活性炭溶剂法再生研究实验报告

合集下载

活性炭吸附法实验报告

活性炭吸附法实验报告

活性炭吸附法实验报告1. 实验目的本实验旨在探究活性炭作为吸附剂在去除染料废水中的应用,通过实验验证活性炭的吸附性能。

2. 实验原理活性炭是一种具有大量微孔和孔隙的多孔性材料,具有较大的比表面积和吸附能力。

活性炭材料的孔隙结构可以吸附和储存多种气体、液体或溶质,并在一定的条件下释放出来。

本实验中,活性炭将吸附溶液中的染料分子,实现对染料的去除。

3. 实验步骤3.1 准备工作•准备所需材料:活性炭样品、染料溶液、试管、试管架、移液管等。

•将试管清洗干净,并晾干备用。

3.2 实验操作1.在试管中加入一定量的染料溶液。

2.取适量的活性炭样品,加入试管中。

3.用试管架将试管固定,并加热至一定温度。

4.观察试管中溶液的颜色变化,并记录下来。

5.将试管从加热源中取出,待其冷却至室温。

6.使用移液管将试管中的溶液转移至离心管中。

7.进行离心操作,分离出溶液中的活性炭样品。

8.观察离心管中的溶液,记录下其颜色变化。

4. 实验结果与分析根据实验步骤所得到的结果,我们可以观察到染料溶液在与活性炭接触后发生了颜色的变化。

这是因为活性炭的表面具有较大的吸附能力,能够有效吸附溶液中的染料分子。

通过离心操作,我们将溶液中的活性炭与染料分离,观察到离心管中的溶液颜色明显变浅,说明活性炭对染料的吸附效果良好。

5. 总结与展望通过本次实验,我们验证了活性炭作为吸附剂在去除染料废水中的有效性。

活性炭具有较大的比表面积和吸附能力,能够吸附溶液中的有害物质,实现净化水质的目的。

然而,本次实验仅是基于简单的染料溶液,后续可以进一步研究和探究活性炭在处理更为复杂的废水中的应用。

参考文献[1] Kim, J., Yun, S., & Park, S. (2015). Adsorption of dissolved organic matter onto activated carbon: Mechanisms and kinetic models. Chemical Engineering Journal, 279, 775-784.[2] Wang, S., & Li, H. (2019). Application of activated carbon in water treatment:A review. Journal of Environmental Sciences, 75, 123-135.。

实验3活性炭吸附实验报告

实验3活性炭吸附实验报告

实验3 活性炭吸附实验报告一、 研究背景:1.1、吸附法吸附法处理废水是利用多孔性固体(吸附剂)的表面吸附废水中一种或多种溶质(吸附 质)以去除或回收废水中的有害物质,同时净化了废水。

质)以去除或回收废水中的有害物质,同时净化了废水。

活性炭是由含碳物质(木炭、木屑、果核、硬果壳、煤等)作为原料,经高温脱水碳化和活化而制成的多孔性疏水性吸附剂。

化而制成的多孔性疏水性吸附剂。

活性炭具有比表面积大、活性炭具有比表面积大、活性炭具有比表面积大、高度发达的孔隙结构、高度发达的孔隙结构、高度发达的孔隙结构、优良的机优良的机械物理性能和吸附能力,械物理性能和吸附能力,因此被应用于多种行业。

因此被应用于多种行业。

在水处理领域,在水处理领域,活性炭吸附通常作为饮用活性炭吸附通常作为饮用水深度净化和废水的三级处理,水深度净化和废水的三级处理,以除去水中的有机物。

以除去水中的有机物。

除此之外,活性炭还被用于制造活性炭口罩、家用除味活性炭包、净化汽车或者室内空气等,净化汽车或者室内空气等,以上都是基于活性炭优良的吸附性以上都是基于活性炭优良的吸附性能。

将活性炭作为重要的净化剂,越来越受到人们的重视。

能。

将活性炭作为重要的净化剂,越来越受到人们的重视。

1.2、影响吸附效果的主要因素在吸附过程中,活性炭比表面积起着主要作用。

同时,被吸附物质在溶剂中的溶 解度也直接影响吸附的速度。

此外,pH 的高低、温度的变化和被吸附物质的分散程度也对吸附速度有一定影响。

有一定影响。

1.3、研究意义在水处理领域,活性炭吸附通常作为饮用水深度净化和废水的三级处理,以除去水中的 有机物。

活性炭处理工艺是运用吸附的方法来去除异味、某些离子以及难以进行生物降解的某些离子以及难以进行生物降解的 有机污染物。

二、实验目的本实验采用活性炭间歇的方法,确定活性炭对水中所含某些杂质的吸附能力。

希望达到下述目的:(1)加深理解吸附的基本原理。

加深理解吸附的基本原理。

活性炭吸附实验报告

活性炭吸附实验报告

活性炭吸附实验报告一、实验目的活性炭处理工艺是运用吸附的方法来去除异味、色度、某些离子以及难生物降解的有机物。

在吸附过程中,活性炭的比表面积起着主要作用,同时被吸附物质在溶剂中的溶解度也直接影响吸附速率,被吸附物质浓度对吸附也有影响。

此外,PH值的高低、温度的变化和被吸附物质的分散程度也对吸附速率有一定的影响。

本实验采用活性炭间隙和连续吸附的方法确定活性炭对水中某些杂质的吸附能力。

通过本实验,希望达到以下目的:1、加深理解吸附的基本原理;2、掌握活性炭吸附设备操作步骤,包括吸附工作过程和再生过程。

二、实验原理吸附是发生在固-液(气)两相界面上的一种复杂的表面现象,它是一种非均相过程。

大多数的吸附过程是可逆的,液相或气相内的分子或原子转移到固相表面,使固相表面的物质浓度增高,这种现象就称为吸附;已被吸附的分子或原子离开固相表面,返回液相或气相中去,这种现象称为解吸或脱附。

在吸附过程中,被吸附到固体表面上的物质称为吸附质,吸附吸附质的固体物质称为吸附剂。

活性炭吸附就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,以达到净化水质的目的。

活性炭吸附的作用产生于两个方面:一方面由于活性炭内部分子在各个方面都受着同等大小而在表面的分子则受到不平衡的力,这使其他分子吸附于其表面上,此过程为物理吸附;另一方面是由活性炭与被吸附物质之间的化学作用,此过程为化学吸附。

活性炭的吸附是上述两种吸附综合的结果。

当活性炭在溶液中吸附速度和解吸速度相等时,即单位时间内活性炭吸附的数量等于解吸的数量时,被吸附物质在溶液中的浓度和在活性炭表面的浓度均不再变化,而达到了平衡。

此时的动态平衡称为活性炭吸附平衡。

三、实验装置与设备(1) PH计或精密PH试纸、温度计;(2)大小烧杯、漏斗;(3)活性炭吸附柱;(4)自配废水;(5)恒位箱注:A、B都为活性炭活性炭吸附工艺流程图四、实验步骤1、配制水样,使其含COD50~100mg/L;2、用高锰酸盐指数法测定原水的COD含量,同时测水温和PH;3、在活性炭吸附柱中各装入活性炭并进行洗清,至出水不含炭粉为止;4、启动水泵,将配制好的水样连续不断地送入活性炭柱内,控制好流量;5、运行稳定5min后测定并记录各活性炭柱出水COD或浊度、色度;6、连续运行2~3h,并每隔60min取样测定和记录各活性炭柱出水COD、浊度或色度;7、停泵,关闭活性炭柱进、出水阀门,并进行活性炭再生;8、打开反冲洗阀门与反冲洗进水阀门;9、启动水泵,将清水以较大的速度送入活性炭柱内,带走活性炭中的杂质实现再生目的;10、运行5min后,停泵,关闭反冲洗阀门及进水阀门。

活性炭吸附实验报告材料..

活性炭吸附实验报告材料..

word《环工综合实验〔1〕》〔活性炭吸附实验〕实验报告专业环境工程〔卓越班〕班级姓名指导教师成绩东华大学环境科学与工程学院实验中心二0一六年11月附剂的比外表积、孔结构、与其外表化学性质等有关。

吸附等温线〔Adsorption Isotherm〕:指一定温度条件下吸附平衡时单位质量吸附剂的吸附量q 与吸附质在流体相中的分压p 〔气相吸附〕或浓度c 〔液相吸附〕之间的关系曲线。

水中苯酚在树脂上的吸附等温线水中苯酚在活性炭上的吸附等温线吸附机理和吸附速率吸附机理:吸附质被吸附剂吸附的过程一般分为三步:〔1〕外扩散〔2〕内扩散〔3〕吸附①外扩散:吸附质从流体主体通过扩散传递到吸附剂颗粒的外外表。

因为流体与固体接触时,在紧贴固体外表处有一层滞流膜,所以这一步的速率主要取决于吸附质以分子扩散通过这一滞流膜的传递速率。

②内扩散:吸附质从吸附剂颗粒的外外表通过颗粒上微孔扩散进入颗粒内部,到达颗粒的内部外表。

③吸附:吸附质被吸附剂吸附在内外表上。

对于物理吸附,第三步通常是瞬间完成的,所以吸附过程的速率由前二步决定。

•活性炭具有良好的吸附性能和化学稳定性,是目前国内外应用较广泛的一种非极性的吸附剂。

•由于活性炭为非极性分子,因而溶解度小的非极性物质容易被吸附,而不能使其自由能降低的污染物既溶解度大的极性物质不易被吸附。

活性炭的吸附能力以吸附容量q e表示:•qe=X/M=V(Co-C)/M•在一定的温度条件下,当存在于溶液中的被吸附物质的浓度与固体外表的被吸附物质的浓度处于动态平衡时,吸附就达到平衡。

1、吸附剂的比外表积越大,其吸附容量和吸附效果就越好吗?为什么?答:比外表积越大,不一定吸附容量就越好。

吸附剂的比外表积越大,只能说明其吸附能力较大,并不代表吸附容量就越大。

吸附容量的大小还与脱吸速度有关,如果脱吸速度很快,就算吸附能力再大,吸附容量也还是没多大提升。

吸附容量是一个动态平衡的过程。

吸附剂的良好吸附性能是由于它具有密集的细孔构造,与吸附有关的物理性能有:a.孔容〔VP〕:吸附剂中微孔的容积称为孔容,通常以单位重量吸附剂中吸附剂微孔的容积来表示(cm3/g);b.比外表积:即单位重量吸附剂所具有的外表积,常用单位是m2/g;c.孔径与从离心管中取上清液用移液管,莫直接倒出,防止底部活性碳再次泛起。

活性炭的实验报告

活性炭的实验报告

一、实验目的1. 了解活性炭的吸附特性及其在水处理中的应用。

2. 掌握活性炭吸附实验的基本原理和操作方法。

3. 研究活性炭对有机污染物的吸附效果,为实际水处理工程提供参考。

二、实验原理活性炭是一种具有高度发达的孔隙结构和巨大比表面积的吸附材料,广泛应用于水处理、空气净化等领域。

活性炭的吸附作用主要包括物理吸附和化学吸附两种形式。

物理吸附是指吸附质分子与活性炭表面分子间的范德华力作用,而化学吸附是指吸附质分子与活性炭表面分子间的化学键作用。

本实验采用间歇式静态吸附法,通过改变活性炭的投放量和吸附时间,研究活性炭对有机污染物的吸附效果。

三、实验仪器与材料1. 仪器:锥形瓶、分光光度计、磁力搅拌器、电子天平、温度计、pH计、移液管等。

2. 材料:活性炭、亚甲基蓝溶液、蒸馏水、氢氧化钠、盐酸等。

四、实验步骤1. 准备溶液:将亚甲基蓝溶液稀释至一定浓度,配制一系列不同浓度的溶液。

2. 准备活性炭:将活性炭用蒸馏水洗涤,去除杂质,然后在105℃下烘干至恒重。

3. 吸附实验:将活性炭粉末加入到锥形瓶中,加入一定量的亚甲基蓝溶液,置于磁力搅拌器上,设定不同吸附时间,观察溶液颜色变化。

4. 测定吸附效果:取吸附后的溶液,用分光光度计测定吸光度,计算吸附量。

5. 计算吸附等温线:以吸附量为纵坐标,溶液浓度为横坐标,绘制吸附等温线。

五、实验数据与分析1. 吸附量随吸附时间的变化:实验结果表明,活性炭对亚甲基蓝的吸附量随吸附时间的延长而增加,在一定时间内达到吸附平衡。

2. 吸附等温线:根据实验数据,绘制吸附等温线,发现活性炭对亚甲基蓝的吸附符合Langmuir吸附等温式。

3. 影响吸附效果的因素:实验结果表明,活性炭的吸附效果受温度、pH值、溶液浓度等因素的影响。

六、结论1. 活性炭对亚甲基蓝具有良好的吸附效果,可作为水处理中的吸附材料。

2. 活性炭的吸附效果受温度、pH值、溶液浓度等因素的影响,实际应用中需根据具体情况调整吸附条件。

活性炭吸附实验实验报告[活性炭吸附实验]

活性炭吸附实验实验报告[活性炭吸附实验]

活性炭吸附实验实验报告[活性炭吸附实验] 活性炭吸附实验一实验目的1、通过实验进一步了解活性炭的吸附工艺及性能,并熟悉整个实验过程的操作2、掌握用“间歇”法、“连续流”法确定活性炭处理污水的设计参数的方法二实验原理活性炭吸附过程包括物理吸附和化学吸附。

其基?原理就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,以达到净化水质的目的。

当活性炭对水中所含杂质吸附时,水中的溶解性杂质在活性炭表面积聚而被吸附,同时也有一些被吸附物质由于分子的运动而离开活性炭表面,重新进入水中即同时发生解吸现象。

当吸附和解吸处于动态平衡状态时,称为吸附平衡。

这时活性炭和水(即固相和液相)之间的溶质浓度,具有一定的分布比值。

重量的活性炭吸附溶质的数量qe,即吸附容量可按下式计算:V(C0?C)qe?m式中 qe—活性炭吸附量,即单位重量的吸附剂所吸附的物质量,mg/g;V—污水体积,L;C0、C—分别为吸附前原水及吸附平衡时污水中的物质浓度,mg/L;m—活性炭投加量,g;在温度一定的条件下,活性炭的吸附量随被吸附物质平衡浓度的提高而提高,两者之间的变化曲线称吸附等温线,通常用Fruendlich式加以表达。

qe?K?Cn式中 K、n—是与溶液的温度、pH值以及吸附剂和被吸附物质的性质有关的常数;K、n值求法如下:通过间歇式活性炭吸附实验测得qe、C相应之值,将式上式到对数后变换为下式:1lgqe?lgK?lgCn将qe、C相应值点绘在双对数坐标纸上,所得直线的斜率为1/n,截距则为k。

三实验设备及用具1、振荡器一台;2、分析天平一台;3、分光光度计一台;4、250mL三角烧杯5个;5、100mL容量瓶6个;6、活性炭(粉状和粒状);7、亚甲基兰。

8、活性炭连续流吸附实验装置四实验步骤1、间歇式活性炭吸附实验①配制浓度为50mg/L的亚甲兰溶液于1000mL容量瓶中;②用十倍稀释法依次配制浓度为5mg/L、1mg/L、0.5mg/L、0.1mg/L、0.05mg/L、0.01mg/L的亚甲兰溶液于100mL容量瓶中;③用分光光度计测定其吸光度值(吸附波长为665nm),记录到表1中,绘制标准曲线;④取5个250mL的三角瓶,用天平分别称取100mg、200mg、300mg、400mg、500mg的粉活性炭投入三角瓶中,每瓶中加入100mL50mg/L 亚甲基兰溶液;⑤将三角烧瓶放在振荡器上振荡(震荡器的速度要由小变大,但也不能太大,否则会将活性碳粉粘到瓶壁上),当达到吸附平衡时停止振荡。

脱除低浓度硫化氢的改性活性炭纤维的再生研究

脱除低浓度硫化氢的改性活性炭纤维的再生研究
O O5 . 1 15 2 . 2. 5 3 3. 4 5
Pr oewit nn dh| l
图 1 未改性 AC F的孔径分布 图
通讯联系人 。张永春 , 男,教授,硕 士生导师。
作者简介 :宋庆锋 ( 9 1 ,男,山东烟 台人 ,硕士研 究生 从事含硫气体 的脱除研究 。 18 一)
布在外 表面 ,形 成丰富 的纳米 空间 ,具 有较 大 的比表面积 。因此在吸 附过程 中,AC 的分 F
子吸 附途径 短 ,吸附质 可 以直 接进入 微孔 ,具有 较好 的吸 附性能 ,但吸 附容量不 高 。 AC 的这 一缺 陷,可 以通 过改性 的方 法 ( F 如混入 法 、浸 渍法等 )来 改善 。常用 的改 性 试剂 主要 是碱 性物和 过渡 金属两类 ,国内外 已有 相关 的报道 ,但关于 再生 的问题 探讨 较少 。 而 且,再 生是吸 附剂使 用过程 中一 个不可 忽视 的 问题 ,是 吸 附剂 的一个 重要性 能指标 。 对 未 改性 AC F再生 的方 法主要 是溶剂 法和气 体热法 两种 ,本研究 也采用这两 种方法 , 以 5 Na H 改性 的 AC % O F和 5 C 改性 的 AC % u F为例 , 究碱性物 改性 AC 研 F和过 渡金 属改
( .大连理工大学 精细化工国家重点实验室,辽 宁 大连 l6 1; 1 0 2 1 2 .辽河石油勘探局 石油化工总厂 ,辽宁 盘锦 14 2 ) 20 0

要 :用改性的活性炭纤维 ( C )脱 除低浓度的 H2 A F S是一种十分有效的方法 ,但脱硫后 的改
性 AC F容易达到脱硫饱和而失活 。 用溶剂再生和气 体热再生 的方法可以对失活后 的改性 AC F进 行再生。在固定床 反应器上考 察了再生后 AC F的脱硫性能 。实验结果表 明,与溶剂再生相 比, 气体热再生是更有效 的再生方法 。不 同再生方法 的效果的不同,是 由 AC F脱 除 H S的反应机理 2

乙醇溶剂萃取法再生活性炭可行性研究3

乙醇溶剂萃取法再生活性炭可行性研究3

乙醇溶剂萃取法再生活性炭可行性研究(3)乙醇溶剂萃取法再生活性炭可行性研究4.1 结论本论文主要进行了活性炭再生,然后用新活性炭和再生后活性炭对脱硫液的吸附容量来评价再生效果,说明再生方法是否可行。

通过实验得到结论为:①用脱硫液对再生效果进行评价,新活性炭对脱硫液的吸附容量为540mg/g,再生后的活性炭对脱硫液的吸附容量为200mg/g,再生率为37.0%,说明再生方案初步可行。

②从结果可以看出,活性炭再生效率偏低,需进行进一步实验优化条件如改变温度、萃取时间、萃取溶剂以提高再生率。

4.2 讨论与建议4.2.1 脱硫液成分讨论为了探究脱硫液中的成分,在实验室现有条件下做了脱硫液和非活性炭乙醇萃取液的紫外分析光谱图,如下。

①通过对脱硫液的紫外分析光谱图进行分析发现,图中有一个较为明显的波峰处的波长为690nm左右,如图1所示,通过脱硫液为绿色的颜色特征和查阅资料大致可以确定脱硫液中含有酞菁钴类煤气脱硫催化剂,须待进一步实验予以确认。

②将乙醇萃取液静置,温度降至常温后可见针状结晶,说明可能存在酚类物质。

其颜色在这一过程中的变化为红色到棕色再到深红色,瓶壁四周有绿色析出物。

通过活性炭乙醇萃取液紫外分析光谱图和脱硫液的紫外分析光谱图进行比照发现,两图中光谱走势除690nm处大致相同,如图1和2所示,说明乙醇萃取液种成分和脱硫液成分大致相同,乙醇萃取液中690nm处几乎没有出现波峰说明酞菁钴类煤气脱硫催化剂在乙醇中溶解度较低。

4.2.2 进一步研究的建议本论文尽管对乙醇萃取再生活性炭的方法进行了一定的研究,为处理脱硫液用的活性炭的再生提供了一定的实验依据,但由于实验设备、资金和时间的限制,本文还存在一定的缺乏,还需要进一步从以下方面加以完善:①由焦化工艺可知:脱硫液成分复杂,活性炭对各成分的吸附是否有先后顺序尚需进一步的探讨和研究。

②甲醇和乙醇都可以提取活性炭吸附的有机物,但甲醇有毒,本钱较高,而乙醇廉价易得,对人体和环境没有危害,且可重复利用,故实验采用乙醇进行,而甲醇的萃取效果尚需进一步研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

邯郸学院化学系综合设计实验报告
题目活性炭溶剂法再生研究实验
学生杨永博刘艳凯
指导教师王建森教授
年级2009 级
专业化学本科
邯郸学院化学系
邯郸学院化学系
2011年7月
活性炭溶剂法再生研究实验
杨永博刘艳凯2009级化学本科班指导教师:王建森教授
一.实验目的与原理
目的:了解活性炭性质及再生方法,掌握活性炭溶剂再生法;探索一种经济效益高的活性炭再生方法,增强活性炭的再生利用价值。

原理:溶剂再生法是利用活性炭、溶剂与被吸附质三者之间的相平衡关系 , 通过改变温度、溶剂的pH值等条件,打破吸附平衡,将吸附质从活性炭上脱附下来[1]。

溶剂再生法比较适用于那些可逆吸附,如对高浓度、低沸点有机废水
的吸附。

它的针对性较强,往往一种溶剂只能脱附某些污染物,而水处理过
程中的污染物种类繁多,变化不定,因此一种特定溶剂的应用范围较窄
[2]。

二.实验试剂及仪器
试剂:工业盐酸、分析纯盐酸、阳离子交换树脂、去离子水、亚甲基蓝、硫酸铜溶液、邻二氮菲、盐酸羟氨等。

仪器:分析天平、马弗炉、721型分光光度仪、MYB型调温电热套、烘箱、称量天平等。

三.实验步骤
1.溶剂法再生主要流程
(1)对废弃活性炭样品进行性质检测,包括测定铁含量、灰分含量、亚甲基蓝吸附值等;
(2)摸索活性炭溶剂法再生需要的具体物质比例;
(3)确定具体物质的比例,进行再生实验研究;
(4)对再生后的活性炭样品进行性质检测,包括测定铁含量、灰分含量、亚甲基蓝吸附值等;
(5)对再生前后的活性炭样品性质数据进行对比、分析。

2.具体步骤
2.1根据国家活性炭标准测定方法[3]对废弃活性炭样品进行铁含量、灰分含量、亚甲基蓝吸附值测定。

2.1.1标准曲线的测绘分别吸取铁液 0、1.0、2.0、
3.0、
4.0、
5.0、
6.0、
7.0mL于8只50mL容量瓶中,加入乙酸-乙酸钠缓冲溶液5mL,盐酸羟胺溶液 2.5mL, 1,10-菲啰啉溶液1mL,用水稀释至标线,摇匀放置10min,用分光光度计在波长
510nm,光径1cm比色皿中测定吸光度。

以铁标准溶液的使用量( mL) 为横坐标,以吸光
度为纵坐标绘制标准曲线。

2.1.2铁含量测定称取经粉碎的干燥试样 1.0g (称准至10mg),置于100mL锥形瓶中,加入稀盐酸25mL,缓和煮沸5min,稍冷过滤于100mL容量瓶中,并用热水分次洗涤滤渣,滤液和洗液合并,冷却至室温,稀释至标线。

取滤液10mL 于50mL容量瓶中,加入乙酸-乙酸钠缓冲溶液5mL,盐酸羟胺溶液 2.5mL,1,10-菲啰啉溶液1mL,稀释至标线,摇匀放置10min呈颜色反应,用分光光度计在波长510nm 下用1cm比色皿测定吸光度;
2.1.3灰分含量测定将150mL瓷坩埚置于马弗炉中,于(650± 20)C下灼烧至恒重,将坩埚置于干燥器中,冷却,称重;称取经粉碎的试样5克(称准至0.1mg),置于150mL已灼烧至恒重的瓷坩埚中;将坩埚送入温度不超过300C 的马弗炉中,打开坩埚盖,逐渐升高温度,在650 ± 20C灰化至恒重。

时间大概为3个小时。

计算灰分值,并得出灰分含量。

2.1.4亚甲基蓝吸附值测定称取经粉碎的试样1.0克(称准至1mg),置
于100mL的磨口塞的锥形瓶中,用滴定管加入适量亚甲基蓝试验液,待试样完全湿润后,立即振荡20分钟,后用滤纸进行过滤。

将滤液置于光径为1cm的比
色皿中,用分光光度计在波长 665nm下测定吸光度,与硫酸铜标准滤色液的吸光度进行对照,所耗用的亚甲基蓝试验液的毫升数即为试样的亚甲基蓝吸附值。

2.2再生过程
2.2.1 分别吸取比例为 1:1、1:2、1:4、1:6、1:8、1:9 的酸 45mL 于 6 只100mL 锥形瓶中,分别加入活性炭样品1.0g,加热反应约4小时,然后对反应液趁热抽滤,并将得到的固体在烘箱中(100摄氏度左右)烘干0.5小时;用国标铁含量
测定方法对样品进行测定并记录数据;
2.2.2 分别量取比例为1:6的酸30mL、45mL、60mL、75mL于4只100mL
锥形瓶中,分别加入活性炭样品1.0g,加热反应约4小时,然后对反应液趁热抽
滤,并将得到的固体在烘箱中(100摄氏度左右)烘干0.5小时;用国标铁含量测定
方法对样品进行测定并记录数据;
2.2.3称取活性炭样品10.0g于250mL锥形瓶中,加入工业盐酸 5mL,如此3份,分别加入水100mL,加热反应1至1.5个小时;然后对反应液趁热抽滤,并将得到的固体在烘箱中(100摄氏度左右)烘干0.5小时;用国标铁含量测定方法对样品进行测定并记录数据;
2.3对2.1中再生后的不同组别活性炭样品按国标进行铁含量、灰分含量、亚甲基蓝吸附值[3]测定。

通过比较,最优结果为2.2.3组,具体数据如下:
四.实验结论
通过不同再生过程的对比得出:2.2.3效果为最好的,即10g活性炭样品、 5mL 工业盐酸、100mL水,此比例实验处理后的活性炭样品各项指标可以提高到行业标准以内,而且再生成本低,复合实际生产需要,可以推广使用。

其他组虽然可以在一定程度上提高活性炭质量,但考虑实际生产,再生成本太高,而且
最终效果未能达到行业标准,因此不能推广实行。

五.参考文献
[1]岳晓明,张双全.《活性炭再生技术的研究进展》[J].中国矿业大学化工学院.江苏徐州(221008);
[2]刘守新,王岩.东北林业大学哈尔滨150040 .郑文超哈尔滨市动物园. 《活性炭再生技术研究进展》[N];
[3] GB/T-12496.1-22-1999全套《木质活性炭试验方法》[S]。

相关文档
最新文档