2017南宁数学中考模拟试卷及答案(2)

合集下载

最新2017年中考数学模拟试卷(含答案)

最新2017年中考数学模拟试卷(含答案)

最新2017年中考数学模拟试卷(含答案)时间120分钟满分150分 2017.2.20 一、选择题(每小题3分,共21分)1.的倒数是()A.﹣2 B.2 C.D.2.下列运算正确的是()A.B. C.D.3.一元一次不等式x+1≥2的解在数轴上表示为()A.B.C.D.4.由4个相同小立方体搭成的几何体如图所示,则它的俯视图是()A.B.C. D.5.某大学生对新一代无人机的续航时间进行7次测试,一次性飞行时间(单位:分钟)分别为20、22、21、26、25、22、25.则这7次测试续航时间的中位数是()A.22或25 B.25 C.22 D.216.顺次连结菱形四边中点所得的四边形一定是()A.正方形B.矩形C.菱形D.等腰梯形7.反比例函数图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1二、填空题(每小题3分,共30分)8.计算:a2•a4= .9.分解因式:x2﹣9= .10.计算: = .11.经济日报5月8日讯,4月份我国外贸出口延续正增长态势,进出口总值195 000 000万元.请将“195 000 000”这个数据用科学记数法表示:.12.如图,将三角尺的直角顶点放在矩形的一边上,∠1=130°,则∠2= °.13.一个正多边形的每个外角都是36°,这个正多边形的边数是.14.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则cos∠A= .15.如图,在⊙O中,点C是AB的中点,AB=4cm,OC=1cm,则OB的长是cm.16.在平面直角坐标系中,将抛物线y=x2先向右平移4个单位,再向上平移3个单位,得到抛物线L,则抛物线L的解析式为.17.如图,在△ABC中,AB=AC,∠BAC=50 .分别以B、C为圆心,BC长为半径画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD.则①∠DAE= 度;②若BC=9,与的长度之和为.三、解答题(共89分)18.计算:.19.先化简,再求值:(x+2)2﹣x(x+3),其中x=﹣2.20.如图,AF与BE相交于点C,AB∥EF,AB=EF.求证:AC=CF.21.一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.22.如图,二次函数y=x2﹣4x+3+的图象的对称轴交x轴于A点.(1)请写出OA的长度;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否在该函数的图象上?23.随着科技的发展,电动汽车的性能得到显著提高.某市对市场上电动汽车的性能进行随机抽样调查,抽取部分电动汽车,记录其一次充电后行驶的里程数,并将抽查数据,绘制成如下两幅表和图. 组别行驶的里程x (千米) 频数(台) 频率Ax <20018 0.15 B200≤x <210 36 a C210≤x <220 30 D220≤x <230 b E x ≥23012 0.10 合计 c 1.00 根据以上信息回答下列问题:(1)a= ,b= ,c= ;(2)请将条形统计图补充完整;(3)若该市市场上的电动汽车有2000台,请你估计电动汽车一次充电后行驶的里程数在220千米及以上的台数.24.屈原食品公司接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只5元.为按时完成任务,该企业招收了新工人,设新工人小明第x天生产的粽子数量为n只,n与x满足如下关系式:.(1)小明第几天生产的粽子数量为390只?(2)设第x天每只粽子的成本是y元,y与x之间的关系的函数图象如图所示.若小明第x天的净利润为w元,试求w与x之间的函数表达式,并求出第几天的净利润最大?最大值是多少元?(提示:净利润=出厂价﹣成本)25.阅读理解:如图1,点P ,Q 是双曲线上不同的两点,过点P ,Q 分别作PB ⊥y 轴于B 点、QA ⊥x 轴于A 点,两垂线的交点为E 点,则有=,请利用这一性质解决问题.问题解决:(1)如图1,如果QE=6,AQ=3,BP=4.填空:PE= ;(2)如图2,点A ,B 是双曲线y=上不同的两点,直线AB 与x 轴、y 轴相交于点C ,D :①求证:AC=BD .②已知:直线AB 的关系为y=﹣x+2,CD=4AB .试求出k 的值.26.如图,在平面直角坐标系中,以OC为直径的圆交y轴于点D,∠DOC=30°,OC=2.延长DC至点B,使得CB=4DC,过B点作BA∥OC交x轴于A点.(1)请求出BC的长度;(2)若P点与B点是关于直线AC的对称点,试求出点P的坐标;(3)若点M、N分别为CB、AB上的动点,P点与B点是关于直线MN的对称点,过点P作x轴的平行线,与AC、OC分别交于点E、F.若PE﹕PF=1:3,点P的横坐标为m.请求出点P的纵坐标,并直接写出m的取值范围.参考答案与试题解析一、选择题1.故选:A.2故选:B.3.故选A.4.故选:D.5.故选:C.6.故选B.7.故选C.二、填空题8.a6.9.(x+3)(x﹣3).10. 1 .11. 1.95×108.12.50 °.13.10 .14..15.cm.16.y=(x﹣4)2+3 .17.故答案为:25;故答案为:π.三、解答题(共89分)18.计算:.【考点】实数的运算;零指数幂;负整数指数幂.【分析】分别进行绝对值的化简、零指数幂、二次根式的除法、负整数指数幂的运算,然后合并求解.【解答】解:原式=2﹣+1+﹣2=1.【点评】本题考查了实数的运算,涉及了绝对值的化简、零指数幂、二次根式的除法、负整数指数幂等知识,解答本题的关键是掌握各知识点的运算法则.19.先化简,再求值:(x+2)2﹣x(x+3),其中x=﹣2.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2+4x+4﹣x2﹣3x=x+4,当x=﹣2时,原式=﹣2+4=2.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.如图,AF与BE相交于点C,AB∥EF,AB=EF.求证:AC=CF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由AB∥EF,得到∠A=∠F,∠B=∠E,通过证明三角形全等得到对应边相等.【解答】证明:∵AB∥EF,∴∠A=∠F,∠B=∠E,在△ABC和△FEC中,,∴△ABC≌△FEC(ASA),∴AC=CF.【点评】本题考查了全等三角形的判定与性质,平行线的性质,找准对应边和对应角是解题的关键.21.一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)根据4个小球中红球的个数,即可确定出从中任意摸出1个球,恰好摸到红球的概率;(2)列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.【解答】解:(1)4个小球中有2个红球,则任意摸出1个球,恰好摸到红球的概率是;故答案为:;(2)列表如下:红红白黑红﹣﹣﹣(红,红)(白,红)(黑,红)红(红,红)﹣﹣﹣(白,红)(黑,红)白(红,白)(红,白)﹣﹣﹣(黑,白)黑(红,黑)(红,黑)(白,黑)﹣﹣﹣所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P(两次摸到红球)==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.如图,二次函数y=x2﹣4x+3+的图象的对称轴交x轴于A点.(1)请写出OA的长度;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否在该函数的图象上?【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】(1)先依据抛物线的对称轴方程求得抛物线的对称轴,从而可得到点A的坐标,从而可求得OA的长;(2)依据旋转的性质和特殊锐角三角函数值可求得点A′的坐标,然后将点A′的坐标代入抛物线的解析式进行判断即可.【解答】解:(1)∵x=﹣=﹣=2,∴A(2,0).∴OA=2.(2)如图所示:过A′作A′B⊥OA,垂足为B.由旋转的性质可知:OA′=OA=2.∵∠A′OA=60°,A′B⊥OA,∴OB=1,A′B=∴A′(1,).∵将x=1时,y=12﹣4+3+=,∴A′在该函数的图象上.【点评】本题主要考查的是二次函数的图象与几何变形,解答本题主要应用了二次函数的对称轴方程、旋转的性质,求得点A′的坐标是解题的关键.23.随着科技的发展,电动汽车的性能得到显著提高.某市对市场上电动汽车的性能进行随机抽样调查,抽取部分电动汽车,记录其一次充电后行驶的里程数,并将抽查数据,绘制成如下两幅表和图.组别行驶的里程x(千米)频数(台)频率A x<200 18 0.15B 200≤x<210 36 aC 210≤x<220 30D 220≤x<230 bE x≥230 12 0.10合计 c 1.00根据以上信息回答下列问题:(1)a= 0.3 ,b= 24 ,c= 120 ;(2)请将条形统计图补充完整;(3)若该市市场上的电动汽车有2000台,请你估计电动汽车一次充电后行驶的里程数在220千米及以上的台数.【考点】条形统计图;用样本估计总体;频数(率)分布表.【分析】(1)由A组的频数、频率可得总数c,再依据频率=可求得a,根据频数之和等于总数可求得b;(2)由(1)知D组数量,补全图形即可;(3)用样本中行驶的里程数在220千米及以上的台数(即D、E两组频数之和)所占比例乘以总数2000可得.【解答】解:(1)本次调查的总台数c=18÷0.15=120,a=36÷120=0.3,b=120﹣18﹣36﹣30﹣12=24,故答案为:0.3,24,120.(2)由(1)知,D组的人数为24人,补全条形图如图:(3)×2000=600(台),答:估计电动汽车一次充电后行驶的里程数在220千米及以上的约有600台.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.屈原食品公司接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只5元.为按时完成任务,该企业招收了新工人,设新工人小明第x天生产的粽子数量为n只,n与x满足如下关系式:.(1)小明第几天生产的粽子数量为390只?(2)设第x天每只粽子的成本是y元,y与x之间的关系的函数图象如图所示.若小明第x天的净利润为w元,试求w与x之间的函数表达式,并求出第几天的净利润最大?最大值是多少元?(提示:净利润=出厂价﹣成本)【考点】二次函数的应用.【分析】(1)把n=390代入n=30x+90,解方程即可求得;(2)根据图象求得成本y与x之间的关系,然后根据:净利润=(出厂价﹣成本价)×销售量,结合x的范围整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答.【解答】解:(1)∵45×5=225<390,∴30x+90=390,解得:x=6,答:小明第6天生产的粽子数量为390只;(2)由图象可知,当0≤x≤9时,y=3.4;当9<x≤15时,设y=kx+b,将(9,3.4)、(15,4)代入,得:,解得:,∴y=0.1x+2.5;①当0≤x≤5时,w=(5﹣3.4)×45x=72x,∵w随x的增大而增大,∴当x=5时,w取得最大值,w最大=360元;②当5<x≤9时,w=(5﹣3.4)(30x+90)=48x+144,∵w随x的增大而增大,∴当x=9时,w取得最大值,w最大=576元;③当9<x≤15时,w=[5﹣(0.1x+2.5)](30x+90)=﹣3x2+66x﹣225=﹣3(x﹣11)2+138,∴当x=11时,w取得最大值,w最大=138元;综上,当x=9时,w取得最大值,w最大=576元,答:第9天的净利润最大,最大值是576元.【点评】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.25.阅读理解:如图1,点P ,Q 是双曲线上不同的两点,过点P ,Q 分别作PB ⊥y 轴于B 点、QA ⊥x 轴于A 点,两垂线的交点为E 点,则有=,请利用这一性质解决问题.问题解决:(1)如图1,如果QE=6,AQ=3,BP=4.填空:PE= 8 ;(2)如图2,点A ,B 是双曲线y=上不同的两点,直线AB 与x 轴、y 轴相交于点C ,D :①求证:AC=BD .②已知:直线AB 的关系为y=﹣x+2,CD=4AB .试求出k 的值.【考点】反比例函数综合题.【分析】(1)根据给定比例=,将QE=6、AQ=3、BP=4代入其中即可求出PE 的值;(2)①过点A 作y 轴的垂线交y 轴于点E ,过点B 作x 轴的垂线交x 轴于点F,延长EA、FB交于点M,由ME⊥y轴、MF⊥x轴,即可得出△CAE∽△BAM∽△BDF,根据相似三角形的性质即可得出、,再结合即可得出,由此即可证出AC=BD;②分别将x=0、y=0代入一次函数解析式中即可求出点C、D的坐标,由AE ⊥y轴可得出△ACE∽△DCO,再根据相似三角形的性质结合CD=4AB,即可求出点A的坐标,利用反比例函数图象上点的坐标特征即可求出k值.【解答】(1)解:∵ =,QE=6,AQ=3,BP=4,∴PE===8.故答案为:8.(2)①证明:过点A作y轴的垂线交y轴于点E,过点B作x轴的垂线交x轴于点F,延长EA、FB交于点M,如图3所示.∵ME⊥y轴,MF⊥x轴,∴△CAE∽△BAM∽△BDF,∴,,∵,∴,∴AC=BD.证毕.②当x=0时,y=2,∴点C(0,2);当y=0时,有﹣x+2=0,解得:x=2,∴点D(2,0).∵CD=4AB,AC=BD,∴==.∵AE⊥y轴,∴AE∥DO,∴△ACE∽△DCO,∴=,∵CO=2,OD=2,∴CE=EA=,∴点A的坐标为(,).∵点A在双曲线y=上,∴×=k=.【点评】本题考查了相似三角形的判定与性质以及反比例函数图象上点的坐标特征,根据相似三角形的性质找出线段与线段之间的关系是解题的关键.26.如图,在平面直角坐标系中,以OC为直径的圆交y轴于点D,∠DOC=30°,OC=2.延长DC至点B,使得CB=4DC,过B点作BA∥OC交x轴于A点.(1)请求出BC的长度;(2)若P点与B点是关于直线AC的对称点,试求出点P的坐标;(3)若点M、N分别为CB、AB上的动点,P点与B点是关于直线MN的对称点,过点P作x轴的平行线,与AC、OC分别交于点E、F.若PE﹕PF=1:3,点P的横坐标为m.请求出点P的纵坐标,并直接写出m的取值范围.【考点】圆的综合题.【分析】(1)根据圆周角定理可知∠ODC是直角,所以可求得CD的长为1,利用CB=4DC可知,CB的长度为4;(2)根据(1)可知OA=4,OC,∠COA=60°,所以易证△OCA∽△CDO,可知∠OCA=90°,又易知四边形AOCB是平行四边形,所以∠CAB=90°,所以点P一定在BA的延长线上;(3)由题意知:P与B关于MN,所以m的范围是2≤m≤5,求出直线AC和OC的解析式后,设P的纵坐标为a,然后将y=a分别代入直线AC和OC解析式中,求出E、F的横坐标,然后利用PF=3PE,列出关于a的方程,然后解出a即可得出M的纵坐标.【解答】(1)由题意知:OC是直径,∴∠ODC=90°,∵∠DOC=30°,∴DC=OC=1,∴BC=4DC=4;(2)连接AC,由(1)可知:∠ODC=90°∴CD∥OA,∵BA∥OC,∴四边形AOCB是平行四边形,∴OA=BC=4,∵∠COD=30°,∴∠COA=∠OCD=60°,∵,∴△OCA∽△CDO,∴∠OCA=90°,在BA的延长线上截取AP=AB,过点P作PG⊥x轴于点G,∴AP=2,∠OAP=60°,∴AG=1,PG=,∴OG=OA﹣AG=3,∴P(3,﹣);(3)由题意知:当M与C重合,N在AB上移动时,m的范围是3≤m≤5,当N与A重合,M在CB上移动时,m的范围是2≤m≤5,∴点P与B关于MN对称时,2≤m≤5,由(1)可知,点C的坐标为(1,),点A的坐标为(4,0),设直线AC的解析式为:y=kx+b,把A(4,0)和C(1,)代入y=kx+b,得:,∴,∴直线AC的解析式为:y=﹣x+,设直线OC的解析式为:y=mx,把C(1,)代入y=mx,∴m=,∴直线OC的解析式为:y=x,设P的纵坐标为a,∴P的坐标为(m,a)∵PF∥x轴,∴E、F的纵坐标为a,令y=a代入y=﹣x+,∴x=4﹣a,∴E(4﹣a,a),令y=a代入y=x,∴x=a,∴F(a,a),如图1,当点P在AC的右侧时,∴PE=m﹣(4﹣a)=m﹣4+a,PF=m﹣a,∵PF=3PE,∴m﹣a=3(m﹣4+a),∴a=,如图2,当点P在EF之间时,此时,PE=4﹣a﹣m,PF=m﹣a,∵PF=3PE,∴m﹣a=3(4﹣a﹣m),∴a=(3﹣m),综上所述,P的纵坐标为或(3﹣m),m的范围是:2≤m≤5.【点评】本题考查圆的综合题目,涉及圆周角定理,轴对称的性质,相似三角形的性质和判定,题目较为综合,需要学生灵活运用所学知识进行解答.。

2017年中考数学模拟试卷及参考答案与评分标准.docx

2017年中考数学模拟试卷及参考答案与评分标准.docx

2017年中考数学模拟试卷及参考答案与评分标准(三)考生须知:1. 本科目试卷分试题卷和答题卷两部分.满分120分,考试时间100分钟.2. 答题前,必须在答题卷的密封区内填写姓名与准考证号.3. 所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4. 考试结束后,只需上交答题卷.一、仔细选一选(本题有10个小题,每小题3分,共30分)F 面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在 答题卷中相应的格子内•注意可以用多种不同的方法来选取正确答案.1. LA 知x=-2是方程2x-3a=2的根,那么a 的值是()3. 如图,侮个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中厶ABC4.若每人每天浪费水0.32L,那么100万人每天浪费的水,用科学记数法表示为( )A. 3.2X107LB. 3.2X106LC. 3.2xl05LD. 3.2xl04Z5.己知\2x ^3y~4kf,且一iv 兀一尹vo,则£的取值范围为()3兀+ 2卩=2比+ 1 A.—B. 0 < k <—C. 0 < Zr < 1D. — < k <\2 2 26. 已知圆锥的底面半径为6cm,高为8cm,则圆锥的侧面积为()B. a =~2 、2C. — 3 2D. a 二——2•己知点M (l-a, a+3)在第二象限, 则a 的取值范I 韦|是()A. a>-2B. -2<a<lC. a<-2D. a>l9相似的是 )D.A. 36兀endB. 48兀cm'C. 60兀D. S07Tcm27•如图所示实数a, b在数轴上的位置,以下四个命题中是假命题的是()A. ci ,一ab 2< 0 B. J(a + bf =d + b1 12 ,2 C. ------ v — D ・ a V b a — h a&如图,OP 内含于G)O, 0 0的弦/〃切0卩于点(?,且AB HOP .若阴影部分的面积为9龙,则弦AB 的长为()A. 3B. 4C. 6D. 9sin 225° = sin (l 80° + 45°) = - sin 45°,由此猜想、推理知:一般地当。

2017年广西南宁市北海市钦州市中考数学试卷和答案解析

2017年广西南宁市北海市钦州市中考数学试卷和答案解析

2017年广西南宁市、北海市、钦州市中考数学试卷 一、选择题(本大题共12小题,每小题3分,共36分)1.如图,△ABC中,∠A=60°,∠B=40°,则∠C等于( )A.100°B.80°C.60°D.40°2.在下列几何体中,三视图都是圆的为( )A.B.C.D.3.根据习近平总书记在“一带一路”国际合作高峰论坛开幕式上的演讲,中国将在未来3年向参与“一带一路”建设的发展中国家和国际组织提供60000000000元人民币援助,建设更多民生项目,其中数据60 000 000 000用科学记数法表示为( )A.0.6×1010B.0.6×1011C.6×1010D.6×10114.下列运算正确的是( )•2=﹣12x4A.﹣3(x﹣4)=﹣3x+12B.(﹣3x)24xC.3x+2x2=5x3D.x6÷x2=x35.一元一次不等式组的解集在数轴上表示为( )A.B.C.D.6.今年世界环境日,某校组织的保护环境为主题的演讲比赛,参加决赛的6名选手成绩(单位:分)如下:8.5,8.8,9.4,9.0,8.8,9.5,这6名选手成绩的众数和中位数分别是( )A.8.8分,8.8分B.9.5分,8.9分C.8.8分,8.9分D.9.5分,9.0分7.如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC8.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( )A.B.C.D.9.如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长等于()A.B.C.D.10.一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为vkm/h,则可列方程为( )A. =B. =C. =D. =11.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为( )A.60 n mile B.60 n mile C.30 n mile D.30 n mile 12.如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y=(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C,D,过点B作E F∥x轴分别与y轴和抛物线C1交于点E,F,则的值为( )A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.计算:|﹣6|= .14.红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有 人.15.已知是方程组的解,则3a﹣b= .16.如图,菱形ABCD的对角线相交于点O,AC=2,BD=2,将菱形按如图方式折叠,使点B与点O重合,折痕为E F,则五边形AE F CD的周长为 .17.对于函数y=,当函数值y<﹣1时,自变量x的取值范围是 .18.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…则正方形铁片连续旋转2017次后,点P的坐标为 .三、解答题(本大题共8小题,共66分)19.计算:﹣(﹣2)+﹣2s in45°+(﹣1)3.20.先化简,再求值:1﹣÷,其中x=﹣1.21.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数解析式.22.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=D F.(1)求证:AE=C F;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.23.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了 名市民,扇形统计图中,C组对应的扇形圆心角是 °;(2)请补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.24.为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?25.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作E G∥AC交CD的延长线于点G,连结AE交CD于点F,且E G=FG,连结CE.(1)求证:△EC F∽△G CE;(2)求证:E G是⊙O的切线;(3)延长AB交G E的延长线于点M,若ta n G=,A H=3,求E M的值.26.如图,已知抛物线y=a x2﹣2a x﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时, +均为定值,并求出该定值.2017年广西南宁市、北海市、钦州市、防城港市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.如图,△ABC中,∠A=60°,∠B=40°,则∠C等于( )A.100°B.80°C.60°D.40°【考点】K7:三角形内角和定理.【分析】根据三角形内角和定理计算即可.【解答】解:由三角形内角和定理得,∠C=180°﹣∠A﹣∠B=80°,故选:B.2.在下列几何体中,三视图都是圆的为( )A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据常见几何体的三视图,可得答案.【解答】解:A圆锥的主视图是三角形,左视图是三角形,俯视图是圆,故A不符合题意;B、圆柱的主视图是矩形,左视图是矩形,俯视图是圆,故B不符合题意;C、圆锥的主视图是梯形,左视图是梯形,俯视图是同心圆,故C不符合题意;D、球的三视图都是圆,故D符合题意;故选:D.3.根据习近平总书记在“一带一路”国际合作高峰论坛开幕式上的演讲,中国将在未来3年向参与“一带一路”建设的发展中国家和国际组织提供60000000000元人民币援助,建设更多民生项目,其中数据60 000 000 000用科学记数法表示为( )A.0.6×1010B.0.6×1011C.6×1010D.6×1011【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将60000000000用科学记数法表示为:6×1010.故选:C.4.下列运算正确的是( )•2=﹣12x4A.﹣3(x﹣4)=﹣3x+12B.(﹣3x)24xC.3x+2x2=5x3D.x6÷x2=x3【考点】4I:整式的混合运算.【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:∵﹣3(x﹣4)=﹣3x+12,故选项A正确,•2=9x24x•2=36x4,故选项B错误,∵(﹣3x)24x∵3x+2x2不能合并,故选项C错误,∵x6÷x2=x4,故选项D错误,故选A.5.一元一次不等式组的解集在数轴上表示为( )A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】根据不等式解集的表示方法即可判断.【解答】解:解不等式①得:x>﹣1,解不等式②得:x≤2,∴不等式组的解集是﹣1<x≤2,表示在数轴上,如图所示:.故选A.6.今年世界环境日,某校组织的保护环境为主题的演讲比赛,参加决赛的6名选手成绩(单位:分)如下:8.5,8.8,9.4,9.0,8.8,9.5,这6名选手成绩的众数和中位数分别是( )A.8.8分,8.8分B.9.5分,8.9分C.8.8分,8.9分D.9.5分,9.0分【考点】W5:众数;W4:中位数.【分析】分别根据众数的定义及中位数的定义求解即可.【解答】解:由题中的数据可知,8.8出现的次数最多,所以众数为8.8;从小到大排列:8.5,8.8,8.8,9.0,9.4,9.5,故可得中位数是=8.9.故选C.7.如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC【考点】N3:作图—复杂作图;J B:平行线的判定与性质;K8:三角形的外角性质.【分析】根据图中尺规作图的痕迹,可得∠DAE=∠B,进而判定AE∥BC,再根据平行线的性质即可得出结论.【解答】解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,∴AE∥BC,故C选项正确,∴∠EAC=∠C,故B选项正确,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,故选:D.8.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( )A.B.C.D.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号之和等于5的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于5的有4种情况,∴两次摸出的小球标号之和等于5的概率是: =.故选:C.9.如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长等于()A.B.C.D.【考点】MN:弧长的计算;M5:圆周角定理.【分析】连接OB、OC,利用圆周角定理求得∠BOC=60°,属于利用弧长公式l=来计算劣弧的长.【解答】解:如图,连接OB、OC,∵∠BAC=30°,∴∠BOC=2∠BAC=60°,又OB=OC,∴△OBC是等边三角形,∴BC=OB=OC=2,∴劣弧的长为: =.故选:A.10.一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为vkm/h,则可列方程为( )A. =B. =C. =D. =【考点】B6:由实际问题抽象出分式方程.【分析】根据题意可得顺水速度为(35+v)km/h,逆水速度为(35﹣v)km/h,根据题意可得等量关系:以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等,根据等量关系列出方程即可.【解答】解:设江水的流速为vkm/h,根据题意得: =,故选:D.11.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为( )A.60 n mile B.60 n mile C.30 n mile D.30 n mile 【考点】T B:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【分析】如图作PE⊥AB于E.在RT△PAE中,求出PE,在Rt△PBE中,根据PB=2PE即可解决问题.【解答】解:如图作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=60n mile,∴PE=AE=×60=30n mile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=60n mile,故选B12.如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y=(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C,D,过点B作E F∥x轴分别与y轴和抛物线C1交于点E,F,则的值为( )A.B.C.D.【考点】H5:二次函数图象上点的坐标特征.【分析】可以设A、B横坐标为a,易求得点E、F、D的坐标,即可求得OE、CE、AD、B F的长度,即可解题.【解答】解:设点A、B横坐标为a,则点A纵坐标为a2,点B的纵坐标为,∵BE∥x轴,∴点F纵坐标为,∵点F是抛物线y=x2上的点,∴点F横坐标为x==,∵CD∥x轴,∴点D纵坐标为a2,∵点D是抛物线y=上的点,∴点D横坐标为x==2a,∴AD=a,B F=a,CE=a2,OE=a2,∴则==×=,故选 D.二、填空题(本大题共6小题,每小题3分,共18分)13.计算:|﹣6|= 6 .【考点】15:绝对值.【分析】根据绝对值的化简,由﹣6<0,可得|﹣6|=﹣(﹣6)=6,即得答案.【解答】解:﹣6<0,则|﹣6|=﹣(﹣6)=6,故答案为6.14.红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有 680 人.【考点】V5:用样本估计总体.【分析】用样本中最喜欢的项目是跳绳的人数所占比例乘以全校总人数即可得.【解答】解:由于样本中最喜欢的项目是跳绳的人数所占比例为,∴估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有1600×=680,故答案为:680.15.已知是方程组的解,则3a﹣b= 5 .【考点】97:二元一次方程组的解.【分析】首先把方程组的解代入方程组,即可得到一个关于a,b的方程组,①+②即可求得代数式的值.【解答】解:∵是方程组的解,∴,①+②得,3a﹣b=5,故答案为:5.16.如图,菱形ABCD的对角线相交于点O,AC=2,BD=2,将菱形按如图方式折叠,使点B与点O重合,折痕为E F,则五边形AE F CD的周长为 7 .【考点】PB:翻折变换(折叠问题);L8:菱形的性质.【分析】根据菱形的性质得到∠ABO=∠CBO,AC⊥BD,得到∠ABC=60°,由折叠的性质得到E F⊥BO,OE=BE,∠BE F=∠OE F,推出△BE F是等边三角形,得到∠BE F=60°,得到△AEO是等边三角形,推出E F是△ABC的中位线,求得E F= AC=1,AE=OE=1,同理C F=O F=1,于是得到结论.【解答】解:∵四边形ABCD是菱形,AC=2,BD=2,∴∠ABO=∠CBO,AC⊥BD,∵AO=1,BO=,∴ta n∠ABO==,∴∠ABO=30°,AB=2,∴∠ABC=60°,由折叠的性质得,E F⊥BO,OE=BE,∠BE F=∠OE F,∴BE=B F,E F∥AC,∴△BE F是等边三角形,∴∠BE F=60°,∴∠OE F=60°,∴∠AEO=60°,∴△AEO是等边三角形,∴AE=OE,∴BE=AE,∴E F是△ABC的中位线,∴E F=AC=1,AE=OE=1,同理C F=O F=1,∴五边形AE F CD的周长为=1+1+1+2+2=7.故答案为:7.17.对于函数y=,当函数值y<﹣1时,自变量x的取值范围是 ﹣ 2< x< 0.【考点】G4:反比例函数的性质.【分析】先求出y=﹣1时x的值,再由反比例函数的性质即可得出结论.【解答】解:∵当y=﹣1时,x=﹣2,∴当函数值y<﹣1时,﹣2<x<0.故答案为:﹣2<x<0.18.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…则正方形铁片连续旋转2017次后,点P的坐标为 .【考点】R7:坐标与图形变化﹣旋转;D2:规律型:点的坐标.【分析】首先求出P1~P5的坐标,探究规律后,利用规律解决问题.【解答】解:第一次P1(5,2),第二次P2(5,1),第三次P3(7,1),第四次P4(10,2),第五次P5(14,2),…发现点P的位置4次一个循环,∵2017÷4=504余1,P2017的纵坐标与P1相同为1,横坐标为5+3×504=1517,∴P2017,故答案为.三、解答题(本大题共8小题,共66分)19.计算:﹣(﹣2)+﹣2s in45°+(﹣1)3.【考点】2C:实数的运算;T5:特殊角的三角函数值.【分析】首先利用二次根式的性质以及特殊角的三角函数值分别化简得出答案.【解答】解:原式=2+2﹣2×﹣1=1+.20.先化简,再求值:1﹣÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:1﹣÷=1﹣=1﹣==,当x=﹣1时,原式=.21.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数解析式.【考点】P7:作图﹣轴对称变换;F A:待定系数法求一次函数解析式;Q4:作图﹣平移变换.【分析】(1)根据图形平移的性质画出△A1B1C1并写出点B1的坐标即可;(2)连接AA2,作线段AA2的垂线l,再作△ABC关于直线l对称的△A2B2C2即可.【解答】解:(1)如图,△A1B1C1即为所求,B1(﹣2,﹣1);(2)如图,△A2B2C2即为所求,直线l的函数解析式为y=﹣x.22.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=D F.(1)求证:AE=C F;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.【考点】L B:矩形的性质;K D:全等三角形的判定与性质.【分析】(1)由矩形的性质得出OA=OC,OB=OD,AC=BD,∠ABC=90°,证出OE=O F,由S A S证明△AOE≌△CO F,即可得出AE=C F;(2)证出△AOB是等边三角形,得出OA=AB=6,AC=2OA=12,在Rt△ABC中,由勾股定理求出BC==6,即可得出矩形ABCD的面积.【解答】(1)证明:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∠ABC=90°,∵BE=D F,∴OE=O F,在△AOE和△CO F中,,∴△AOE≌△CO F(S A S),∴AE=C F;(2)解:∵OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=∠COD=60°,∴△AOB是等边三角形,∴OA=AB=6,∴AC=2OA=12,在Rt△ABC中,BC==6,•=36.∴矩形ABCD的面积=AB BC=6×623.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了 2000 名市民,扇形统计图中,C组对应的扇形圆心角是 108 °;(2)请补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.【考点】X6:列表法与树状图法;V B:扇形统计图;V C:条形统计图.【分析】(1)根据B组的人数以及百分比,即可得到被调查的人数,进而得出C组的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)根据C组的人数,补全条形统计图;(3)根据甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率【解答】解:(1)被调查的人数为:800÷40%=2000(人),C组的人数为:2000﹣100﹣800﹣200﹣300=600(人),∴C组对应的扇形圆心角度数为:×360°=108°,故答案为:2000,108;(2)条形统计图如下:(3)画树状图得:∵共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,∴甲、乙两人选择同一种交通工具上班的概率为: =.24.为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?【考点】AD:一元二次方程的应用;C9:一元一次不等式的应用.【分析】(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7500(1+x)2本,即可列方程求解;(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a的值至少是多少.【解答】解:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得7500(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去)答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800(1+0.2)=12960(本)10800÷1350=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.5%.故a的值至少是12.5.25.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作E G∥AC交CD的延长线于点G,连结AE交CD于点F,且E G=FG,连结CE.(1)求证:△EC F∽△G CE;(2)求证:E G是⊙O的切线;(3)延长AB交G E的延长线于点M,若ta n G=,A H=3,求E M的值.【考点】MR:圆的综合题.【分析】(1)由AC∥E G,推出∠G=∠AC G,由AB⊥CD推出=,推出∠CE F=∠ACD,推出∠G=∠CE F,由此即可证明;(2)欲证明E G是⊙O的切线只要证明E G⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OC H中,利用勾股定理求出r,证明△A H C∽△M EO,可得=,由此即可解决问题;【解答】(1)证明:如图1中,∵AC∥E G,∴∠G=∠AC G,∵AB⊥CD,∴=,∴∠CE F=∠ACD,∴∠G=∠CE F,∵∠EC F=∠EC G,∴△EC F∽△G CE.(2)证明:如图2中,连接OE,∵GF=G E,∴∠GF E=∠G E F=∠A FH,∵OA=OE,∴∠OAE=∠OEA,∵∠A FH+∠F A H=90°,∴∠G E F+∠AEO=90°,∴∠G EO=90°,∴G E⊥OE,∴E G是⊙O的切线.(3)解:如图3中,连接OC.设⊙O的半径为r.在Rt△A H C中,ta n∠AC H=ta n∠G==,∵A H=3,∴H C=4,在Rt△H OC中,∵OC=r,O H=r﹣3,H C=4,∴(r﹣3)2+(4)2=r2,∴r=,∵GM∥AC,∴∠CA H=∠M,∵∠OE M=∠A H C,∴△A H C∽△M EO,∴=,∴=,∴E M=.26.如图,已知抛物线y=a x2﹣2a x﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时, +均为定值,并求出该定值.【考点】HF:二次函数综合题.【分析】(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D 的坐标.设点P的坐标为(,a).依据两点的距离公式可求得AD、AP、DP的长,然后分为AD=PA、AD=DP、AP=DP三种情况列方程求解即可;(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到A N的长,然后利用特殊锐角三角函数值可求得A M的长,最后将A M和A N的长代入化简即可.【解答】解:(1)∵C(0,3).∴﹣9a=3,解得:a=﹣.令y=0得:a x2﹣2 x﹣9a=0,∵a≠0,∴x2﹣2 x﹣9=0,解得:x=﹣或x=3.∴点A的坐标为(﹣,0),B(3,0).∴抛物线的对称轴为x=.(2)∵OA=,OC=3,∴ta n∠CAO=,∴∠CAO=60°.∵AE为∠BAC的平分线,∴∠DAO=30°.∴DO=AO=1.∴点D的坐标为(0,1)设点P的坐标为(,a).依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.当AD=PA时,4=12+a2,方程无解.当AD=DP时,4=3+(a﹣1)2,解得a=2或a=0,∴点P的坐标为(,2)或(,0).当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4.∴点P的坐标为(,﹣4).综上所述,点P的坐标为(,2)或(,0)或(,﹣4).(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:﹣ m+3=0,解得:m=,∴直线AC的解析式为y=x+3.设直线MN的解析式为y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=﹣,∴点N的坐标为(﹣,0).∴A N=﹣+=.将y=x+3与y=kx+1联立解得:x=.∴点M的横坐标为.过点M作MG⊥x轴,垂足为G.则A G=+.∵∠M A G=60°,∠A GM=90°,∴A M=2A G=+2=.∴+=+=+===. 。

2017中考模拟二(有答案)

2017中考模拟二(有答案)

中考模拟二一、选择题(共10小题,每小题3分, 共30分) 1.4的算术平方根是( ) A. BC .±2D .22.要使分式13x +有意义,则x 的取值应满足 ( ) A.x ≥3 B.x <-3 C.x ≠-3 D.x ≠3 3.下列计算结果为x 6的是 ( ) A. x ·x 6 B. (x 2)3 C.(2x 2)3 D. (x 3)4÷x 2 4. 掷一枚质地均匀的骰子,下列事件是不可能事件是( ) A .向上一面点数是奇数 B .向上一面点数是偶数 C .向上一面点数是大于6 D .向上一面点数是小于7 5. 计算21)a -(正确的是 ( )A.21a a -+B.221a a -+C.221a a --D.21a -6. 在平面直角坐标系中, 将点A (x , y )向左平移5个单位长度, 再向上平移3个单位长度后与点B (-3, 2)重合, 则点A 的坐标为( ) A.(3,1) B.(2,-1) C.(4,1) D.(3,2)7. 如图是由几个小立方块所搭几何体的俯视图, 小正方形中的数字表示在该位置的小立方块的个数,则其主视图可能是( )A.B.C. D.8. 在2017年体育中考中, 某班一学习小组8名学生的体育成绩如下表, 则这组学生的体育成绩的众数, 中位数、平均数依次是( ) A. 28 27.5 27.75 B. 27 27.5 27.75 C. 28 27 27.7 D. 27 28 27.75 9.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是( )A.222B.280C.286D.29211210. 已知抛物线m x m x y 2)2(21++-=、直线422-=x y ,若对于任意的x 的值,12y y ≥恒成立,则m 的值为( )A. 0B. 2C. -2D. -4二、填空题(共6小题, 每小题3分, 共18分) 11.计算: 计算 2-(-4)= . 12.计算:2211x x x -=--.13.如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能的随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是 14. 如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F,BG ⊥AE ,垂足为G ,BG=4,则△CEF的周长为 .15.如图,在△ABC 中,∠ACB=90°,AB=3AC ,分别以AB ,AC 为边向外作正方形ABDE 和正方形ACFG ,连结EG .则线段EG :BC=______.16. 如图,直角坐标系中,P 点坐标为(0,4),M 为线段OP 上(不含O 、P )一动点,以OM 为直径作⊙A ,PN 切⊙A 于N ,设PN -PM =m ,则m 的值的范围为:三、解答题(共8小题, 共72分, 应写出文字说明、证明过程或演算步骤) 17.(本题8分)解方程:11132x x x +-+=-.18.(本题8分)已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.19.(本题8分)创建“国家园林城市”,某校举行了以“爱我武汉”为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50≤x<100,并制作了频数分布直方图,如图.根据以上信息,解答下列问题:(1)请补全频数分布直方图;(2)若依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,则从成绩80≤x<90的选手中应抽多少人?(3)比赛共设一、二、三等奖,若只有25%的参赛同学能拿到一等奖,则一等奖的分数线是多少?20.(本题8分)某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如下:(1)共需租多少辆汽车?(2)给出最节省费用的租车方案21.(本题8分如图,△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于D 点,DE ⊥AC 于点E . (1)判断DE 与⊙O 的位置关系,并证明;(2)连接OE 交⊙O 于F ,连接DF ,若tan ∠EDF=,求cos ∠DEF 的值.22.(本题10分)已知反比例函数xy 4=. (1) 若该反比例函数的图象与直线y =kx +4(k ≠0)只有一个公共点,求k 的值; (2) 如图,反比例函数xy 4=的图象记为曲线C 1,将C 1向左平移2个单位长度,得曲线C 2:y=f(x),请在图中画出C 2,○1求C 2与y 轴的交点坐标,并写出f(x)>2时,x 的取值范围;○2若1≤x ≤4时,并直接写出C 1平移至C 2处所扫过的面积_________.23.(本题10分)正方形ABCD 边长为1,P 为BC 边上一动点. (1)如图1,当P 为DC 中点时,作BP 的垂直平分线交边AD 、BC 于M 、N ,过PN ,求tan ∠PNC ;CQ 的长;(3)请直接写出22PA PB的最大值_______. 24.(本题12分)已知, 如图m , n 是一元二次方程x 2+4x +3=0的两个实数根, 且│m │<│n │,抛物线y =x 2+bx +c 的图像经过点 A (m , 0 ) B ( 0 , n ) . (1) 求这个抛物线的解析式;(2) 点P 是线段BC 上的一个动点(点P 不与点B 和点C 重合), 过点P 作x 轴的垂线, 交抛物线于点M , 点Q 在直线BC 上, 距离点P 为2个单位长度, 设点P 的横坐标为t , PMQ 的面积为S , 求S 的取值范围;(3) 过点(1, 0)的直线l 交抛物线于M 、T 两点, 且点M 在第二象限, 点T 在y 轴右侧, 设MT 的中点为Q , 点N 在抛物线上, D 是抛物线的顶点,则以DM 为对角线的四边形DQMN 能否成为平行四边形? 若能, 请求出点N 的坐标, 若不能, 说明理由.。

2017年中考数学模拟试题及答案

2017年中考数学模拟试题及答案

2017年中考模拟试题数学试题卷本卷共六大题,24小题,共120分。

考试时间120分钟一、选择题(本大题共6小题,每小题3分,共18分)1、比-2013小1的数是()A、-2012B、2012C、-2014D、2014 2、如图,直线l1∥l2,∠1=40°,∠2=75°,则∠3=()A、70°B、65°C、60°D、55°3、从棱长为a的正方体零件的一角,挖去一个棱长为0.5a的小正方体,得到一个如图所示的零件,则这个零件的左视图是()A、B、C、D、4、某红外线遥控器发出的红外线波长为0.000 00094m,用科学计数法表示这个数是()A、9.4×10-7mB、9.4×107mC、9.4×10-8mD、9.4×108m5、下列计算正确的是()A、(2a-1)2=4a2-1B、3a6÷3a3=a2C、(-ab2) 4=-a4b6D、-2a+(2a-1)=-1 6、某县盛产枇杷,四星级枇杷的批发价比五星级枇杷的批发价每千克低4元。

某天,一位零售商分别用去240元,160元来购进四星级与五星级这两种枇杷,其中,四星级枇杷比五星级枇杷多购进10千克。

假设零售商当天购进四星级枇杷x千克,则列出关于x的方程为()A、240x+4=160x-10B、240x-4=160x-10C、240x-10 +4=160xD、240x-10 -4=160x二、填空题(本大题共8小题,每小题3分,共24分)7、因式分解:xy2-x=。

8、已知x=1是关于x的方程x2+x+2k=0的一个根,则它的另一个根是。

9、已知2x3y=13 ,则分式x-2yx+2y的值为。

10、如图,正五边形ABCDE,AF∥CD交BD的延长线于点F,则∠DFA=度。

11、已知x=5 -12 ,y=5 +12 ,则x2+xy+y2的值为。

新人教版2017年中考数学模拟试题及答案

新人教版2017年中考数学模拟试题及答案

2017年中考数学模拟试题一、选择题(共12小题,每小题3分,共36分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.有理数-3的相反数是 A.3. B.-3. C.31 D.31-. 2.函数2-=x y 中自变量x 的取值围是A.x ≥0.B.x ≥-2.C.x ≥2.D.x ≤-2.3.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是 A.x+1>0,x-3>0. B.x+1>0,3-x>0. C.x+1<0,x-3>0. D.x+1<0,3-x>0.4.下列事件中,为必然事件的是 A.购买一彩票,中奖.B.打开电视,正在播放广告.C.抛掷一枚硬币,正面向上.D.一个袋中只装有5个黑球,从中摸出一个球是黑球.5.若x 1,x 2是一元二次方程x 2+4x+3=0的两个根,则x 1x 2的值是 A.4. B.3. C.-4. D.-3.6.据报道,2011年全国普通高等学校招生计划约675万人.数6750000用科学计数法表示为A.675×104.B.67.5×105.C.6.75×106.D.0.675×107.7.如图,在梯形ABCD 中,AB ∥DC ,AD=DC=CB ,若∠ABD =25°,则∠BAD 的大小是 A.40°. B.45°. C.50°. D.60°.8.右图是某物体的直观图,它的俯视图是9.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形部有1个整点,边长为2的正方形部有1个整点,边长为3的正方形部有9个整点,…则边长为8的正方形部的整点的个数为 A.64. B.49. C.36. D.25.10.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为 A.12秒. B.16秒. C.20秒. D.24秒.11.为广泛开展健身活动,2010年红星中学投入维修场地、安装设施、购置器材及其它项目的资金共38万元.图1、图2分别反映的是2010年投入资金分配和2008年以来购置器材投入资金的年增长率的具体数据.根据以上信息,下列判断:① 在2010年总投入中购置器材的资金最多;② ②2009年购置器材投入资金比2010年购置器材投入资金多8%;③ ③若2011年购置器材投入资金的年增长率与2010年购置器材投入资金的年增长率相同,则2011年购置器材的投入是38×38%×(1+32%)万元. 其中正确判断的个数是A.0.B.1.C.2.D.3.12.如图,在菱形ABCD 中,AB=BD ,点E ,F 分别在AB ,AD 上,且AE=DF.连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H.下列结论: ①△AED ≌△DFB ; ②S四边形 B C D G =43 CG 2; ③若AF=2DF ,则BG=6GF.其中正确的结论 A. 只有①②. B.只有①③.C.只有②③. D.①②③.第Ⅱ卷(非选择题,共84分)二、填空题(共4小题,每小题3分,共12分).下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置. 13.sin30°的值为_____.14.某次数学测验中,五位同学的分数分别是:89,91,105,105,110.这组数据的中位数是_____,众数是_____,平均数是_____.15.一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间,容器的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示.关停进水管后,经过_____分钟,容器中的水恰好放完.16.如图,□ABCD 的顶点A ,B 的坐标分别是A (-1,0),B (0,-2),顶点C ,D在双曲线y=xk上,边AD 交y 轴于点E ,且四边形BCDE 的面积是△ABE 面积的5倍,则k=_____.三、解答题(共9小题,共72分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题满分6分)解方程:x 2+3x+1=0.18.(本题满分6分)先化简,再求值:)4(22xx x x x -÷-,其中x=3. 19.(本题满分6分)如图,D ,E ,分 别 是 AB ,AC 上 的 点 ,且AB=AC ,AD=AE.求证∠B=∠C.20.(本题满分7分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果; (2)求至少有一辆汽车向左转的概率.21.(本题满分7分)在平面直角坐标系中,△ABC 的顶点坐标是A (-7,1),B (1,1),C (1,7).线段DE 的端点坐标是D (7,-1),E (-1,-7).(1)试说明如何平移线段AC ,使其与线段ED 重合;(2)将△ABC 绕坐标原点O 逆时针旋转,使AC 的对应边为DE ,请直接写出点B 的对应点F 的坐标;(3)画出(2)中的△DEF ,并和△ABC 同时绕坐标原点O 逆时针旋转90°,画出旋转后的图形.22.(本题满分8分)如图,PA 为⊙O 的切线,A 为切点.过A 作OP 的垂线AB ,垂足为点C ,交⊙O 于点 B.延长BO 与⊙O 交于点D ,与PA 的延长线交于点E.(1)求证:PB 为⊙O 的切线; (2)若tan ∠ABE=21,求sinE 的值.23.(本题满分10分)星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米. (1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x 的取值围.24.(本题满分10分)(1)如图1,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且DE ∥BC ,AQ 交DE 于点P.求证:QCPEBQ DP . (2) 如图,在△ABC 中,∠BAC=90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG ,AF 分别交DE 于M ,N 两点.①如图2,若AB=AC=1,直接写出MN 的长;②如图3,求证MN 2=DM ·EN.25.(本题满分12分)如图1,抛物线y=ax 2+bx+3经过A (-3,0),B (-1,0)两点.(1)求抛物线的解析式;(2)设抛物线的顶点为M ,直线y=-2x+9与y 轴交于点C ,与直线OM 交于点D.现将抛物线平移,保持顶点在直线OD 上.若平移的抛物线与射线CD (含端点C )只有一个公共点,求它的顶点横坐标的值或取值围;(3)如图2,将抛物线平移,当顶点至原点时,过Q (0,3)作不平行于x 轴的直线交抛物线于E ,F 两点.问在y 轴的负半轴上是否存在点P ,使△PEF 的心在y 轴上.若存在,求出点P 的坐标;若不存在,请说明理由.2017年中考数学模拟试题答案一、选择题1.A2.C3.B4.D5.B6.C7.C8.A9.B 10.B 11.C 12.D 二、填空题 13.1/214.105;105;100 15.8 16.12三、解答题17.(本题6分)解:∵a=1,b=3,c=1∴△=b 2-4ac=9-4×1×1=5>0∴x=-3±25 ∴x 1=-3+25,x 2=-3-2518.(本题6分)解:原式=x(x-2)/x ÷(x+2)(x-2)/x=x(x-2)/x · x/(x+2)(x-2)=x/(x+2)∴当x=3时,原式=3/5 19.(本题6分)解:证明:在△ABE 和△ACD 中,AB =AC ∠A =∠A AE =AD ∴△ABE ≌△ACD ∴∠B=∠C20.(本题7分)解法1:(1)根据题意,可以画出如下的“树形图”:∴这两辆汽车行驶方向共有9种可能的结果(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等∴P (至少有一辆汽车向左转)=5/9解法2:根据题意,可以列出如下的表格:以下同解法1(略)21.(本题7分)(1)将线段AC 先向右平移6个单位,再向下平移8个单位.(其它平移方式也可) (2)F (-1,-1)(3)画出如图所示的正确图形22.(本题8分)(1)证明:连接OA ∵PA 为⊙O 的切线, ∴∠PAO=90°∵OA =OB ,OP ⊥AB 于C ∴BC =CA ,PB =PA ∴△PBO ≌△PAO∴∠PBO =∠PAO =90° ∴PB 为⊙O 的切线(2)解法1:连接AD ,∵BD 是直径,∠BAD =90° 由(1)知∠BCO =90° ∴AD ∥OP∴△ADE ∽△POE∴EA/EP =AD/OP 由AD ∥OC 得AD =2OC ∵tan ∠ABE=1/2∴OC/BC=1/2,设OC =t,则BC =2t,AD=2t 由△PBC ∽△BOC ,得PC =2BC =4t ,OP =5t ∴EA/EP=AD/OP=2/5,可设EA =2m,EP=5m,则PA=3m ∵PA=PB ∴PB=3m ∴sinE=PB/EP=3/5(2)解法2:连接AD ,则∠BAD =90°由(1)知∠BCO =90°∵由AD ∥OC ,∴AD左 直 右左 (左,左) (左,直) (左,右) 直 (直,左) (直,直) (直,右) 右 (右,左) (右,直) (右,右)=2OC ∵tan ∠ABE=1/2,∴OC/BC=1/2,设OC =t ,BC =2t ,AB=4t 由△PBC ∽△BOC ,得PC =2BC =4t ,∴PA =PB =25t 过A 作AF ⊥PB 于F ,则AF ·PB=AB ·PC∴AF=558t 进而由勾股定理得PF =556t ∴sinE=sin ∠FAP=PF/PA=3/523.(本题10分)解:(1)y=30-2x(6≤x<15)(2)设矩形苗圃园的面积为S 则S=xy=x(30-2x)=-2x 2+30x ∴S=-2(x-7.5)2+112.5由(1)知,6≤x<15∴当x=7.5时,S 最大值=112.5即当矩形苗圃园垂直于墙的边长为7.5米时,这个苗圃园的面积最大,最大值为112.5(3)6≤x ≤1124.(本题10分)(1)证明:在△ABQ 中,由于DP ∥BQ ,∴△ADP ∽△ABQ , ∴DP/BQ =AP/AQ. 同理在△ACQ 中,EP/CQ =AP/AQ. ∴DP/BQ =EP/CQ.(2)92 9.(3)证明:∵∠B+∠C=90°,∠CEF+∠C=90°.∴∠B=∠CEF ,又∵∠BGD=∠EFC ,∴△BGD ∽△EFC.……3分∴DG/CF =BG/EF ,∴DG ·EF =CF ·BG又∵DG =GF =EF ,∴GF 2=CF ·BG由(1)得DM/BG =MN/GF =EN/CF ∴(MN/GF )2=(DM/BG)·(EN/CF)∴MN 2=DM ·EN25.(1)抛物线y=ax 2+bx+3经过A (-3,0),B (-1,0)两点 ∴9a-3b+3=0 且a-b+3=0 解得a =1b =4∴抛物线的解析式为y=x 2+4x+3(2)由(1)配方得y=(x+2)2-1∴抛物线的顶点M (-2,,1)∴直线OD 的解析式为y=21x 于是设平移的抛物线的顶点坐标为(h ,21h ),∴平移的抛物线解析式为y=(x-h )2+21h.①当抛物线经过点C 时,∵C (0,9),∴h 2+21h=9,解得h=41451-±. ∴ 当 4145-1-≤h<41451-+ 时,平移的抛物线与射线CD 只有一个公共点.②当抛物线与直线CD 只有一个公共点时,由方程组y=(x-h )2+21h,y=-2x+9. 得 x 2+(-2h+2)x+h 2+21h-9=0,∴△=(-2h+2)2-4(h 2+21h-9)=0,解得h=4.此时抛物线y=(x-4)2+2与射线CD 唯一的公共点为(3,3),符合题意. 综上:平移的抛物线与射线CD 只有一个公共点时,顶点横坐标的值或取值围是h=4或4145-1-≤h<41451-.(3)方法1将抛物线平移,当顶点至原点时,其解析式为y=x2,设EF的解析式为y=kx+3(k≠0).假设存在满足题设条件的点P(0,t),如图,过P作GH∥x轴,分别过E,F作GH的垂线,垂足为G,H.∵△PEF的心在y轴上,∴∠GEP=∠EPQ=∠QPF=∠HFP,∴△GEP∽△HFP,...............9分∴GP/PH=GE/HF,∴-x E/x F=(y E-t)/(y F-t)=(kx E+3-t)/(kx F+3-t)∴2kx E·x F=(t-3)(x E+x F)由y=x2,y=-kx+3.得x2-kx-3=0.∴x E+x F=k,x E·x F=-3.∴2k(-3)=(t-3)k,∵k≠0,∴t=-3.∴y轴的负半轴上存在点P(0,-3),使△PEF的心在y轴上.方法2设EF的解析式为y=kx+3(k≠0),点E,F的坐标分别为(m,m2)(n,n2)由方法1知:mn=-3.作点E关于y轴的对称点R(-m,m2),作直线FR交y轴于点P,由对称性知∠EPQ=∠FPQ,∴点P就是所求的点.由F,R的坐标,可得直线FR的解析式为y=(n-m)x+mn.当x=0,y=mn=-3,∴P(0,-3).∴y轴的负半轴上存在点P(0,-3),使△PEF的心在y轴上.。

2017中考数学模拟试卷及答案

2017中考数学模拟试卷及答案

第6题图九年级数学模拟试卷(含答案)(2017年5月5日)一、选择题:(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题意的选项字母填入题后的括号内)1.-2的相反数是( D )A.21- B.21C. -2D. 22.下列图形中,既是轴对称图形,又是中心对称图形的是(A)A. B. C. D.3. 2015年我国的GDP总量为629180亿元,用科学计数法表示为( C )A、6.2918×105元B、6.2918×1014元C、6.2918×1013元D、6.2918×1012元4. 下列运算正确的是(D)A.abba5=3+2 B.1=2-322yxyx C.()6326=2aa D.xxx5=÷5235. 一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为,则袋子里2号球有(B)A.1个 B.2个 C.3个 D.4个6. 如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为(D)A、50°B、80°C、100°D、130°7.如右图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数有可能..是( D )A.5或6 B.5或7C.4或5或6 D.5或6或78. 如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于( A )A、50°B、57.5°C、60°D、65°9. 若关于x的方程+=2的解为正数,则m的取值范围是(C)A.m<6B.m>6C.m<6且m≠0D.m>6且m≠810. 如图,已知A、B是反比例函数(0,0)ky k xx=>>上的两点,BC x轴,交y轴于C,动点P从坐标原点O 出发,沿O A B C→→→匀速运动,终点为C,过运动路线上任意一点P作PM x⊥轴于M,PN y⊥轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是( A )二、填空题(本题有6个小题,每小题3分,共18分)11. 分解因式:2x2-8x+8=第7题图俯视图左视图12.关于x 的方程m x 2-3x+1=0有两个实数根,则实数m 的取值范围是。

2017年中考数学模拟试题及答案

2017年中考数学模拟试题及答案

本卷共六大题,24小题,共 一、选择题(本大题共 6小题,每小题3分, 1、 比一2013小1的数是( A 、一 2012 2、 如图,直线 A 、70° ---- 品 -------- -- - -2017年中考模拟试题 数学试题卷120分。

考试时间 共18分) 120分钟) B 、2012 C 、一 2014 |1 // |2,/ 1 = 40°,/ 2= 75° B 、65° C 、60 ° ,则/ D 、55 ° l i bD 、 2014 3 =( C 、 A 、 B 、 正面 4、 ’某红外线遥控器发出的红外线波长为 A 、9.4X 10 7m B 、9.4X 107m 5、 下列计算正确的是( ) A 、(2a — 1)2=4a 2— 1 B 、3a 6- 3a 3= a 2 0.000 00094m , C 、9.4X 10—8m D 、 用科学计数法表示这个数是( D 、9.4 X 108m C 、(— ab 2) 4=- a 4b 6 D 、一 2a + (2a — 1) =- 1 4兀。

某天,一一 240元,160元来购进四星级与五星级这两种枇杷,其中,四星级枇杷 10千克。

假设零售商当天购进四星级枇杷 x 千克, 6、 某县盛产枇杷,四星级枇杷的批发价比五星级枇杷的批发价每千克低 位零售商分别用去 比五星级枇杷多购进 方程为( ) A 240 , 160 A 、 + 4 = - x x —10 二、填空题(本大题共 240 , 160 —4= _ x x — 10 8小题,每小题3分,共 240 . 160+ 4 = x —10 x 24分)因式分解:xy 2— x= 。

已知x = 1是关于x 的方程x 2+ x + 2k = 0的一个根,则它的另一个根是 已知2y = 3,则分式x —2y 的值为 10、 如图,正五边形 ABCDE , AF // CD 交BD 的延长线 于点F ,则/ DFA = ________ 度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017南宁数学中考模拟试卷及答案(2)16.如图,在小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,根据图形解答下列问题:(1)将△ABC向左平移4个单位长度,再向下平移2个单位长度,画出平移后的△A1B1C1;(2)将△DEF绕D点逆时针旋转90°,画出旋转后的△DE1F1.【考点】作图﹣旋转变换;作图﹣平移变换.【分析】(1)根据图形平移的性质画出平移后的△A1B1C1即可;(2)根据图形旋转的性质画出旋转后的△DE1F1即可.【解答】解(1)如图所示:△A1B1C1即为所求;(2)如图所示:△DE1F1即为所求;四、(共2小题,满分16分)17.某条道路上通行车辆限速为60千米/时,在离道路50米的点P处建一个监测点,道路AB段为检测区(如图).在△ABP中,已知∠PAB=30°,∠PBA=45°,那么车辆通过AB段的时间在多少秒以内时,可认定为超速(精确到0.1秒)?(参考数据:≈1.41,≈1.73,60千米/时= 米/秒)【考点】解直角三角形的应用.【分析】作PC⊥AB于点C,根据三角函数即可求得AC与BC的长,则AB即可求得,用AB的长除以速度即可求解.【解答】解:作PC⊥AB于点C.在直角△APC中,tan∠PAC= ,则AC= =50 ≈86.5(米),同理,BC= =PC=50(米),则AB=AC+BC≈136.5(米),60千米/时= 米/秒,则136.5÷ ≈8.2(秒).故车辆通过AB段的时间在8.2秒内时,可认定为超速.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”,已知点A、B、C、D分别是“果圆”与坐标轴的交点,AB 为半圆的直径,抛物线的解析式为y=x2﹣2x﹣3,求这个“果圆”被y轴截得线段CD的长3+ .【考点】二次函数综合题.【分析】将x=0代入抛物线的解析式得y=﹣3,故此可得到DO 的长,然后令y=0可求得点A和点B的坐标,故此可得到AB的长,由M为圆心可得到MC和OM的长,然后依据勾股定理可求得OC的长,最后依据CD=OC+OD求解即可.【解答】解:连接AC,BC.∵抛物线的解析式为y=x2﹣2x﹣3,∴点D的坐标为(0,﹣3),∴OD的长为3.设y=0,则0=x2﹣2x﹣3,解得:x=﹣1或3,∴A(﹣1,0),B(3,0).∴AO=1,BO=3,AB=4,M(1,0).∴MC=2,OM=1.在Rt△COB中,OC= = .∴CD=CO+OD=3+ ,即这个“果圆”被y轴截得的线段CD的长3+ .故答案为:3+ .五、(共2小题,满分20分)19.某电视台在它的娱乐性节目中每期抽出两名场外幸运观众,有一期甲、乙两人被抽为场外幸运观众,他们获得了一次抽奖的机会,在如图所示的翻奖牌的正面4个数字中任选一个,选中后翻开,可以得到该数字反面的奖品,第一个人选中的数字第二个人不能再选择了.(1)如果甲先抽奖,那么甲获得“手机”的概率是多少?(2)小亮同学说:甲先抽奖,乙后抽奖,甲、乙两人获得“手机”的概率不同,且甲获得“手机”的概率更大些.你同意小亮同学的说法吗?为什么?请用列表或画树状图分析.【考点】列表法与树状图法.【分析】(1)一共有4种情况,手机有一种,除以总情况数即为所求概率;(2)列举出所有情况,看所求的情况占总情况的多少即可.【解答】解:(1)第一位抽奖的同学抽中手机的概率是 ;(2)不同意.从树状图中可以看出,所有可能出现的结果共12种,而且这些情况都是等可能的.先抽取的人抽中手机的概率是 ;后抽取的人抽中手机的概率是 = .所以,甲、乙两位同学抽中手机的机会是相等的.20.某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为 2.6(1+x)2 万元;(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.【考点】一元二次方程的应用.【分析】(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x),则第三年的可变成本为2.6(1+x)2,故得出答案;(2)根据养殖成本=固定成本+可变成本建立方程求出其解即可【解答】解:(1)由题意,得第3年的可变成本为:2.6(1+x)2,故答案为:2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146,解得:x1=0.1,x2=﹣2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.六、(满分12分)21.如图,在等腰直角△ABC中,∠ACB=90°,点D为三角形内一点,且∠ACD=∠DAB=∠DBC.(1)求∠CDB的度数;(2)求证:△DCA∽△DAB;(3)若CD的长为1,求AB的长.【考点】相似三角形的判定与性质;等腰直角三角形.【分析】(1)只要证明∠CDA=135°,∠ADB=135°即可解决问题.(2)根据两角对应相等两三角形相似即可判定.(3)由△DCA∽△DAB,推出 = = = ,又CD=1,推出AD= ,DB=2.根据BC= ,求出BC,再在Rt△ABC中,求出AB即可解决问题.【解答】(1)解:∵△ABC为等腰直角三角形,∴∠CAB=45°.又∵∠ACD=∠DAB,∴∠ACD+∠CAD=∠DAB+∠CAD=∠CAB=45°,∴∠CDA=135°同理可得∠ADB=135°∴∠CDB=360°﹣∠CDA﹣∠ADB=360°﹣135°﹣135°=90°.(2)证明:∵∠CDA=∠ADB,∠ACD=∠DAB,∴△DCA∽△DAB(3)解:∵△DCA∽△DAB,∴ = = = ,又∵CD=1,∴AD= ,DB=2.又∵∠CDB=90°,∴BC= = = ,在Rt△ABC中,∵AC=BC= ,∴AB= = .七、(满分12分)22.2016年里约奥运会,中国跳水队赢得8个项目中的7块金牌,优秀成绩的取得离不开艰辛的训练.某跳水运动员在进行跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线,已知跳板AB长为2米,跳板距水面CD的高BC为3米,训练时跳水曲线在离起跳点水平距离1米时达到距水面最大高度k米,现以CD为横轴,CB为纵轴建立直角坐标系.(1)当k=4时,求这条抛物线的解析式;(2)当k=4时,求运动员落水点与点C的距离;(3)图中CE= 米,CF= 米,若跳水运动员在区域EF内(含点E,F)入水时才能达到训练要求,求k的取值范围.【考点】二次函数的应用.【分析】(1)根据抛物线顶点坐标M(3,4),可设抛物线解析为:y=a(x﹣3)2+4,将点A(2,3)代入可得;(2)在(1)中函数解析式中令y=0,求出x即可;(3)若跳水运动员在区域EF内(含点E,F)入水达到训练要求,则在函数y=a(x﹣3)2+k中当x= 米,y>0,当x= 米时y<0,解不等式即可得.【解答】解:(1)如图所示:根据题意,可得抛物线顶点坐标M(3,4),A(2,3)设抛物线解析为:y=a(x﹣3)2+4,则3=a(2﹣3)2+4,解得:a=﹣1,故抛物线解析式为:y=﹣(x﹣3)2+4;(2)由题意可得:当y=0,则0=﹣(x﹣3)2+4,解得:x1=1,x2=5,故抛物线与x轴交点为:(5,0),当k=4时,求运动员落水点与点C的距离为5米;(3)根据题意,抛物线解析式为:y=a(x﹣3)2+k,将点A(2,3)代入可得:a+k=3,即a=3﹣k若跳水运动员在区域EF内(含点E,F)入水,则当x= 时,y= a+k≥0,即 (3﹣k)+k≥0,解得:k≤ ,当x= 时,y= a+k≤0,即 (3﹣k)+k≤0,解得:k≥ ,故≤k≤ .八、(满分14分)23.[发现]如图∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图①)[思考]如图②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C三点的⊙O上吗?我们知道,如果点D不在经过A,B,C三点的圆上,那么点D要么在⊙O外,要么在⊙O内,以下该同学的想法说明了点D不在⊙O 外.请结合图④证明点D也不在⊙O内.【证】[结论]综上可得结论,如果∠ACB=∠ADB=α(点C,D在AB的同侧),那么点D在经过A,B,C三点的圆上,即:A、B、C、D四点共圆.[应用]利用上述结论解决问题:如图⑤,已知△ABC中,∠C=90°,将△ACB绕点A顺时针旋转α度(α为锐角)得△ADE,连接BE、CD,延长CD交BE于点F;(1)用含α的代数式表示∠ACD的度数;(2)求证:点B、C、A、F四点共圆;(3)求证:点F为BE的中点.【考点】圆的综合题.【分析】【思考】【证】如图1,假设点D在⊙O内,延长AD交⊙O于点E,连接BE,则∠AEB=∠ACB,根据外角的性质得到∠ADB>∠AEB,于是得到∠ADB>∠ACB,于是得到结论;【应用】(1)由题意可知,AC=AD,∠CAD=α,根据等腰三角形的性质即可得到∠ACD=90°﹣ ;(2)根据等腰三角形的性质得到∠ABE=90°﹣α,同时代的∠ACD=∠ABE,即可得到结论;(3)由B、C、A、F四点共圆,得到∠BFA+∠BCA=180°,推出AF⊥BE,根据等腰三角形的性质即可得到结论.【解答】【思考】【证】如图1,假设点D在⊙O内,延长AD交⊙O于点E,连接BE,则∠AEB=∠ACB,∵∠ADB是△BDE的外角,∴∠ADB>∠AEB,∴∠ADB>∠ACB,因此,∠ADB>∠ACB这与条件∠ACB=∠ADB矛盾,∴点D也不在⊙O内,∴点D即不在⊙O内,也不在⊙O外,点D在⊙O上;【应用】(1)由题意可知,AC=AD,∠CAD=α,∴∠ACD=90°﹣ ;(2)∵AB=AE,∠BAE=α,∴∠ABE=90°﹣α,∴∠ACD=∠ABE,∴B、C、A、F四点共圆;(3)∵B、C、A、F四点共圆,∴∠BFA+∠BCA=180°,又∵∠ACB=90°,∴∠BFA=90°,∴AF⊥BE,∵AB=AE,∴BF=EF,即点F为BE的中点.。

相关文档
最新文档