知道了 X 落在任一区间(x1,x2]上的 概率。 分布函数 F(x)具有以下一些性质: ● F(x)是不减函数; ● 0 £ F( x) £ 1, 且
1.5000