相对论性动量和能量1

合集下载

相对论:能量和动量的变换

相对论:能量和动量的变换
乘积
相对论能量:物体在相对论中 的能量,包括静止能量和动能
相对论动量:物体在相对论中 的动量,等于其能量与速度的来自比值能量和动量的关系式
E^2
=
m^2c^4 +
p^2c^2
E^2
=
m^2c^4 +
(pc)^2
E^2
=
m^2c^4 +
(γm^2 -
m^2)c^2
E^2
=
m^2c^4 +
(γm^2 -
m^2)c^2 +
领域
引力波探测:利用相对论原理 探测引力波,研究宇宙起源和
演化
相对论中能量和 动量的实验验证
原子能与核能的实验验证
原子能实验:通过核裂变和核聚变 实验,验证了相对论中能量和动量 的关系
粒子加速器实验:通过粒子加速器 实验,验证了相对论中能量和动量 的关系
添加标题
添加标题
添加标题
添加标题
核能实验:通过核反应堆实验,验 证了相对论中能量和动量的关系
相对论中的能量和动量的物理意义
相对论的基本原理:光速不变原理 和相对性原理
相对论中的能量和动量的变换:在 相对论中,能量和动量不再是独立 的物理量,而是相互关联的
添加标题
添加标题
添加标题
添加标题
能量与动量的关系:能量是动量的 函数,动量是能量的时间导数
能量守恒定律:在相对论中,能量 守恒定律仍然成立,但需要修改为 能量-动量守恒定律
能量和动量变换 的应用
核能与核反应
核反应的类型和过程
核能的定义和特点
核能与核反应在能量和动量 变换中的应用
核能与核反应的安全性和环 保性考虑
粒子加速器

相对论中能量和动量的关系式为

相对论中能量和动量的关系式为

相对论中能量和动量的关系式为1. 能量与动量的基础知识在聊能量和动量之前,咱们先来个小引子。

想象一下,你在公园里看到一个小孩推着滑板车,哇,那推力可是大了!这小家伙冲得飞快,简直像个小火箭!这时候,大家可能会想,为什么滑板车能跑得那么快?这就要提到能量和动量的关系了。

能量就像是小孩的“燃料”,而动量则是那种“冲劲”。

简单来说,能量和动量就像是两个好朋友,永远在一起,互相帮助。

1.1 能量的定义能量,听上去高大上,但其实就是物体所拥有的能力。

无论是动能、势能,还是其他类型的能量,都是为了让物体能动起来、能改变状态。

打个比方,就像你饿的时候需要吃饭,吃饱了才能有力气去玩耍一样,物体也需要能量才能动。

1.2 动量的定义再说说动量,动量其实就是物体运动的“重头戏”。

它的大小和物体的质量还有速度有关。

简单来说,质量大、速度快的物体,动量就大,反之亦然。

就像你一脚踩上去的泥巴,越重越难动,越快越滑!这就是真实的动量作用。

2. 相对论的魅力现在我们把视角转到相对论上。

爱因斯坦真的是个天才!他的相对论把我们对时间和空间的理解完全颠覆了。

就像是打开了一扇新世界的大门,里面满是神奇的东西。

特别是能量和动量的关系式,更是让人耳目一新。

2.1 公式背后的故事在相对论中,能量和动量的关系可以用一个公式来表达,简直像是数学界的魔法咒语!这个公式说的就是:能量等于动量乘以光速,再加上静止质量的能量。

听起来有点复杂?其实它想告诉我们,物体的能量和动量并不是孤立的,它们总是紧紧联系在一起。

2.2 生活中的例子我们来点生活中的例子,假设你在超市推购物车。

购物车越满,你推起来越费力,对吧?这就是因为动量和能量在起作用。

你推的力度(能量)和购物车的速度(动量)都在影响着你购物的体验。

想象一下,等你推到结账的地方,满载而归,心里那种成就感,简直无与伦比!3. 深入理解能量与动量的关系最后,我们来深入挖掘一下这对好朋友的关系。

能量和动量就像是一对密不可分的恋人,互相依赖,互相促进。

146相对论的动量和能量

146相对论的动量和能量

第十四章 相对论
即:
讨论: 为零 (1) x2 x1
v t ' (t 2 x) c v t1 [( t 2 t1 ) 2 ( x2 x1 )] t2 c
0 t2 t1 0

(2)
异地事件的同时性是相对的。
x2 x1 0 t2 t1 0
( 1 )L L0 1 - ( / c ) 54m
2
t1 L / 2.25 107 s
( 2 )t2 L0 / 3.75 10 s
7
或 : t2
t1 1 - ( / c )2
14 - 6 相对论动量和能量
第十四章 相对论
例10、假定在实验室中测得静止在实验室中的μ+介 子(不稳定粒子)的寿命为2.2×10-6s ,而当它相对于 实验室运动时实验室中测得它的寿命为1.63×10-5s 。 试问:这两个测量结果符合相对论的什么结论? μ+ 介子相对于实验室的运动速度是真空中光速c的多少 倍? 解: 它符合相对论时间膨胀(或运动时钟变慢)的结论。
静能
m0c
2
:粒子静止时所具有的能量 .
2
E m c

14 - 6 相对论动量和能量
相对论动能 由功的定义及动能定理,得
第十四章 相对论

Ek
0
d ( m ) dr d ( m ) d Ek F dr dt d (m ) m d dm
同地事件的同时性是绝对的。

14 - 6 相对论动量和能量
第十四章 相对论
v t1 [( t 2 t1 ) 2 ( x2 x1 )] t2 c

相对论能量和动量的关系

相对论能量和动量的关系
总结词
在相对论中,物体的动能与其总能量之间存在一定的关系, 动能是总能量的一部分。
详细描述
物体的总能量包括动能和势能两部分。在相对论中,物体的 动能与其总能量之间的关系可以用公式E=mc^2表示,其中E 代表总能量,m代表质量,c代表光速。动能则是总能量减去 势能的部分。
动量与总能量之间的关系公 式
质能方程
总结词
质能方程是相对论中描述质量和能量之间关系的公式,它表明物体的质量与能量 是等价的。
详细描述
质能方程是E=mc^2,其中E代表能量,m代表质量,c代表光速。这个公式表明质 量和能量之间存在等价关系,即一个物体的质量包含着与其等价的能量。
动能与总能量之间的关系
在核能领域的应用
核聚变
相对论能量和动量在核聚变过程中用于 描述聚变反应的条件和产物。核聚变是 一种利用高能粒子束将轻元素聚变成重 元素的过程,其产生的能量可用于未来 的清洁能源生产。
VS
核裂变
相对论能量和动量在核裂变过程中用于描 述裂变产物的性质和行为。核裂变是一种 利用重元素裂变成轻元素的过程,其产生 的能量可用于现有的核能发电站。
05
相对论能量和动量的实验验 证
原子能研究的实验验证
原子能研究
原子能研究中的核反应实验是验证相对论能 量和动量关系的重要途径。通过测量反应前 后粒子的能量和动量变化,可以验证爱因斯 坦质能方程E=mc^2。
粒子加速器
粒子加速器是研究相对论能量和动量关系的 另一种实验工具。通过加速粒子至高能状态, 可以观察到粒子的能量和动量变化,从而验 证相对论的预测。
粒子加速器
相对论能量和动量在粒子物理中广泛 应用于设计和优化粒子加速器,如电 子加速器和质子加速器。这些加速器 通过提供高能粒子束,用于研究物质 的基本结构和性质。

相对论能量动量关系

相对论能量动量关系

相对论能量动量关系相对论能量动量关系是狭义相对论中的一个重要概念,它描述了物体的能量和动量之间的相互关系。

根据相对论的观点,能量和动量不再是独立的物理量,而是相互联系的。

在经典力学中,能量和动量分别被定义为物体的质量和速度的函数。

然而,在相对论中,质量不再是一个固定的值,而是与速度相关的量。

根据相对论的质能关系,物体的能量与其质量之间存在着等价关系,即E=mc²,其中E代表能量,m代表物体的质量,c代表光速。

根据质能关系,我们可以推导出相对论能量动量关系的公式。

根据狭义相对论的基本原理,物体的能量和动量应该满足以下关系:E² = (pc)² + (mc²)²,其中p代表物体的动量。

通过推导和计算,我们可以得到相对论能量动量关系的具体表达式:E² = (mc²)² + (pc)²,其中E代表物体的能量,m代表物体的质量,p代表物体的动量,c代表光速。

相对论能量动量关系的一个重要结论是,物体的能量和动量不再是线性关系,而是非线性的。

当物体的速度接近光速时,能量和动量的增长速度也会趋于无穷大。

这意味着,相对论效应在高速运动物体的能量和动量中发挥了重要作用。

相对论能量动量关系不仅对粒子物理学和高能物理学有着重要的实际应用,也对我们理解宇宙的起源和演化提供了深刻的见解。

通过研究物体的能量和动量之间的关系,我们可以更好地理解宇宙中各种粒子的运动和相互作用,从而揭示宇宙的奥秘。

在实际应用中,相对论能量动量关系被广泛应用于核能源、粒子加速器和粒子物理实验等领域。

通过测量物体的能量和动量,科学家们可以推断物体的质量和速度,进而研究物体的性质和相互作用规律。

相对论能量动量关系是狭义相对论中的一个重要概念,描述了物体的能量和动量之间的相互关系。

相对论能量动量关系的推导和应用使我们对物质世界有了更深入的理解,为我们解开宇宙奥秘和推动科学技术的发展提供了重要的理论基础。

大学物理-狭义相对论-相对论性动量和能量

大学物理-狭义相对论-相对论性动量和能量

我国于 1958 年建成的首座重水反应堆
我国已 建成的岭澳 核电站
我国在 建的单机容 量最大的田 湾核电站
原子弹核裂变
2 轻核聚变
氘核 氦核 质量亏损
释放能量
轻核聚变条件 温度要达到

的动能,足以克服两
力.
时,使 具 之间的库仑排斥
1967年6 月17日,中国 第一颗氢弹爆 炸成功
五 动量与能量的关系

,所以光速 C 为物体的极限速度 .


相对论动量守恒定律


常矢量

,则相对论动量守恒 经典动量守恒 .
常矢量
三 质量与能量的关系
相对论质能关系
静能
:物体静止时所具有的能量 .
质能关系预言:物质的质量就是能量的一种储藏 .
爱因斯坦认为(1905)
懒惰性
惯性 ( inertia )
活泼性
物理意义
惯性质量的增加和能量的增加相联系,质量的 大小应标志着能量的大小,这是相对论的又一极其 重要的推论 .
相对论的质能关系为开创原子能时代提供了理 论基础 , 这是一个具有划时代的意义的理论公式 .
质能关系预言:物质的质量就是能量的一种储藏.
例:
现有 100 座楼,每楼 200 套房,每套房用电功率
能量 ( energy )
物体的懒惰性就 是物体活泼性的度量 .
相对论能量和质量守恒是一个统一的物理规律.
一些微观粒子和轻核的静能量
粒子
符号
光子
电子(或正电子) e(或 +e
质子
)p
中子
n


氦( 粒子)
静能量 MeV 0 0.510

相对论中能量动量关系怎么推

相对论中能量动量关系怎么推

相对论中能量动量关系怎么推能量-动量关系是相对论中最为重要的公式之一,它描述了物体的质量和速度之间的关系。

推导能量-动量关系需要使用狭义相对论的基本假设,即所有惯性参考系之间的物理规律都是相同的。

首先,我们定义一个质量为m的物体的动能:E_k = \frac{1}{2}mv^2其中,v是物体的速度。

接下来,根据相对论的基本假设,我们考虑两个不同的惯性参考系,分别为S和S'。

这两个参考系之间存在相对运动,其速度为v。

在S参考系中,物体的动量为:p = mv同时,在S'参考系中,物体的动量为:p' = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}}其中,c是光速。

接下来,我们考虑在S'参考系中,物体的动能:E_k' = \frac{1}{2}m\frac{v^2}{1 - \frac{v^2}{c^2}}现在我们可以使用相对论能量-动量守恒定律来推导能量动量关系:E_k + E = E_k' + E' + K其中,E是物体的静能量,K是相对于S参考系的总动量,E'是相对于S'参考系的总能量。

根据相对论的动量-能量关系,我们可以将K和E'表示为:K = \frac{p^2}{2m}E' = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}这样,我们就可以将相对论能量动量守恒定律写成:E_k + E = \frac{m c^2}{\sqrt{1-\frac{v^2}{c^2}}} + \frac{p^2}{2m}这就是著名的能量动量关系,其中E_k是物体的动能,E是静能,p是物体的动量,m是物体的质量,c是光速。

相对论的动量和能量

相对论的动量和能量
1v2c2
也可如此计算
cp E2(m 0c2)212M 50 epV 12M 50ecV
例2 π+ 介子的静止质量是 2.49×10-28kg,固有寿命是 2.6×10-8 s。速度为光速的60% 的π+ 介子质量是多少? 寿命为多长?
解: m 1 m v 0 2c2(2 1 .4 9 0 .6 1 2 0 ) 12 /2 8kg3.1110 28kg
例1 设一质子以速度 v0.8c0 运动. 求其总
能量、动能和动量.
解 质子的静能 E0m0c293M 8 eV Em2 c1m 0 v c 2 2c2(19 0.82 3 )128 M e1V 5M 63 e
EkEm 0c262 M 5eV pm v m 0v 6 .6 8 1 1 0k 9m gs 1
四 . 质能关系的应用
E mc2 质量转能量
1945年,美国在日本广岛和长崎各投下一枚原子 弹,造成近二十万人死亡.
我国已 建成的岭澳 核电站
我国在 建的单机容 量最大的田 湾核电站
原子弹核裂变
1967年6 月17日,中国 第一颗氢弹爆 炸成功
E mc2 能量转质量
经由高能加速器碰撞,人类制造出新的元素 (原 子序93以上) 。
0 2.6108 s3.25108s
1v2c2 (10.62)1/2
例3 观察者乙以4c/5的速度相对静止的观察者甲运动 ,乙带一质量为1kg的物体,则甲测得此物体的质量 为多少?乙带一长为l,质量为m的棒,该棒安放在运 动方向上,则甲测得棒的线密度为多少?
现有 100 座楼,每楼 200 套房,每套房用电功率
10000 W , 总功率 2108W,每天用电 10 小时 , 年耗电量 2.72 1105J,可用约 33 年。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这是相对性原理的结果,也是相对性原理的理解! 5 、运动时钟变慢效应是时钟本身的客观特征。 6、时间延缓效应显著与否决定于 β 因子。
三、同时性的相对性
x2 、 x 1 处同时发生两事件 t1 = t2 事件1: ( x 1, t1 ) s 粉 小 s 笔 球 x 2, 事件2; ( t2 )
在 S中
用洛伦兹变换的逆变换: 设S系中固有长度l0,在S’系中仍然有尺缩效应 t t 时
2 1
x2 x1 l0
x1 l x2
在S系中 S’系中
ut 2 ) ( x1 ut1 ) x2 x1 ( x2
x1 ) ( x2
2
l l ' 1 l0
固有长度:物体相对静止时所测得的长度.(最长) 长度收缩是一种相对效应,此结果反之亦然. 注意
当 1 时
l l0 .
洛伦兹收缩: 运动物体在运动方向上长度收缩.
l l0 1 c2
u2
尺缩效应说明在所有测量中,与相对静止的惯 性系中测量的长度是最长的,运动物体沿运动方向 的长度变短。 • 杆只沿运动方向收缩,沿y、z方向不收缩。 • 长度收缩效应是相对的。 在S系中观察相对S’系静止的杆长度收缩了,同 理在S’系中观察相对S系静止的杆的长度也收缩,
γ =15பைடு நூலகம்82
故行程 l =v Δ t = 0.998cγ τ
= 9500m
此行程可使μ 子穿过大气层到达地球表面, 实验结果的确如此。
§5 狭义相对论质点动力学简介
物理概念:质量,动量,能量,„„ 原 重新审视其定义
(1) 应符合爱因斯坦的狭义相对性原理 即经过洛伦兹变换时保持定律形式不变
则 (2) 应满足对应原理 即趋于低速时,物理量须趋于经典理论中相应的量
总动量 m0 m u (u为总质量相对 S 系的共同速度)
m0 m,u
所以碰撞之前: 总动量 mv
(完全非弹性)碰撞之后:
总动量 m0 m u (u为总质量相对 S系的共同速度)
孪生子效应(twin effect)
设想:一对年华正茂的孪生兄弟,哥哥告别弟弟, 登上访问牛郎 织女的旅程。归来 时, 阿哥仍是风度翩翩一少年, 而迎接他的胞 弟却是白发苍苍一老翁了, 真是“ 天上方七日, 地上已千年”。 讨论:
1) 这样的现象能够发生
• Cs原子钟证明:1971年美国空军将Cs原子钟放在飞机上, 沿赤 道向东和向西绕地球一周。回 到原处后, 分别比静止在地面上的 钟慢59 ns 和 273 ns (1 ns = 10-9s)。 结论:相对于一惯性系的加速度越大的钟,走得越慢。与上述
t2 u x 2 c 2 t2= 1β2
在 s 中 这两事件 并不同时发生。
所以,同时性是相对的。
结论: (1)S’系中同时不同地的事件,在S系中不同时。
(2)S’系中同时同地的事件,在S系中同时。 (3)S’系中不同时不同地的事件,在S系中 一般不同时,但是也可能同时。
t ' x ' u / c 0 t 0
1、确定两个作相对运动的惯性参照系; 2、确定所讨论的两个事件; 3、表示两个事件分别在两个参照系中的时空坐标或 其时空间隔; 4、用洛仑兹变换讨论。 注意 1.原时一定是在某坐标系中同一地点发生的两个事件 的时间间隔(用一只钟测的); 2.原长一定是相对其静止的参照系中两点的空间间隔。 3.运动物体的长度(同时测)和空间间隔(不一定同时 测)的区别。
2
因为
1β uv ( t2 t1) ( 1 c 2 ) >0 = 2 1β 2 u v c , 所以 t2 > t1
>
子弹速度
x 2 x 1) ( v= (t2 t1 )
信号传递速度
在s
中:仍然是开枪在前,鸟死在后。
所以由因果率联系的两事件的时序不会颠倒。
小结
在狭义相对论中讨论运动学问题的思路如下:
例1、地球上, 在甲地x1处 时刻t1 出生一小孩 小甲 在乙地x2处 时刻t2 出生一小孩 小乙 两小孩的出生完全是两独立事件。
S 甲 乙 · · x1 x2
· 若甲乙两地相距 x2 - x1 = 3000公里
t2 - t1 = 0.006秒,即甲先乙后 甲---哥, 乙---弟
· 飞船上看,
★若u = 0.6c, 可得t 2 - t 1 =0, 甲乙同时出生不分哥弟 ★若u = 0.8c可得t 2 - t 1 <0,甲后乙先 甲---弟 乙---哥 时序倒了!
x '2 x2 vt 2 1 2
x'1
x1 vt1 1 2
x'2 x'1
s s'
z
y
y'
v
l0 x '2 x '1 l '
o
x '1
o' x1
l0
z'
x '2 x' x2 x
2
l x2 x1
x'2 x'1
固有长度
x2 x1 1
2
(4)S系中同时不同地的事件,在S’系中不同时。 (5)S系中同时同地的事件,在S’系中同时。 (6)S系中不同时不同地的事件,在S’系中 一般不同时,但是也可能同时。
t xu / c 0 t ' 0
2
t '
“同时”只是对某一惯性系而言的,没有 2 绝对意义,只有相对意义。这是光速不 t xu / c 变原理的直接结果,它否定了牛顿力学 2 的绝对时空观。同时说明互相没有因果 1 关系的独立事件前后次序在不同参照系 中可能颠倒。
孪生子问题所预期的效应一致。
2) 按照相对的观点, 会不会弟弟看自己是少年, 而哥哥是老翁了呢?
---孪生子佯谬(twin paradox) 答案:不会
原因:实际上 , 天 ( 航天器 ) 、地 ( 地球 ) 两个参考系是不对称的 , 地---可以是一个惯性系;天---不是惯性系, 有加速度, 故能返 回, 否则他将一去不复返, 兄弟永别了。 这超出狭义相对论的范围, 需用广义相 对论讨论(广义相对 论讨论有严格的证明, 实验证明见上: Cs原子钟)。
一.相对论质量、动量
1. 质速关系 经典理论:
质点动力学基本方程
与物体运动无关
相对论的质速关系
在相对论中,动量的定义不变,动量守恒定律仍然成立。但 按洛伦兹变换,物体的质量将和自己的速率有关。
推导:
m m0
v2 1 2 c
设两个静止时质量均为 m0的小球,碰撞之前分别 静止于S 和S系。 S 相对S沿 x轴以v 运动: y y y y
在 S 系中观测两事件
时间间隔 t ' t '2 t '1 2d c
s
y
9
3 6
( x1 , t1 ), ( x2 , t 2 )
x
vx1 ' t1 (t '1 2 ) c
vx ' 2 t 2 (t '2 2 ) c
o
9
x1
12
d
3
x2
12
9 6
3
6
s
y
12
9
3 6
u
在 s 中 这两事件
是否同时发生?
t1
落 地
t2 x2
落 地
x1
t1 u x1 c 2 t1 = 1β2
t2 u x 2 c 2 t2= 1β2
t1 u x1 c 2 t1 = 1β2
t2 t1 = =
即:t2
t2
= t1
u t1 c 2 ( x 2 x 1 ) 2 1β u x2 x1 ) c2 ( =0 2 1β
vx' t (t ' 2 ) c
o
9
x1
12
d
3
x' 0
t t '
x2
12
t t2 t1 t '
9 6
3
x
6
1 2
固有时间 :同一地点发生的两事件的时间间隔 .
t t ' t0
固有时间
时间延缓 :运动的钟走得慢.
讨论: 1、事件时间间隔与所在的惯性系有关,即时间 是相对的。 2、事件时间间隔与所在的惯性系有关,书上称为时间 延缓。观察到固有时间最短是因为相同的时钟在高速运 动状态时与地面上的时钟相比走的比慢了。不是因为时 钟出了毛病,而是当物体高速运动时的一切节奏都变慢 了,例如物理、化学、生命节奏与地面情况都变慢了。 相应惯性系中的观察者感觉不到任何变化。 3、当u<<c时, 1 2 1 T T0 时间是绝对的即经典 时空观结果
l 0 l
l
l0

(1)某飞行器以u=1000m/s的速度匀速飞行,飞行器中的观察者 测得机身长20m,则地球上的观察者测得的机身长度为:
l l0 1 u2 c2 20 1 10002 ( 3 108 )2
1010 m 20 1 0.1
m 20 0.9999999999 4
所以:Twin effect 而非Twin Paradox
♀试试看:有加速度的那个人变年轻了。按此道理,若人相对地 面多作加速运动, 生命过程将进行得缓慢一些, 不易 衰老, 对 身体会有好处。
例2、宇宙射线中有μ 子,,其速率v=0.998c,其固 有寿命τ =2╳10-6 s. 求地面上测量,μ 子衰变前走过 的距离。 解:地面上测量的为膨胀时,由已知数据有
l l l 0.79m
相关文档
最新文档