中考数学模拟测试题 (17)
中考综合模拟测试《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列四个实数中,是无理数的为( ) A.B.27C. D.32. 如图所示的几何体的左视图是( )A. B. C. D.3. 如图,直线AB ∥CD ,∠A =70°,∠E =30°,则∠C 等于( )A. 30°B. 40°C. 60°D. 70°4. 如果分式||11x x -+的值为0,那么的值为( ) A. -1B. 1C. -1或1D. 1或05. 下列计算正确的是( ) A. 66122a a a += B. 25822232-÷⨯= C. ()721120a a a a ⋅-⋅=-D. ()32233122ab a b a b ⎛⎫-⋅-= ⎪⎝⎭6. 我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( ) A. 275×104B. 2.75×104C. 2.75×1012D. 27.5×10117. 如图,△ABD 是以BD 为斜边的等腰直角三角形,△BCD 中,∠DBC =90°,∠BCD =60°,DC 中点为E ,AD 与BE 的延长线交于点F ,则∠AFB 的度数为( )A. 30°B. 15°C. 45°D. 25°8. 若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则的取值范围为( )A 2m ≤B. 2m <C. 2m ≥D. 2m >9. 如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A. (3,2)B. (3,1)C. (2,2)D. (4,2)10. 如图,BC 是半圆的直径,,是BC 上两点,连接BD ,CE 并延长交于点,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A. 35︒B. 38︒C. 40︒D. 42︒二、填空题11. 1483的结果是_____. 12. 将一副直角三角板如图放置,点C 在FD 的延长上,AB ∥CF ,∠F =∠ACB =90°,∠E =30°,∠A =45°,AC =2,则CD 的长为______.13. 在光明中学组织的全校师生迎”五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数是_______.14. 在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______.三、解答题15. 计算:2216313969a a a a a +⎛⎫-+÷ ⎪+--+⎝⎭. 16. 解分式方程:31133x x-=-- ______________. 17. 已知如图,△ABC 中,AB =AC ,用尺规在BC 边上求作一点P ,使△BP A ∽△BAC (保留作图痕迹,不写作法).18. 学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:min )进行了抽样调查.并将抽查得到的数据分成5组,下面是未完成的频数、顿率分布表和频数分布扇形图. 组别课前预习时间/t min频数(人数)频率1 010t ≤<2 21020t ≤<0.103 2030t ≤< 16 0.324 3040t ≤< 540t ≥3请根据图表中的信息,回答下列问题:(1)本次调查的样本容量为 ,表中的a = ,b = ,c = ; (2)试计算第4组人数所对应扇形圆心角的度数;(3)该校九年级其有1000名学生,请估计这些学生中每天课前预习时间不少于20min 的学生人数. 19. 某商场运动服装专柜,对,A B 两种品牌的远动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表.第一次 第二次 品牌运动服装数/件 20 30 品牌运动服装数/件 30 40 累计采购款/元1020014400(1)问,A B 两种品牌运动服的进货单价各是多少元?(2)由于品牌运动服的销量明显好于品牌,商家决定采购品牌的件数比品牌件数的32倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件品牌运动服?20. 在如图菱形ABCD 中,点是BC 边上一点,连接AP ,点,E F 是AP 上的两点,连接DE ,BF ,使得AED ABC ∠=∠,ABF BPF ∠=∠.(1)求证:ABF DAE ≌;(2)求证:DE BF EF =+.21. 2018年3月2日,500架无人飞机在西安创业咖啡街区的夜空绽放,西安高新区用”硬科技”打造了最具独特的风景线,2018”西安年,最中国”以一场华丽的视觉盛宴完美收官,当晚,某兴趣爱好者想用手中的无人机测量大雁塔的高度,如图是从大雁塔正南面看到的正视图,兴趣爱好者将无人机上升至离地面185米高大雁塔正东面的F点,此时,他测得F点都塔顶A点的俯视角为30°,同时也测得F点到塔底C 点的俯视角为45°,已知塔底边心距OC=23米,请你帮助该无人机爱好者计算出大雁塔的大体高度(结果精确到01米)?(3≈1.73,2≈1.41).22. 如图,点A(32,4),B(3,m)是直线AB与反比例函数nyx(x>0)图象的两个交点.AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求直线AB的表达式;(2)△ABC和△ABD的面积分别为S1,S2,求S2-S1.23. 如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O 点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E.(1)求抛物线的表达式;(2)连接AC,AP,当直线l运动时,求使得△PEA和△AOC相似的点P的坐标;(3)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积最大值.24. 问题探究(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为;(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=42,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.答案与解析一、选择题1. 下列四个实数中,是无理数的为()A. B. 27C. D. 3【答案】D【解析】【分析】根据无理数的定义”也称为无限不循环小数,不能写作两整数之比”即可.【详解】由无理数的定义得:四个实数中,只有3是无理数故选:D.【点睛】本题考查了无理数的定义,熟记定义是解题关键.2. 如图所示的几何体的左视图是( )A. B. C. D.【答案】B【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】从左向右看,得到的几何体的左视图是.故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3. 如图,直线AB∥CD,∠A=70°,∠E=30°,则∠C等于( )A. 30°B. 40°C. 60°D. 70°【答案】B 【解析】 【分析】根据平行线的性质得出∠A =∠EFD ,再根据三角形的外角性质求出∠C 即可. 【详解】解:∵AB ∥CD ,∠A =70°, ∴∠EFD =70°, ∵∠E =30°, ∴∠C =40°, 故选B .【点睛】本题考查了平行线的性质和三角形的外角性质,关键是求出∠EFD 的度数和求出∠EFD =∠A . 4. 如果分式||11x x -+的值为0,那么的值为( ) A. -1 B. 1C. -1或1D. 1或0【答案】B 【解析】 【分析】根据分式的值为零的条件可以求出x 的值. 【详解】根据题意,得 |x|-1=0且x+1≠0, 解得,x=1. 故选B .【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 5. 下列计算正确的是( ) A. 66122a a a += B. 25822232-÷⨯= C. ()721120a a a a ⋅-⋅=- D. ()32233122ab a b a b ⎛⎫-⋅-= ⎪⎝⎭【答案】C 【解析】 【分析】根据整式的加减、有理数的乘方运算、同底数幂的乘法、积的乘方逐项判断即可.【详解】A 、6662a a a +=,此项错误B 、25825825822222222-----+=⨯=÷⨯⨯=,此项错误C 、()7211271120a a a a a ++⋅-⋅=-=-,此项正确D 、()()322236751128422ab a b ab a b a b ⎛⎫⎛⎫-⋅--⋅-= ⎪ ⎪⎝⎭⎝⎭=,此项错误故选:C .【点睛】本题考查了整式的加减、有理数的乘方运算、同底数幂的乘法、积的乘方,熟记各运算法则是解题关键.6. 我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( ) A. 275×104 B. 2.75×104 C. 2.75×1012 D. 27.5×1011 【答案】C 【解析】【详解】解:将27500亿用科学记数法表示为:2.75×1012. 故选C .【点睛】本题考查科学记数法—表示较大的数.7. 如图,△ABD 是以BD 为斜边的等腰直角三角形,△BCD 中,∠DBC =90°,∠BCD =60°,DC 中点为E ,AD 与BE 的延长线交于点F ,则∠AFB 的度数为( )A. 30°B. 15°C. 45°D. 25°【答案】B 【解析】 解:∵∠DBC =90°,E 为DC 中点,∴BE =CE =12CD ,∵∠BCD =60°,∴∠CBE =60°,∴∠DBF =30°,∵△ABD 是等腰直角三角形,∴∠ABD =45°,∴∠ABF =75°,∴∠AFB =180°﹣90°﹣75°=15°,故选B .8. 若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则的取值范围为( )A. 2m ≤B. 2m <C. 2m ≥D. 2m >【答案】A 【解析】 【分析】求出第一个不等式的解集,根据口诀:大大小小无解了可得关于m 的不等式,解之可得. 【详解】解不等式1132x x+<-,得:x >8, ∵不等式组无解, ∴4m≤8, 解得m≤2, 故选A .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9. 如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A (3,2) B. (3,1) C. (2,2) D. (4,2)【答案】A 【解析】【详解】∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13, ∴AD BG =13, ∵BG =6, ∴AD =BC =2, ∵AD ∥BG , ∴△OAD ∽△OBG ,∴OA OB =13, ∴2OAOA +=13, 解得:OA =1,∴OB =3, ∴C 点坐标为:(3,2), 故选A .10. 如图,BC 是半圆的直径,,是BC 上两点,连接BD ,CE 并延长交于点,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A. 35︒B. 38︒C. 40︒D. 42︒【答案】C 【解析】 【分析】连接CD ,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可, 【详解】连接CD ,如图所示:∵BC 是半圆O 的直径, ∴∠BDC=90°, ∴∠ADC=90°,∴∠ACD=90°-∠A=20°, ∴∠DOE=2∠ACD=40°, 故选C .【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.二、填空题11. 计算14893-的结果是_____.【答案】3【解析】【分析】先化简,再合并同类二次根式即可.【详解】解:14893-4333=-=3故答案为3.【点睛】此题考查二次根式的加减运算,注意先化简,再合并.12. 将一副直角三角板如图放置,点C在FD的延长上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,则CD的长为______.【答案】12﹣3【解析】【分析】如图(见解析),过点B作BG CF⊥于点G,先根据直角三角形的性质、平行线的性质得出45,60,2BCF EDF BC∠=︒∠=︒=,CG DG的长,然后根据线段的和差即可得.【详解】如图,过点B作BG CF⊥于点G90,45ACB A∠=︒∠=︒9045ABC A∴∠=︒-∠=︒,即45ABC A∠=∠=︒122BC AC∴==//AB CF45ABCBCF∴==∠∠︒Rt BCG为等腰直角三角形2122CG BG BC ∴=== 又90,30F E ∠=︒∠=︒9060EDF E ∴=︒-∠=∠︒在Rt BDG 中,tan BG BDG DG ∠=,即12tan 60DG︒= 解得121243tan 603DG ===︒1243CD CG DG ∴=-=-故答案:1243-.【点睛】本题考查了直角三角形的性质、平行线的性质、解直角三角形等知识点,通过作辅助线,构造直角三角形,进而运用到解直角三角形的方法是解题关键.13. 在光明中学组织的全校师生迎”五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数是_______.【答案】96分 【解析】 【分析】先根据图得出这25名同学的得分,再根据中位数的定义即可得.【详解】由图可知,得分为94分的有5人,得分为96分的有8人,得分为98分的有9人,得分为100分的有3人则将这25名同学的得分按从小到大的顺序进行排序,排在第13位的得分为96分 由中位数的定义得:这些成绩的中位数是96分 故答案为:96分.【点睛】本题考查了中位数的定义,读懂图形,掌握中位数的定义是解题关键.14. 在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______. 【答案】14【解析】 【分析】根据题意可以画出相应的树状图,从而可以求得甲、乙两人恰好分在同一组的概率. 【详解】如下图所示,小亮和大刚两人恰好分在同一组的情况有4种,共有16种等可能的结果, ∴小亮和大刚两人恰好分在同一组的概率是41164=, 故答案为14. 【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答三、解答题15. 计算:2216313969a a a a a +⎛⎫-+÷ ⎪+--+⎝⎭. 【答案】63a + 【解析】 【分析】根据分式的混合运算法则计算即可. 【详解】原式223319(3)a a a a ++=-÷--23(3)1(3)(3)3a a a a a +-=-⋅+-+313a a -=-+ 3(3)3a a a +--=+ 63a =+. 【点睛】本题考查的是分式的混合运算,掌握分式的混合运算法则、分式的通分、约分法则是解题的关键. 16. 解分式方程:31133x x-=-- ______________. 【答案】x =7 【解析】 【分析】方程两边都乘以最简公分母,注意不要漏乘没有分母的项;去括号,移项合并同类项,即可求得方程的解. 【详解】解:方程两边都乘以(x-3),得:3-(x-3)=-1 去括号,移项,得:-x=-1-6 合并同类项,得:x=7 经检验,x=7是原方程的根 故答案为:x=7【点睛】本题考查了解分式方程,注意在去分母时,不要漏乘没有分母的项,解分式方程必须验根. 17. 已知如图,△ABC 中,AB =AC ,用尺规在BC 边上求作一点P ,使△BP A ∽△BAC (保留作图痕迹,不写作法).【答案】详见解析 【解析】 【分析】作出AB 的垂直平分线,可得BP =AP ,则∠PBA =∠BAP ,进而得出△BPA ∽△BAC . 【详解】解:如图所示:点P 即为所求, 此时△BPA ∽△BAC .【点睛】此题主要考查了相似变换以及复杂作图,正确把握相似三角形的判定方法是解题关键.18. 学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:min)进行了抽样调查.并将抽查得到的数据分成5组,下面是未完成的频数、顿率分布表和频数分布扇形图.组别课前预习时间/t min频数(人数) 频率t≤< 21 010t≤<0.102 1020t≤<16 0.323 2030t≤<4 3040t≥ 35 40请根据图表中的信息,回答下列问题:(1)本次调查的样本容量为,表中的a=,b=,c=;(2)试计算第4组人数所对应的扇形圆心角的度数;(3)该校九年级其有1000名学生,请估计这些学生中每天课前预习时间不少于20min的学生人数.【答案】(1)50,5,24,0.48;(2)第4组人数所对应的扇形圆心角的度数为172.8;(3)九年级每天课前预习时间不少于20min的学生约有860人.【解析】【分析】(1)根据3组的频数和百分数,即可得到本次调查的样本容量,根据2组的百分比即可得到a的值,进而得到2组的人数,由本次调查的样本容量-其他小组的人数即可得到b,用b÷本次调查的样本容量得到c;(2)根据4组的人数占总人数的百分比乘上360°,即可得到扇形统计图中”4”区对应的圆心角度数;(3)根据每天课前预习时间不少于20min的学生人数所占的比例乘上该校九年级总人数,即可得到结果.【详解】(1)16÷0.32=50,a=50×0.1=5,b=50-2-5-16-3=24,c=24÷50=0.48;故答案为50,5,24,0.48;(2)第4组人数所对应的扇形圆心角的度数=360°×0.48=172.8°;(3)每天课前预习时间不少于20min的学生人数的频率=1-250-0.10=0.86,∴1000×0.86=860,答:这些学生中每天课前预习时间不少于20min的学生人数是860人.【点睛】本题主要考查了扇形统计图的应用,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.19. 某商场的运动服装专柜,对,A B两种品牌的远动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表.(1)问,A B两种品牌运动服的进货单价各是多少元?(2)由于品牌运动服的销量明显好于品牌,商家决定采购品牌的件数比品牌件数的32倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件品牌运动服?【答案】(1),A B两种品牌运动服的进货单价分别为240元和180元;(2)最多能购进65件品牌运动服. 【解析】【分析】(1)直接利用两次采购的总费用得出等式进而得出答案;(2)利用采购B品牌的件数比A品牌件数的32倍多5件,在采购总价不超过21300元,进而得出不等式求出答案.【详解】(1)设,A B两种品牌运动服的进货单价分别为元和元.根据题意,得203010200304014400x y x y +=⎧⎨+=⎩,解之,得240180x y =⎧⎨=⎩.经检验,方程组的解符合题意.答:,A B 两种品牌运动服的进货单价分别为240元和180元.(2)设购进品牌运动服件,则购进品牌运动服352m ⎛⎫+⎪⎝⎭件, ∴32401805213002m m ⎛⎫++≤⎪⎝⎭, 解得,40m ≤.经检验,不等式的解符合题意,∴3354056522m +≤⨯+=. 答:最多能购进65件品牌运动服.【点睛】此题主要考查了一元一次不等式的应用和二元一次方程组的应用,正确得出等量关系是解题关键. 20. 在如图菱形ABCD 中,点是BC 边上一点,连接AP ,点,E F 是AP 上的两点,连接DE ,BF ,使得AED ABC ∠=∠,ABF BPF ∠=∠.(1)求证:ABF DAE ≌;(2)求证:DE BF EF =+. 【答案】(1)见解析;(2)见解析. 【解析】 【分析】(1)根据菱形的性质得到AB=AD ,AD ∥BC ,由平行线的性质得到∠BOA=∠DAE ,等量代换得到∠BAF=∠ADE ,求得∠ABF=∠DAE ,根据全等三角形的判定定理即可得到结论; (2)根据全等三角形的性质得到AE=BF ,DE=AF ,根据线段的和差即可得到结论. 【详解】证明:(1)∵四边形ABCD 为菱形, ∴AB AD =,AD BC ∥, ∴BPA DAE ∠=∠.在ABP ∆和DAE ∆中, 又∵ABC AED ∠=∠, ∴BAF ADE ∠=∠.∵ABF BPF ∠=∠且BPA DAE ∠=∠, ∴ABF DAE ∠=∠, 又∵AB DA =, ∴()ABF DAE ASA ≅ (2)∵ABF DAE ≅, ∴AE BF =,DE AF =. ∵AF AE EF BF EF =+=+, ∴DE BF EF =+.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的性质是解题的关键. 21. 2018年3月2日,500架无人飞机在西安创业咖啡街区的夜空绽放,西安高新区用”硬科技”打造了最具独特的风景线,2018”西安年,最中国”以一场华丽的视觉盛宴完美收官,当晚,某兴趣爱好者想用手中的无人机测量大雁塔的高度,如图是从大雁塔正南面看到的正视图,兴趣爱好者将无人机上升至离地面185米高大雁塔正东面的F 点,此时,他测得F 点都塔顶A 点的俯视角为30°,同时也测得F 点到塔底C 点的俯视角为45°,已知塔底边心距OC =23米,请你帮助该无人机爱好者计算出大雁塔的大体高度(结果精确到0.1米)?(3≈1.73,2 ≈1.41).【答案】大雁塔的大体高度是65.1米. 【解析】 【分析】作FD ⊥BC ,交BC 的延长线于D ,作AE ⊥DF 于E ,则四边形AODE 是矩形.解直角△CDF ,得出CD =DF =185米,那么OD =OC+CD =208米,AE =OD =208米.再解直角△AEF ,求出EF =AE•tan ∠FAE =20833米,然后根据OA=DE=DF﹣EF即可求解.【详解】解:如图,作FD⊥BC,交BC的延长线于D,作AE⊥DF于E,则四边形AODE是矩形.由题意,可知∠FAE=30°,∠FCD=45°,DF=185米.在直角△CDF中,∵∠D=90°,∠FCD=45°,∴CD=DF=185米,∴OD=OC+CD=208米,∴AE=OD=208米.在直角△AEF中,∵∠AEF=90°,∠FAE=30°,∴EF=AE•tan∠FAE=208×33=20833(米),∴DE=DF﹣EF=185﹣20833≈185﹣119.95≈65.1(米),∴OA=DE≈65.1米.故大雁塔的大体高度是65.1米.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.22. 如图,点A(32,4),B(3,m)是直线AB与反比例函数nyx(x>0)图象的两个交点.AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求直线AB 的表达式;(2)△ABC 和△ABD 的面积分别为S 1,S 2,求S 2-S 1.【答案】(1)463y x =-+;(2)34 【解析】【分析】(1)先由A 点坐标求出反比例函数的表达式,再求出B 点坐标,最后运用待定系数法求直线AB 的表达式即可;(2)ABC 的面积可由”底乘高除以2”直接求得,ABD △的面积运用”补”的思想求出,然后两者作差即可得.【详解】(1)由点3(,4)2A 在反比例函数(0)n y x x=>的图象上 ∴432n=∴6n = ∴反比例函数的表达式为6(0)y x x=> 将点(3,)B m 代入6y x =得623m == ∴(3,2)B设直线AB 的表达式为y kx b =+ 将点3(,4),(3,2)2A B 代入得34232k b k b ⎧+=⎪⎨⎪+=⎩, 解得436k b ⎧=-⎪⎨⎪=⎩ 则直线AB 的表达式为463y x =-+;(2)由点A 、B 的坐标得4AC =,点B 到AC 的距离为33322-= ∴1134322S =⨯⨯= 如图,设直线AB 与y 轴的交点为E令0x =得6y =,则点E 坐标为(0,6)E(0,1)D∴615DE =-=由点3(,4),(3,2)2A B 得:点A 、B 到DE 的距离分别为32,3 ∴2113155352224BDE ADE S S S=-=⨯⨯-⨯⨯= 则21153344S S -=-=.【点睛】本题考查了运用待定系数法求反比例函数、一次函数的表达式,在平面直角坐标系中求几何图形的面积,正确求出两个函数的表达式是解题关键.23. 如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣2,0),点B (4,0),与y 轴交于点C (0,8),连接BC ,又已知位于y 轴右侧且垂直于x 轴的动直线l ,沿x 轴正方向从O 运动到B (不含O 点和B 点),且分别交抛物线、线段BC 以及x 轴于点P ,D ,E .(1)求抛物线的表达式;(2)连接AC ,AP ,当直线l 运动时,求使得△PEA 和△AOC 相似点P 的坐标;(3)作PF ⊥BC ,垂足为F ,当直线l 运动时,求Rt △PFD 面积的最大值.【答案】(1) y =﹣x 2+2x +8;(2)点P (1523,416);(3)165 【解析】【分析】(1)将点A 、B 、C 的坐标代入二次函数表达式,即可求解;(2)只有当∠PEA =∠AOC 时,PEA △∽AOC ,可得:PE =4AE ,设点P 坐标(4k ﹣2,k ),即可求解; (3)利用Rt △PFD ∽Rt △BOC 得: 2()PFD BOC S PD S BC=,再求出PD 的最大值,即可求解. 【详解】解:(1)将点A 、B 、C 的坐标代入二次函数表达式得:42016408a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:a = -1,b =2,c =8,故抛物线的表达式为:y =﹣x 2+2x +8;(2)∵点A (﹣2,0)、C (0,8),∴OA =2,OC =8,∵l ⊥x 轴,∴∠PEA =∠AOC =90°,∵∠P AE ≠∠CAO ,∴只有当∠PEA =∠AOC 时,PEA △∽AOC , 此时AE PE CO AO =,即:82AE PE =, ∴AE =4PE ,设点P 的纵坐标为k ,则PE =k ,AE =4k ,∴OE =4k ﹣2,将点P 坐标(4k ﹣2,k )代入二次函数表达式并解得:k =0或2316(舍去0),则点P (1523,416); (3)在Rt △PFD 中,∠PFD =∠COB =90°,∵l ∥y 轴,∴∠PDF =∠COB ,∴Rt △PFD ∽Rt △BOC , ∴2()PFD BOC S PD S BC=, ∴S △PDF =2()PD BC •S △BOC , 而S △BOC =12OB •OC =12×4×8=16,BC==∴S △PDF =2()PD BC•S △BOC =15PD 2, 即当PD 取得最大值时,S △PDF 最大,将B 、C 坐标代入一次函数表达式y kx b =+得:408k b b +=⎧⎨=⎩, 解得:28k b =-⎧⎨=⎩, ∴直线BC 的表达式为:y =﹣2x +8,设点P (m ,﹣m 2+2m +8),则点D (m ,﹣2m +8),则PD =﹣m 2+2m +8+2m ﹣8=﹣(m ﹣2)2+4,当m =2时,PD 的最大值为4,故当PD =4时,∴S △PDF =15PD 2=165. 【点睛】本题主要考查了待定系数法求二次函数和一次函数的解析式,相似三角形的判定和性质,利用数形结合的思想把代数和几何结合起来,利用点的坐标的意义表示线段的长度,从而求得线段之间的关系是正确解答本题的关键.24. 问题探究(1)如图①,点E 、F 分别在正方形ABCD 的边BC 、CD 上,∠EAF=45°,则线段BE 、EF 、FD 之间的数量关系为 ;(2)如图②,在△ADC 中,AD=2,CD=4,∠ADC 是一个不固定的角,以AC 为边向△ADC 的另一侧作等边△ABC ,连接BD ,则BD 的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由; 问题解决(3)如图③,在四边形ABCD 中,AB=AD ,∠BAD=60°,,若BD ⊥CD ,垂足为点D ,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.【答案】(1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为26.【解析】【分析】(1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;(2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.【详解】(1)如图①,延长CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案为BE+DF=EF;(2)存在.在等边三角形ABC中,AB=BC,∠ABC=60°,如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等边三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴当D、C、E三点共线时,DE存在最大值,且最大值为6,∴BD的最大值为6;(3)存在.如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.【点睛】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.。
中考数学仿真模拟试卷(含答案)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________满分150分,答题时间120分钟.一、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)22.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x24.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角8.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>09.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.2110.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3二、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是.13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为.三、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?参考答案四、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)2【解答】解:A、原式=﹣6,符合题意;B、原式=1,不符合题意;C、原式=5,不符合题意;D、原式=1,不符合题意.故选:A.2.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.【解答】解:从上面看,底层右边是一个小正方形,上层是两个小正方形.故选:B.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x2【解答】解:A,x3+x2≠x5,故A运算错误;B,(x3)2=x3×2=x6,故B运算错误;C,(x+y)2=x2+2xy+y2,故C运算错误;D,3x2+2x2=5x2,故D运算正确.故选:D.4.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角【解答】解:矩形具有而菱形不一定具有的性质是对角线相等,故选:B.5.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.【解答】解:根据题意画图如下:共有20种等情况数,其中两次摸出的球上的汉字是“不”“停”的有4种,则随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是=;故选:D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°【解答】解:∵A为中点,∴,∵AB=CD,∴,∴,∴∠ADB=∠CBD=∠ABD,∵∠ABC+∠ADC=180°,∴∠ADB+∠CBD+ABD=180°﹣∠BDC=180°﹣54°=126°,∴3∠ADB=126°,∴∠ADB=42°.故选:A.7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人【解答】解:由直方图可知,成绩低于60分的人数是1+2=3,故选:A.8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>0【解答】解:由a,b所表示的数在数轴上的位置可知,a<0且|a|>1,b>0且0<|b|<1,则ab<0,a+b<0则选项C,D不正确;∵b>0,﹣a>0,∴b﹣a=b+(﹣a)>0,则选项A不正确;∵a<0且|a|>1,b>0且0<|b|<1,∴0<|b﹣1|<1,∴|a|>1>|b﹣1,故选项B正确.故选:B.9.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.21【解答】解:连接OC,∵点O是边BC,AC的垂直平分线的交点,∴OB=OC,OA=OC,∴OA=OB,∵OB=5,∴OA=OB=5,∵AB=8,∴△AOB的周长是AB+OA+OB=8+5+5=18,故选:C.10.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3【解答】解:由二次函数y=ax2+bx+1知c=1,即二次函数和y轴交于点(0,1),而二次函数图象与x轴没有交点,故抛物线开口向上,点B、C的纵坐标相同,则二次函数的对称轴为直线x=(﹣3+1)=﹣1,而点离函数对称轴的距离从大到小的顺序是D、B(C)、A,故y3>y2>y1,故选:B.五、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是x≠0且x≠1.【解答】解:由题意得x(x﹣1)≠0,解得x≠0且x≠1,故答案为x≠0且x≠1.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是(﹣3,﹣1).【解答】解:如图所示:棋子③的坐标是(3,﹣1).故答案为:(3,﹣1).13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.【解答】解:根据题意画图如下:共有42种等情况数,其中摸出两个球为一个黑球和一个白球的有24种,则随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是=;故答案为:.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是16.【解答】解:∵PA、PB、EF分别与⊙O相切于点A、B、C,∴AE=CE,FB=CF,PA=PB=8,∴△PEF的周长=PE+EF+PF=PA+PB=16.故答案为:16.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为12.【解答】解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵BD为AC边上的中线,∠ABC=90°,∴BD=DF=AC,∴四边形BGFD是菱形,∴BD=DF=GF=BG=10,则AF=AG﹣GF=26﹣10=16,AC=2BD=20,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即162+CF2=202,解得:CF=12.故答案是:12.六、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.【解答】解:(1)S=2m×2n﹣m(2n﹣n﹣0.5n)=4mn﹣0.5mn=3.5mn;(2)由题意得m﹣6=0,n﹣8=0,∴m=6,n=8,代入,可得原式=3.5×6×8=168.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.【解答】解:(1)由前三年六月份各天的最高气温数据,得到最高气温位于区间[20,25)和最高气温低于20的天数为2+16+36=54,根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间[20,25),需求量为300瓶,如果最高气温低于20,需求量为200瓶,∴六月份这种酸奶一天的需求量不超过300瓶的概率p==;(2)∵当温度大于等于25℃时,需求量为500,Y=450×2=900元;当温度在[20,25)℃时,需求量为300,Y=300×2﹣(450﹣300)×2=300元;当温度低于20℃时,需求量为200,Y=400﹣(450﹣200)×2=﹣100元;∴当温度大于等于20时,Y>0,∵由前三年六月份各天的最高气温数据,得当温度大于等于20℃的天数有:90﹣(2+16)=72,∴估计Y大于零的概率P==.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.【解答】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DE,EF分别是△ABC 的中位线,∴DE∥AC,EF∥AB,∴DE∥AF,EF∥AD,∴四边形ADEF是平行四边形;(2)解:∵D是AB的中点,F是AC的中点,AB=10cm,AB=AC,∴AD=AF=AB=5(cm),∵四边形ADEF是平行四边形,∴四边形ADEF是菱形,∴四边形ADEF的周长为4AD=4×5=20(cm).19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.【解答】解:(1)任选一个景点,选中以人文景观为主的概率为=;(2)把自然风光记为A,人文景观记为B,画树状图如图:共有24个等可能的结果,亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的结果有4个,∴亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率为=.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【解答】解:(1)设计划调配36座新能源客车x辆,该校共有y名走读生.由题意,得,解得,答:计划调配36座新能源客车6辆,该校共有218名走读生.(2)设36座和22座两种车型各需m,n辆.由题意,得36m+22n=218,且m,n均为非负整数,经检验,只有m=3,n=5符合题意.答:需调配36座客车3辆,22座客车5辆.21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)【解答】解:(1)由题意可知:∠BAD=18°,在Rt△ABD中,AB=18≈≈5.6(m),答:应在地面上距点B约5.6m远的A处开始斜坡的施工;(2)能,理由如下:如图,过点C作CE⊥AD于点E,则∠ECD=∠BAD=18°,在Rt△CED中,CE=CD•cos18°≈2.8×0.95=2.66(m),∵2.66>2.5,∴能保证货车顺利进入地下停车场.22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.【解答】解:(1)∵点C(1,m)在一次函数y=x+3的图象上,∴m=1+3=4;(2)设一次函数图象l2相应的函数表达式为y=kx+b,把点A(3,0),C(1,4)代入得,解得,∴一次函数图象l2相应的函数表达式y=﹣2x+6;(3)∵一次函数y=x+3的图象l1与x轴交于点B,∴B(﹣3,0),∵A(3,0),C(1,4),∴AB=6,∴S△ABC=×6×4=12.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.【解答】(1)证明:如图1,连接BF,∴∠AFB=∠C,∵∠C=∠E,∴∠AFB=∠E,∴BF∥DE,∵DE为⊙O的切线,AD为⊙O的直径,∴AD⊥DE,∴AD⊥BF,∴AD平分BF,∴AB=AF;(2)解:如图2,连接BD,∴∠C=∠ADB,∵∠C=∠E,∴∠ADB=∠E,∵AD为⊙O的直径,∴∠ABD=90°,∴∠ABD=∠ADE,∴△ABD∽△ADE,∴=,∴AE=,∴DE==.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.【解答】解:(1)y=mx2+(m2﹣m)x﹣2m+1顶点D的横坐标为1,∴=1,解得m=﹣1,∴二次函数的表达式为y=﹣x2+2x+3,令y=0得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)过B作BH⊥AC于H,过F作FG⊥y轴于G,如图:∵二次函数y=﹣x2+2x+3与y轴交点C(0,3),且A(﹣1,0),B(3,0),∴AB=4,OC=3,AC=,BC=3,∵S△ABC=AB•OC=AC•BH,∴BH=,Rt△BHC中,sin∠HCB===,Rt△EFC中,EF=CF•sin∠HCB=CF,∴FE=•CF=CF,设P(n,﹣n2+2n+3),由B(3,0),C(0,3)得BC解析式为y=﹣x+3,∴△BCO是等腰直角三角形,F(n,﹣n+3),∴△GFC是等腰直角三角形,GF=n,∴CF=GF=n,∴CF=2n,即FE=2n,∴m=PF+FE=PF+2n=(﹣n2+2n+3)﹣(﹣n+3)+2n=﹣n2+5n,∴当n==时,m最大,最大为﹣()2+5×=,此时P(,);(3)直线y=kx+k﹣6总过(﹣1,﹣6),k<0时,它和新图象G不可能有4个公共点,如图:k>0时,若二次函数的表达式为y=﹣x2+2x+3刚好经过B(3,0),由(﹣1,﹣6),B(3,0)可得直线解析式为y=x﹣,此时直线y=x﹣与新图象G有3个交点,∴直线y=kx+k﹣6与新图象G有4个公共点,需满足k<,而抛物线y=﹣x2+2x+3关于x轴对称的抛物线解析式为y=x2﹣2x﹣3,若直线y=kx+k﹣6与抛物线y=x2﹣2x﹣3有两个交点,即是有两组解,∴x2﹣(2+k)x+3﹣k=0有两个不相等的实数根,∴△>0,即[﹣(2+k)]2﹣4(3﹣k)>0,解得k>﹣4+2或k<﹣4﹣2(小于0,舍去),∴k>﹣4+2,因此,直线y=kx+k﹣6与新图象G有4个公共点,﹣4+2<k<.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?【解答】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB==,∴△ABP的周长为:AP+PB+AB=2+5+=7.(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD===1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形(3)如图6,当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t﹣3=3,∴t=2;如图7,当P点在AB上,Q在AC上,则AP=t﹣4,AQ=2t﹣8,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣4+2t﹣8=6,∴t=6,∴当t为2或6秒时,直线PQ把△ABC的周长分成相等的两部分.。
中考仿真模拟测试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣20162.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 904. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣85.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y66.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 37.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A.7B.38C.78D.589.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°10.已知二次函数的与的部分对应值如下表:-1 0 1 3 -3131下列结论:①抛物线开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个二.填空题(共4小题)11.在实数117,-(-1),3π, 1.21,313113113,5中,无理数有______个.12.若正六边形的边长为3,则其面积为_____.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=.16.计算:8﹣(12)﹣1﹣|21-|17.如图,已知线段AB.(1)仅用没有刻度直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C处放置一块镜子,小明站在BC的延长线上,当小明在镜子中刚好看到树的顶点A时,测得小明到镜子的距离CD=2米,小明的眼睛E到地面的距离ED=1.5米;②将镜子从点C沿BC的延长线向后移动10米到点F处,小明向后移动到点H处时,小明的眼睛G又刚好在镜子中看到树的顶点A,这时测得小明到镜子的距离FH=3米;③计算树的高度AB;21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张. (1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由. 23.如图,AB 是⊙O 的直径,点C 、E 在⊙O 上,∠B =2∠ACE ,在BA 的延长线上有一点P ,使得∠P =∠BAC ,弦CE 交AB 于点F ,连接AE .(1)求证:PE 是⊙O 切线;(2)若AF =2,AE =EF =10,求OA 的长.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H. (1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.答案与解析一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣2016 【答案】B【解析】【分析】根据零次幂直接回答即可.【详解】解:20160=1.故选:B.【点睛】本题是对零次幂的考查,熟练掌握零次幂知识是解决本题的关键.2.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.【答案】A【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:它的俯视图为.故选A.点睛:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 90【答案】B【解析】∵∠DFE=135°,∴∠CFE=180°-135°=45°.∵AB∥CD,∴∠ABE=∠CFE=45°.故选B.4. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣8【答案】A【解析】试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.考点:一次函数图象上点的坐标特征.5.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y6【答案】C【解析】【分析】根据整式运算依次判断即可.【详解】解:A、6x6÷2x3=3x3,故选项A错误;B、x2+x2=2x2,故选项B错误;C、﹣2x2y(x﹣y)=﹣2x3y+2x2y2,故选项C正确;D、(﹣3xy2)3=﹣27x3y6,故选项D错误;故选:C.【点睛】本题是对整式乘除的考查,熟练掌握积的乘方,单项式乘多项式及单项式除以单项式运算是解决本题的关键.6.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 3【答案】A 【解析】 【分析】如图,过点D 作DF ⊥AC 于F ,由角平分线的性质可得DF=DE=1,在Rt △BED 中,根据30度角所对直角边等于斜边一半可得BD 长,在Rt △CDF 中,由∠C=45°,可知△CDF 为等腰直角三角形,利用勾股定理可求得CD 的长,继而由BC=BD+CD 即可求得答案. 【详解】如图,过点D 作DF ⊥AC 于F ,∵AD 为∠BAC 的平分线,且DE ⊥AB 于E ,DF ⊥AC 于F , ∴DF=DE=1,在Rt △BED 中,∠B=30°, ∴BD=2DE=2,在Rt △CDF 中,∠C=45°, ∴△CDF 为等腰直角三角形, ∴CF=DF=1,∴22DF CF +2, ∴BC=BD+CD=22+, 故选A.【点睛】本题考查了角平分线的性质,含30度角的直角三角形的性质,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.7.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.【答案】D 【解析】 【分析】直接根据”上加下减”的原则进行解答即可.【详解】解:由”上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1, 解得n=2. 故选D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A. 7B.38C.78D.58【答案】C 【解析】 【分析】如图,过点D 作DG BE ⊥,垂足为G ,则GD 3=,首先证明AEB ≌GED ,由全等三角形的性质可得到AE EG =,设AE EG x ==,则ED 4x =-,在Rt DEG 中依据勾股定理列方程求解即可. 【详解】如图所示:过点D 作DG BE ⊥,垂足为G ,则GD 3=,A G ∠∠=,AEB GED ∠∠=,AB GD 3==,AEB ∴≌GED ,AE EG ∴=,设AE EG x ==,则ED 4x =-,在Rt DEG 中,222ED GE GD =+,222x 3(4x)+=-,解得:7x 8=, 故选C .【点睛】本题考查了矩形的性质、勾股定理的应用、全等三角形的判定与性质,依据题意列出关于x 的方程是解题的关键.9.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°【答案】B 【解析】 【分析】先根据等腰三角形得出OAB ∠的度数,再证的AOC ∆是等边三角形,最后根据圆周角定理求解即可. 【详解】连接OA ,∵o OBA 20∠=,OB OA = ∴o OAB=OBA 20∠∠= ∵AC OC =且OC OA = ∴AOC ∆是等边三角形 ∴6OA 0C ∠=︒∴BA OA OAB 60204=0C C =-︒-∠︒=∠∠︒ ∴=2=80BOC BAC ∠∠︒ 故选B.【点睛】本题主要考查了等腰三角形的性质,等边三角形的判定及性质,圆周角定理,正确作出辅助线证出AOC ∆是等边三角形是解本题的关键.10.已知二次函数的与的部分对应值如下表:-1 0 1 3-3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【详解】解:根据二次函数的图象具有对称性,由表格可知,二次函数y=ax2+bx+c有最大值,当x=033 22 +=时,取得最大值,可知抛物线的开口向下,故①正确;其图象的对称轴是直线x=32,故②错误;当x>32时,y随x的增大而减小,当x<32时,y随x的增大而增大,故③正确;根据x=0时,y=1,x=﹣1时,y=﹣3,方程ax2+bx+c=0的一个根大于﹣1,小于0,则方程的另一个根大于2×32=3,小于3+1=4,故④错误.故选B.考点:1、抛物线与x轴的交点;2、二次函数的性质二.填空题(共4小题)11.在实数117,-(-1),3π1.21,3131131135中,无理数有______个.【答案】2【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】在所列实数中,无理数有π3,5这2个,故答案为2.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.若正六边形的边长为3,则其面积为_____.【答案】273 2【解析】【分析】根据题意画出图形,由正六边形的特点求出∠AOB的度数及OG的长,再由△OAB的面积即可求解.【详解】解:∵此多边形为正六边形,如图:∴∠AOB=3606︒=60°;∵OA=OB,∴△OAB是等边三角形,∴OA=AB=3,∴OG=OA•cos30°=3×3332∴S△OAB=12×AB×OG=12×3×332934∴S六边形=6S△OAB=6×9342732.2732;【点睛】此题主要考查正多边形的计算问题,关键是由正六边形的特点求出∠AOB的度数及OG的长.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.【答案】6+25【解析】详解】解:设E(x,x),∴B(2,x+2),∵反比例函数kyx=(k≠0,x>0)的图象过点B. E.∴x2=2(x+2),115x∴=+,215x=-(舍去),()2215625k x∴==+=+,故答案为625+14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.【答案】134.【解析】【分析】根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.【详解】解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,OE=4,∵∠G=90°,FG=BG=AB=8,∴OG=12,∴OF=22F0G G+=413,∴EF=413﹣4,∴PD+PE的长度最小值为413﹣4,故答案为:413﹣4.【点睛】本题考查了正方形的性质和勾股定理,构直角三角形是解题的关键.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=【答案】21aa+,322【解析】【分析】先对括号内第一项因式分解同时将除法化为乘法,然后利用乘法分配律进行计算,再把结果相加,最后把a 的值代入计算即可.【详解】原式=2(1)1()(1) (1)(1)aaa a a-++ +-=11aaa+ -+=21aa+,当2a=时,原式=2(2)12+=322.16.计算:8﹣(12)﹣1﹣|21-|【答案】2﹣1【解析】【分析】先化简二次根式和绝对值,计算负整数幂,然后再计算得出结果即可.【详解】解:原式=22﹣2﹣(2﹣1)=22﹣2﹣2+1=2﹣1.【点睛】本题是对实数运算的考查,熟练掌握二次根式化简及负整数幂运算是解决本题的关键.17.如图,已知线段AB.(1)仅用没有刻度的直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.【答案】(1)见解析;(2)2.【解析】【分析】(1)以AB为边作等边三角形DAB,再以DB为边作等边三角形DBC,然后连接AC,则△ABC满足条件;(2)利用△ABD为等边三角形可确定等腰△ABC的外接圆的半径.【详解】解:(1)如图:△ABC为所求;(2)∵△ABD和△BCD为等边三角形,∴DA=DB=DC=AB,∴等腰△ABC的外接圆的半径为2,故答案2.点睛:本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.【答案】见解析【解析】【分析】先证四边形BDCE是平行四边形,再证CD=BD,即可证明是菱形.【详解】证明:∵BE∥CD,CE∥AB,∴四边形BDCE是平行四边形,∵∠ACB=90°,CD是AB边上的中线,∴CD=BD,∴平行四边形BDCE是菱形.【点睛】本题是对菱形判定的考查,熟练掌握菱形的判定是解决本题的关键.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?【答案】(1)详见解析;(2)432.【解析】【分析】(1)由阅读量为2本的人数及其百分比求得总人数,总人数剑气其他阅读数量的人数求得3本的人数,继而用阅读3本的人数除以总人数可得m的值;(2)用总人数乘以样本中阅读数量为3、4、5本人数所占的比例即可得.【详解】解:(1)被调查的学生人数为10÷20%=50人,阅读3本的人数为50﹣(4+10+14+6)=16,所以课外阅读量的众数是3本,则m%=1650×100%=32%,即m=32,补全图形如下:(2)估计该校600名学生中能完成此目标的有600×1614650++=432(人).【点睛】此题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C 处放置一块镜子,小明站在BC 的延长线上,当小明在镜子中刚好看到树的顶点A 时,测得小明到镜子的距离CD =2米,小明的眼睛E 到地面的距离ED =1.5米; ②将镜子从点C 沿BC 的延长线向后移动10米到点F 处,小明向后移动到点H 处时,小明的眼睛G 又刚好在镜子中看到树的顶点A ,这时测得小明到镜子的距离FH =3米; ③计算树高度AB ;【答案】树的高度AB 为15米 【解析】 【分析】设AB =x 米,BC =y 米,先证△ABC ∽△EDC ,得到1.52x y =,再证△ABF ∽△GHF ,得到101.53x y +=,从而求出x 的值即可.【详解】解:设AB =x 米,BC =y 米, ∵∠ABC =∠EDC =90°,∠ACB =∠ECD , ∴△ABC ∽△EDC ,∴AB BCED DC =, ∴1.52x y =, ∵∠ABF =∠GHF =90°,∠AFB =∠GFH , ∴△ABF ∽△GHF ,∴AB BFGH HF =, ∴101.53x y +=, ∴1023y y +=, 解得:y =20, 把y =20代入1.52x y =中得201.52x =, 解得x =15,∴树的高度AB 为15米.【点睛】本题是对相似三角形的综合考查,熟练掌握相似三角形判定及相似比是解决本题的关键.21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?【答案】(1)y=20﹣6x(x>0);(2)这时山顶的温度大约是14.21℃;(3)飞机离地面的高度为9千米【解析】【分析】(1)根据等量关系:高出地面x千米处的温度=地面温度-6℃×高出地面的距离,列出函数关系式;(2)把给出的自变量高出地面的距离0.965km代入一次函数求得;(3)把给出的函数值高出地面x千米处的温度-34℃代入一次函数求得x.【详解】解:(1)由题意得,y与x之间的函数关系式y=20﹣6x(x>0);(2)由题意得,x=0.965km,∴y=20﹣6×0.965=14.21(℃),则这时山顶温度大约是14.21℃;(3)由题意得,y=﹣34℃时,代入y=20﹣6x得,﹣34=20﹣6x,解得x=9km,答:飞机离地面的高度为9千米.【点睛】本题考查了一次函数的应用,比较简单,读懂题目信息,理解随着高度的增加,温度降低列出关系式是解题的关键.22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字的一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张.(1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由.【答案】(1)14;(2)这个游戏公平.【解析】【分析】(1)将所有可能的情况在图中表示出来,再根据概率公式计算可得;(2)计算出和为大于32和不大于32的概率,即可得到游戏是否公平【详解】解:(1)画树状图如下:由树状图知共有16种等可能结果,其中两次都恰好抽到2的有4种结果,所以两次都恰好抽到2的概率为14.(2)这个游戏公平.因为P(小贝获胜)=P(小晶获胜)=12.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.如图,AB是⊙O的直径,点C、E在⊙O上,∠B=2∠ACE,在BA的延长线上有一点P,使得∠P=∠BAC,弦CE交AB于点F,连接AE.(1)求证:PE是⊙O的切线;(2)若AF=2,AE=EF10,求OA的长.【答案】(1)见解析;(2)OA=5【解析】【分析】(1)连接OE,根据圆周角定理得到∠AOE=∠B,根据圆周角定理得到∠ACB=90°,求得∠OEP=90°,于是得到结论;(2)根据等腰三角形的性质得到∠OAE=∠OEA,∠EAF=∠AFE,再根据相似三角形的性质即可得到结论.【详解】解:(1)连接OE ,∴∠AOE =2∠ACE ,∵∠B =2∠ACE ,∴∠AOE =∠B ,∵∠P =∠BAC ,∴∠ACB =∠OEP ,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠OEP =90°,∴PE 是⊙O 的切线;(2)∵OA =OE ,∴∠OAE =∠OEA ,∵AE =EF ,∴∠EAF =∠AFE ,∴∠OAE =∠OEA =∠EAF =∠AFE ,∴△AEF ∽△AOE , ∴AE AF OA AE=, ∵AF =2,AE =EF 10∴OA =5.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定,切线的判定,正确的作出辅助线是解题的关键.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y 轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H.(1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.【答案】(1)2y x 2x 3=--+,(-1,4) (2)(-2,3),31711722⎛⎫-+-+ ⎪ ⎪⎝⎭,,31711722⎛--- ⎝⎭, (3)(-4,-5),(23-,359) 【解析】分析】 (1)将A(-3,0)、B(1,0)、D(0,3),代入y=ax 2+bx+3求出即可;(2)求出直线AD 的解析式,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,利用△ADE 与△ACD 面积相等,得出直线EC 和直线EH 的解析式,联立出方程组求解即可;(3) (3)分两种情况讨论:①点P 在对称轴左侧;②点P 在对称轴右侧.【详解】(1)设抛物线的解析式为2y ax bx c(a 0)=++<,∵抛物线过点A(-3,0),B(1,0),D(0,3), ∴93003a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得,a=-1,b=-2,c=3,∴抛物线解析式为2y x 2x 3=--+,顶点C(-1,4);(2)如图1,∵A(-3,0),D(0,3),∴直线AD 的解析式为y=x+3,设直线AD 与CH 交点为F ,则点F 的坐标为(-1,2)∴CF=FH,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,由平行间距离处处相等,平行线分线段成比例可知,△ADE 与△ACD 面积相等,∴直线EC 的解析式为y=x+5,直线EH 的解析式为y=x+1,分别与抛物线解析式联立,得25x 23y x y x =+⎧⎨=--+⎩,21x 23y x y x =+⎧⎨=--+⎩,解得点E 坐标为(-2,3),⎝⎭,⎝⎭; (3)①若点P 在对称轴左侧(如图2),只能是△CPQ∽△ACH,得∠PCQ=∠CAH, ∴PQ CH 2CQ AH==, 分别过点C 、P 作x 轴的平行线,过点Q 作y 轴的平行线,交点为M 和N ,由△CQM∽△QPN, 得PQ PN QN CQ MQ CM===2, ∵∠MCQ=45°,设CM=m ,则MQ=m ,PN=QN=2m ,MN=3m ,∴P 点坐标为(-m-1,4-3m),将点P 坐标代入抛物线解析式,得()()2m 12m 1343m -++++=-,解得m=3,或m=0(与点C 重合,舍去)∴P 点坐标为(-4,-5);②若点P 在对称轴右侧(如图①),只能是△PCQ∽△ACH,得∠PCQ=∠ACH, ∴PQ AH 1CQ CH 2==, 延长CD 交x 轴于M ,∴M(3,0)过点M 作CM 垂线,交CP 延长线于点F ,作FNx 轴于点N , ∴PQ FM 1CQ CM 2==, ∵∠MCH=45°,CH=MH=4∴MN=FN=2,∴F 点坐标为(5,2),∴直线CF 的解析式为y=111x 33-+, 联立抛物线解析式,得211133x 23y x y x ⎧=-+⎪⎨⎪=--+⎩,解得点P 坐标为(23-,359), 综上所得,符合条件的P 点坐标为(-4,-5),(23-,359).【点睛】本题考查了二次函数的综合应用以及相似三角形的应用,二次函数的综合应用是初中阶段的重点题型,特别注意分类讨论思想的应用.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD 中,P 为CD 边上的一个动点,当点P 位于何处时,∠APB 最大?并说明理由;问题解决(3)如图③,在一幢大楼AD 上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.【答案】(1)>;(2)当点P位于CD的中点时,∠APB最大,理由见解析;(3)410米.【解析】【分析】(1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小(2)假设P为CD的中点,作△APB的外接圆⊙O,则此时CD切⊙O于P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB与∠APB 均为⊙O中弧AB所对的角,则∠AFB=∠APB,即可判断∠APB与∠AEB的大小关系,即可得点P位于何处时,∠APB最大;(3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.【详解】解:(1)∠AEB>∠ACB,理由如下:如图1,过点E作EF⊥AB于点F,∵在矩形ABCD中,AB=2AD,E为CD中点,∴四边形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°,∴∠ACB<90°,∴∠AEB>∠ACB.故答案为>;(2)当点P位于CD的中点时,∠APB最大,理由如下:假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,∵∠AFB是△EFB的外角,∴∠AFB>∠AEB,∵∠AFB=∠APB,∴∠APB>∠AEB,故点P位于CD的中点时,∠APB最大:(3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,由题意知DP=OQ=,∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,BD=11.6米, AB=3米,CD=EF=1.6米,∴OA=11.6+3﹣1.6=13米,∴DP=米,即小刚与大楼AD之间的距离为4米时看广告牌效果最好.【点睛】本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.。
中考仿真模拟测试《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列实数中,无理数是( )A. 3.14B. 2.12122C. 39D. 237 2. 如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A. B. C. D. 3. 下列计算正确的是( )A. ()222a b a b +=+B. ()3326a a -=- C. 428a a a ⋅= D. ()()2111a a a -+--=- 4. 如图所示,已知AB ∥CD ,EF 平分∠CEG ,∠1=80°,则∠2的度数为( )A. 20°B. 40°C. 50°D. 60°5. 若正比例函数y kx =图象的经过一、三象限,且过点()2,4A a 和()2,B a ,则的值为( ) A. B. C. D.6. 如图,ABC ∆中,,70,AB AC C BD =∠=︒是AC 边上的高线,点在AB 上,且BE BD =,则ADE ∠的度数为( )A. 20︒B. 25︒C. 30D. 35︒ 7. 将直线1:12L y x =-向左平移个单位长度得到直线,则直线解析式为( ) A. 112y x =+ B. 122y x =+ C. 132y x =+ D. 112y x =-+ 8. 如图,菱形ABCD 的对角线,AC BD 相交于点,过点作AE BC ⊥于点,连接OE .若6OB =,菱形ABCD 的面积为,则OE 的长为( )A. B. 4.5 C. D.9. 如图,四边形ABCD 内接于半径为的O 中,连接AC ,若,45AB CD ACB =∠=︒,12ACD BAC ∠=∠,则BC 的长度为( )A. 3B. 62C. 3D. 9210. 已知抛物线2:4W y x x c =-+,其顶点为,与轴交于点,将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则的值为( )A. 32-B. 3C. 32D. 52二、填空题11. 分解因式:224ax ay -=________.12. 已知正六边形的周长为,则这个正六边形的边心距是_______. 13. 如图,在平面直角坐标系中,过原点的直线与反比例函数80y x x=-(<)交于点,与反比例函数 ()0k y x x=>交于点,过点作轴的垂线,过点作轴的垂线,两直线交于点,若ABC ∆的面积为,则的值为_______.14. 如图,正方形ABCD 的边长为,点在AD 上,连接 BP CP 、,则 s in BPC ∠的最大值为________.三.解答题15. 计算:211133tan 3033-⎛⎫⨯-+︒ ⎪⎝⎭. 16. 化简:221111x x x x x ⎛⎫-+--÷ ⎪++⎝⎭. 17. 如图,已知ABC ∆,点AB 边上,且90ACD ∠=︒,请用尺规作图法在BC 边上求作一点,使得APC ADC ∠=∠.(保留作图痕迹,不写作法)18. 如图,已知点 ,,,A D C B 在同一直线上,,//,//AD BC DE CF AE BF =;求证:AE BF =.19. 2021年高考方案与高校招生政策都将有重大的变化,我市某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为,,,四个等级,并对调查结果分析后绘制了如下两幅不完整的统计图,请你根据图中提供的信息完成下列问题:(1)求被调查学生人数,并将条形统计图补充完整;(2)求扇形统计图中的等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度为等学生有多少人?20. 如图,在建筑物顶部有一长方形广告牌架CDEF ,已知2CD m =,在地面上处测得广告牌 上端的仰角为,且34tan α=,前进10m 到达处,在处测得广告牌架下端的仰角为45︒,求广告牌 架下端到地面的距离.21. 在抗击新型冠状病毒感染的肺炎疫情过程中,某医药研究所正在试研发一种抑制新型冠状病毒的药物,据临床观察:如果成人按规定的剂量注射这种药物,注射药物后每毫升血液中的含药量 (微克)与时间 (小时)之间的关系近似地满足图中折线.(1)求注射药物后每毫升血液中含药量与时间之间的函数关系式,并写出自变量的取值范围;(2)据临床观察:每毫升血液中含药量不少于微克时,对控制病情是有效的.如果病人按规定的剂量注射 该药物后,求控制病情的有效时间.22. 现有,,,A B C D 四张不透明的卡片,除正面上的图案不同外,其他均相同,将这四张卡片背 面向上洗匀后放在桌面上.(1)从中随机取出一张卡片,卡片上图案是中心对称图形的概率是_____;(2)若从四张卡片中随机拿出两张卡片,请用画树状图或列表的方法,求抽取的两张卡片都是轴对称图形的概率.23. 如图,已知以Rt ABC ∆的边AB 为直径作ABC ∆的外接圆的,O ABC ∠平分线BE 交AC 于,交O 于,过作//EF AC 交BA 的延长线于.(1)求证:EF 是O 切线;(2)若15,10,AB EF ==求AE 的长.24. 如图,已知抛物线2y x bx c =-++与直线AB 交于点()3,0A -,点()1,4B .(1)求抛物线的解析式;(2)点M 是轴上方抛物线上一点,点是直线AB 上一点,若A O M N 、、、以为顶点的四边形是以 OA 为边的平行四边形,求点M 的坐标.25. 问题发现(1)如图①,ABC ∆为边长为的等边三角形,是AB 边上一点且CD 平分ABC ∆的面积,则线段CD 的长度为____;问题探究(2)如图②,ABCD 中,6,8,60AB BC B ==∠=︒,点M 在AD 上,点在BC 上,若MN 平分ABCD 的面积,且MN 最短,请你画出符合要求的线段MM ,并求出此时MN 与AM 的长度.问题解决(3)如图③,某公园的一块空地由三条道路围成,即线段AC AB BC 、、,已知160AB =米,120BC =米,90,AC ABC ∠=︒的圆心在AB 边上,现规划在空地上种植草坪,并AC 的中点修一条直路PM (点M 在 AB 上).请问是否存在PM ,使得PM 平分该空地的面积?若存在,请求出此时AM 的长度;若不存在,请说明理由.答案与解析一、选择题1. 下列实数中,无理数是()A. 3.14B. 2.12122C. 39D. 23 7【答案】C【解析】【分析】根据无理数的定义,逐一判断选项,即可得到答案.【详解】∵3.14,2.12122,237是分数,属于有理数,39是无理数,∴C符合题意,故选C.【点睛】本题主要考查无理数的定义,掌握实数的分类以及无理数的定义,是解题的关键.2. 如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A. B. C. D.【答案】B【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中【详解】从几何体的左边看可得到一个正方形,正方形的右上角处有一个小正方形,故选B.【点睛】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.3. 下列计算正确的是()A. ()222a b a b +=+B. ()3326a a -=- C. 428a a a ⋅=D. ()()2111a a a -+--=- 【答案】D【解析】【分析】 根据完全平方公式,积的乘方公式,同底数幂的乘法法则以及平方差公式,逐一判断选项,即可.【详解】A. ()2222a b a ab b +=++,故本选项错误,B. ()3328a a -=-,故本选项错误,C 426a a a ⋅=,故本选项错误,D. ()()22211(1)1a a a a -+--=--=-,故本选项正确. 故选D .【点睛】本题主要考查完全平方公式,积的乘方公式,同底数幂的乘法法则以及平方差公式,熟练掌握上述公式和法则是解题的关键.4. 如图所示,已知AB∥CD,EF 平分∠CEG,∠1=80°,则∠2的度数为( )A. 20°B. 40°C. 50°D. 60°【答案】C【解析】 【详解】解:∵EF 平分∠CEG ,∴∠CEG=2∠CEF又∵AB ∥CD ,∴∠2=∠CEF=(180°-∠1)÷2=50°,故选:C .5. 若正比例函数y kx =图象的经过一、三象限,且过点()2,4A a 和()2,B a ,则的值为( ) A.B. C. D.【答案】D【解析】【分析】把()2,4A a 和()2,B a 代入y kx =,结合函数y kx =图象的经过一、三象限,即可得到答案. 【详解】∵正比例函数y kx =图象过点()2,4A a 和()2,B a , ∴422ak a k =⎧⎨=⎩,解得:1k =±, ∵正比例函数y kx =图象的经过一、三象限,∴k >0,∴k=1.故选D .【点睛】本题主要考查正比例函数的待定系数法以及比例系数的几何意义,掌握正比例函数y kx =图象的经过一、三象限,则k >0,是解题的关键.6. 如图,ABC ∆中,,70,AB AC C BD =∠=︒是AC 边上的高线,点在AB 上,且BE BD =,则ADE ∠的度数为( )A. 20︒B. 25︒C. 30D. 35︒【答案】B【解析】【分析】 根据等腰三角形的性质,得∠ABC=∠C ,∠A=40°,由直角三角形的性质得∠ABD=50°,从而得∠BDE=65°,进而即可求解.【详解】∵ABC ∆中,,70AB AC C =∠=︒,∴∠ABC=∠C=70°,∠A=180°-70°=70°=40°,∵BD 是AC 边上的高线,∴∠ADB=90°,∴∠ABD=90°-40°=50°,∵BE BD =,∴∠BDE=∠BED=(180°-50°)÷2=65°,∴ADE ∠=90°-65°=25°.故选B .【点睛】本题主要考查等腰三角形的性质定理,直角三角形的性质定理,掌握等腰三角形的底角相等,直角三角形的两个锐角互余,是解题的关键.7. 将直线1:12L y x =-向左平移个单位长度得到直线,则直线的解析式为( ) A 112y x =+ B. 122y x =+ C. 132y x =+ D. 112y x =-+ 【答案】A【解析】【分析】根据一次函数的平移规律:”左加右减,上加下减”,即可得到答案.【详解】将直线1:12L y x =-向左平移个单位长度得到:11(4)1122y x x =+-=+, 故选A .【点睛】本题主要考查一次函数的平移后所得的新一次函数解析式,掌握一次函数的平移规律:”左加右减,上加下减”,是解题的关键.8. 如图,菱形ABCD 的对角线,AC BD 相交于点,过点作AE BC ⊥于点,连接OE .若6OB =,菱形ABCD 的面积为,则OE 的长为( )A.B. 4.5C.D.【答案】B【解析】【分析】由6OB =,菱形ABCD 的面积为,得OC=4.5,根据直角三角形的性质,即可求解.【详解】∵6OB =,菱形ABCD 的面积为,∴54413.5BOC S =÷=,∵AC ⊥BD ,∴OC=13.5×2÷6=4.5, ∵AE BC ⊥,AO=CO ,∴OE=OC=4.5,故选B .【点睛】本题主要考查菱形的性质定理和直角三角形的性质定理,掌握菱形的对角线互相垂直平分,直角三角形斜边上的中线等于斜边的一半,是解题的关键.9. 如图,四边形ABCD 内接于半径为的O 中,连接AC ,若,45AB CD ACB =∠=︒,12ACD BAC ∠=∠,则BC 的长度为( )A. 63B. 2C. 93D. 2【答案】A【解析】【分析】 连接OA ,OB ,OC ,OD ,过点O 作OM ⊥BC 于点M ,易得∠AOB=∠COD=90°,∠DAC=∠ACB=45°,从而得∠OAD=∠CAB ,进而得∠OAD=∠AOD ,可得∠AOD=60°,∠BOC=120°,进而即可求解.【详解】连接OA ,OB ,OC ,OD ,过点O 作OM ⊥BC 于点M ,∵在四边形ABCD 内接于半径为的O 中,,45AB CD ACB =∠=︒,∴∠AOB=∠COD=2∠ACB=90°,∠DAC=∠ACB=45°,∵OA=OB ,∴∠OAB=45°,∴∠OAD=∠DAC+∠CAO=∠OAB+∠CAO=∠CAB ,又∵∠ACD=12∠AOD ,12ACD BAC ∠=∠, ∴∠AOD=∠BAC ,∴∠OAD=∠AOD ,∴AD=OD ,∵OD=OA ,∴∆AOD 是等边三角形,∴∠AOD=60°,∴∠BOC=360°-90°-90°-60°=120°,∵OC=OC=6,∴∠OCM=30°, ∴CM=32OC=33, ∴BC=2 CM==63.故选A .【点睛】本题主要考查圆的基本性质,熟练掌握圆周角定理以及推论,圆心角定理,垂径定理,等腰三角形的性质定理,是解题的关键.10. 已知抛物线2:4W y x x c =-+,其顶点为,与轴交于点,将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则的值为( )A. 3 3 C. 32 D. 52【答案】D【解析】【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形性质,列出关于c 的方程,即可求解. 【详解】∵抛物线2:4W y x x c =-+,其顶点为,与轴交于点,∴A(2,c-4),B(0,c),∵将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形,∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D .【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键. 二、填空题11. 分解因式:224ax ay -=________.【答案】a(x-2y)( x+2y)【解析】【分析】先提取公因式,再利用平方差公式进行分解因式,即可.【详解】224ax ay -=a(x 2-4y 2)= a(x-2y)( x+2y).故答案是:a(x-2y)( x+2y).【点睛】本题主要考查分解因式,掌握提取公因式法和公式法分解因式,是解题的关键.12. 已知正六边形的周长为,则这个正六边形的边心距是_______.【解析】【分析】设正六边形的中心为点O ,AB 为一条边,过点O 作OC ⊥AB 于点C ,连接OA ,OB ,易得∆AOB 是等边三角形,进而即可求解.【详解】设正六边形的中心为点O ,AB 为一条边,过点O 作OC ⊥AB 于点C ,连接OA ,OB , ∴∠AOB=60°,OA=OB ,即:∆AOB 是等边三角形,∴∠OAB=60°,∵正六边形的周长为,∴OA=OB =AB=2,∴OC=32OA=3. ∴这个正六边形的边心距是:3.故答案是:3.【点睛】本题主要考查正六边形的性质以及等边三角形的判定和性质定理,掌握等边三角形的性质定理,是解题的关键.13. 如图,在平面直角坐标系中,过原点的直线与反比例函数80y x x=-(<)交于点,与反比例函数 ()0k y x x=>交于点,过点作轴的垂线,过点作轴的垂线,两直线交于点,若ABC ∆的面积为,则的值为_______.【答案】-2【解析】【分析】设A(a ,8a -),B(b ,k b ),AC 交x 轴于点D ,BC 交y 轴于点E ,易得∆DAO ~∆ EOB ,从而得2()AOD BOE S AD S OE=,进而得228b k a-=,由ABC ∆的面积为,得1610b a ka -=+,进而得到关于b a 的方程,即可求解. 【详解】设A(a ,8a -),B(b ,k b ),AC 交x 轴于点D ,BC 交y 轴于点E ,由题意得:k <0,a <0,b >0, ∴4AOD S =,22BOE k k S ==-,AD=8a -,OE=k b-, ∵AD ∥OE ,OD ∥BE ,∴∠DAO=∠EOB ,∠AOD=∠OBE ,∴∆DAO ~∆ EOB ,∴2()AOD BOE S AD S OE =,即:2842a k k b -⎛⎫ ⎪= ⎪ ⎪--⎝⎭,化简得:228a k b =-, ∴228b k a -=, ∵ABC ∆的面积为,∴(b-a )(8a --k b)=18,化简:22810a k b ab kab -=+, ∴21610b ab kab -=+,即:1610b a ka -=+,∴24-8-5=0b b a a ⎛⎫ ⎪⎝⎭,解得:12b a =-或52b a =(不合题意,舍去), ∴228b k a-==-2. 故答案是:-2.【点睛】本题主要考查反比例函数的图象和性质,比例系数的几何意义以及相似三角形的判定和性质定理,根据函数图象上点的坐标特征,三角形的面积公式以及相似三角形的性质,列出方程,是解题的关键. 14. 如图,正方形ABCD 的边长为,点在AD 上,连接 BP CP 、,则 s in BPC ∠的最大值为________.【答案】45【解析】【分析】 先证明当AP=DP=2时, s in BPC ∠有最大值,过点B 作BE ⊥PC 于点E ,根据勾股定理求出PB=PC=25根据三角形的面积法,求出BE 的值,进而即可得到答案.【详解】设∠APB=x ,∠DPC=y ,∴∠BPC=180°-∠APB -∠DPC=180°-(x+y ),∵当x >0,y >0时,2()0x y ≥, ∴20x y xy +-≥,即:2x y xy +≥x=y 时,2x y xy +=,∴当x=y 时,x+y 有最小值,此时,∠BPC=180°-(x+y )有最大值,即 s in BPC ∠有最大值.∵在正方形ABCD 中,∠A=∠D ,AB=CD ,当∠APB=∠DPC 时,∴∆APB ≅ DPC (AAS ),∴AP=DP=2,∴PB=PC=222425+=,过点B 作BE ⊥PC 于点E ,∵114422BCP S PC BE =⨯⨯=⋅, ∴BE=855, ∴ s in BPC ∠=8545525BE PB ==. 故答案是:45.【点睛】本题主要考查正方形的性质定理,勾股定理,锐角三角函数的定义以及全等三角形的判定和性质定理,证明当点P 是AD 的中点时, s in BPC ∠有最大值,是解题的关键.三.解答题15. 计算:211133tan 3033-⎛⎫⨯-+︒ ⎪⎝⎭. 【答案】【解析】【分析】先算负整数指数幂,绝对值以及特殊角三角函数值,再进行加减运算,即可求解.【详解】原式=13931)333⨯-+⨯=3313=.【点睛】本题主要考查实数的混合运算,掌握负整数指数幂的运算法则,求绝对值法则以及特殊角三角函数值,是解题的关键.16. 化简:221111x x x x x ⎛⎫-+--÷ ⎪++⎝⎭. 【答案】-x+1【解析】【分析】先算分式的减法运算,再把除法化为乘法,然后进行约分,即可得到答案.【详解】原式=212111x x x x x x ⎛⎫+-+-+⋅ ⎪+-⎝⎭=221111x x x x x ⎛⎫-+-+⋅ ⎪+-⎝⎭=2(1)111x x x x -+-⋅+- =-(x-1)=-x+1.【点睛】本题主要考查分式的化简,掌握分式的通分和约分,是解题的关键.17. 如图,已知ABC ∆,点在AB 边上,且90ACD ∠=︒,请用尺规作图法在BC 边上求作一点,使得APC ADC ∠=∠.(保留作图痕迹,不写作法)【答案】见详解【解析】【分析】作AD 的垂直平分线交AD 于点O ,以点O 为圆心,OD 长为半径,画圆,交BC 于点P ,即可.【详解】如图所示:∆ADC 的外接圆与BC 的交点P ,即为所求.【点睛】本题主要考查尺规作垂直平分线以及三角形的外接圆,掌握直角三角形的外接圆的圆心是斜边的中点,圆周角定理的推论,是解题的关键.18. 如图,已知点 ,,,A D C B 在同一直线上,,//,//AD BC DE CF AE BF =;求证:AE BF =.【答案】见详解【解析】【分析】根据平行线的性质得∠A=∠B ,∠CDE=∠DCF ,从而得∠ADE=∠BCF ,再根据ASA ,即可得到结论.【详解】∵//DE CF ,∴∠CDE=∠DCF ,∴∠ADE=∠BCF ,∵//AE BF ,∴∠A=∠B ,又∵AD BC =,∴∆ADE ≅∆BCF (ASA ),∴AE BF =.【点睛】本题主要考查三角形全等的判定和性质定理以及平行线的性质定理,掌握 ASA 证明三角形全等,是解题的关键.19. 2021年高考方案与高校招生政策都将有重大的变化,我市某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为,,,四个等级,并对调查结果分析后绘制了如下两幅不完整的统计图,请你根据图中提供的信息完成下列问题:(1)求被调查学生的人数,并将条形统计图补充完整;(2)求扇形统计图中的等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度为等的学生有多少人?【答案】(1)被调查学生的人数为200人.补全条形统计图见解析;(2)等对应的圆心角的度数为18︒;(3)对政策内容了解程度达到等的学生人数有75人.【解析】【分析】(1)从两个统计图中可得B 组的人数为50人,占调查人数的25%,可求出调查人数,从而计算出A 等人数和D 等人数,补全条形统计图,(2)用360°乘以D 组所占的百分比即可,(3)样本估计总体,用样本中D 组所占的百分比乘以总人数即可.【详解】(1)5020025%=(人) ∴被调查学生的人数为200人.等的人数:20060%120⨯=(人),等的人数:200120502010---=(人),补全条形统计图如下.(2)1036018200⨯︒=︒ ∴等对应的圆心角的度数为18︒. (3)10150075200⨯=(人) ∴对政策内容了解程度达到等的学生人数有75人.【点睛】考查条形统计图、扇形统计图的制作方法,从两个统计图中获取有用的数据,理清统计图中各个数据之间的关系是解决问题的关键,用样本估计总体是统计中常用的方法.20. 如图,在建筑物顶部有一长方形广告牌架CDEF ,已知2CD m =,在地面上处测得广告牌 上端的仰角为,且34tan α=,前进10m 到达处,在处测得广告牌架下端的仰角为45︒,求广告牌 架下端到地面的距离.【答案】22m【解析】【分析】延长CD 交AB 的延长线于H ,设DH=xm ,在Rt △DHB 中,利用正切的定义,用x 表示出BH ,在Rt △CAH 中,根据正切的定义,列出关于x 的方程,即可求解.【详解】延长CD 交AB 延长线于H ,则CD ⊥AB ,设DH=xm ,则CH=(x+2)m ,在Rt △DHB 中,tan45°=DH BH, ∴BH=DH tan45°=xm ,∴AH=AB+BH=(x+10)m ,在Rt △CAH 中,tan=CH AH ,即210x x ++=0.75, 解得:x=22, 答:广告牌架下端D 到地面的距离为22m .【点睛】本题主要考查解直角三角形的实际应用,熟练掌握锐角三角函数的定义,添加合适的辅助线,构造直角三角形,是解题的关键.21. 在抗击新型冠状病毒感染的肺炎疫情过程中,某医药研究所正在试研发一种抑制新型冠状病毒的药物,据临床观察:如果成人按规定的剂量注射这种药物,注射药物后每毫升血液中的含药量 (微克)与时间 (小时)之间的关系近似地满足图中折线. (1)求注射药物后每毫升血液中含药量与时间之间的函数关系式,并写出自变量的取值范围;(2)据临床观察:每毫升血液中含药量不少于微克时,对控制病情是有效的.如果病人按规定的剂量注射 该药物后,求控制病情的有效时间.【答案】(1)2206(110)33(01)y t t t t ⎧⎪=⎨-+<≤≤≤⎪⎩;(2)103(小时) 【解析】【分析】(1)当0≤t ≤1时,是正比例函数,用待定系数法进行求解,即可,当1<t ≤10时,是一次函数,用待定系数法求函数的关系式,即可;(2)当0≤t ≤1时,当含药量上升到4微克时,控制病情开始有效,令y=4,代入y=6t ,求出对应的t 值,同理,当1<t ≤10时,求出另一个t 值,他们的差就是药的有效时间.【详解】(1)当0≤t ≤1时,设y=k 1t ,则6=k 1×1,∴k 1=6,∴y=6t .当1<t ≤10时,设y=k 2t+b ,∴226010k b k b =+=+⎧⎨⎩,解得:223203k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴ y=23-t+203, 综上所述:2206(110)33(01)y t t t t ⎧⎪=⎨-+<≤≤≤⎪⎩; (2)当0≤t ≤1时,令y=4,即:6t=4,解得:t=23, 当0<t ≤10时,令y=4,即:23-t+203=4,解得:t=4, ∴控制病情的有效时间为:4−23=103(小时). 【点睛】本题主要考查一次函数的实际应用,掌握一次函数的图象上的点的坐标特征和待定系数法,是解题的关键.22. 现有,,,A B C D 四张不透明的卡片,除正面上的图案不同外,其他均相同,将这四张卡片背 面向上洗匀后放在桌面上.(1)从中随机取出一张卡片,卡片上的图案是中心对称图形的概率是_____;(2)若从四张卡片中随机拿出两张卡片,请用画树状图或列表的方法,求抽取的两张卡片都是轴对称图形的概率.【答案】(1)14;(2)12 【解析】【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】(1)∵4中卡片中,只有1张是中心对称图形,∴从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为14, 故答案为:14; (2)画树状图如下:由树状图知,共有12种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果, ∴两次所抽取的卡片恰好都是轴对称图形的概率为:61122=.【点睛】本题主要考查等可能随机事件的概率,学会画树状图,掌握概率公式,是解题的关键. 23. 如图,已知以Rt ABC ∆的边AB 为直径作ABC ∆的外接圆的,O ABC ∠平分线BE 交AC 于,交O 于,过作//EF AC 交BA 的延长线于.(1)求证:EF 是O 切线;(2)若15,10,AB EF ==求AE 的长.【答案】(1)见详解;(2)35【解析】【分析】(1)要证EF 是 O 的切线,只要连接OE ,再证∠FEO=90°即可;(2)证明△FEA ∽△FBE ,得出EF AF BF EF =,从而得到AF 的值,进而得到12AE BE =,结合勾股定理得到关于AE 的方程,即可求出AE 的长.【详解】(1)连接OE ,∵∠B 的平分线BE 交AC 于D ,∴∠CBE=∠OBE ,∵EF ∥AC ,∴∠CAE=∠FEA ,∵∠OBE=∠OEB ,∠CBE=∠CAE ,∴∠FEA=∠OEB ,∵AB 是O 的直径,∴∠AEB=90°,∴∠FEO=90°,∴EF 是O 切线;(2)∵∠FEA=∠OEB=∠OBE ,∠F=∠F ,∴∆FEA ~∆FBE , ∴EF AF BF EF =, 即:2EF AF BF =⋅,∴AF×(AF+15)=10×10,解得:AF=5或AF=-20(舍去), ∴51102AE AF BE EF ===, ∵在Rt ∆ABE 中,AE 2+BE 2=AB 2,∴AE 2+(2AE )2=152,∴AE=35.【点睛】本题主要考查切线的判定定理,圆周角定理,相似三角形的判定和性质定理以及勾股定理,掌握切线的判定定理以及相似三角形的判定和性质定理是解题的关键.24. 如图,已知抛物线2y x bx c =-++与直线AB 交于点()3,0A -,点()1,4B .(1)求抛物线的解析式;(2)点M 是轴上方抛物线上一点,点是直线AB 上一点,若A O M N 、、、以为顶点的四边形是以 OA 为边的平行四边形,求点M 的坐标.【答案】(1)2 6y x x =--+;(2)(0,6)或(-2,4)或(17-+17-).【解析】【分析】(1)根据待定系数法,即可得到答案;(2)先求出直线AB 的解析式,由平行四边形的性质得AO=MN=3且AO ∥MN ,设M(x ,26x x --+),则N(x+3,x+6)或N(x-3,x),根据M ,N 的纵坐标相等,列出关于x 的方程,即可求解.【详解】(1)∵抛物线2y x bx c =-++与直线AB 交于点() 3,0A -,点() 1,4B , ∴ 09341b c b c =--+=-++⎧⎨⎩,解得: 16b c =-=⎧⎨⎩, ∴抛物线解析式为:26y x x =--+; (2)设直线AB 的解析式为:y=kx+m , 把() 3,0A -,() 1,4B ,代入得: 034k m k m =-+=+⎧⎨⎩,解得: 13k m ==⎧⎨⎩, ∴直线AB 的解析式为:y=x+3.∵以A O M N 、、、为顶点的四边形是以OA 为边的平行四边形,∴AO=MN=3且AO ∥MN ,∵点M 是轴上方抛物线上一点,点是直线AB 上一点,∴设M(x ,26x x --+),则N(x+3,x+6)或N(x-3,x),∴26x x --+=x+6或26x x --+=x ,解得:10x =,22x =-,317x =-417x =-令y=0代入26y x x =--+,得:2 60x x --+=,解得:x=-3或x=2,∴抛物线与x 轴的另一个交点坐标为(2,0),∵点M 是轴上方抛物线上一点,∴点M 的横坐标取值范围为:-3<x <2,∴点M 的坐标为:(0,6)或(-2,4)或(17-+,17-+).【点睛】本题主要考查二次函数与一次函数的综合以及平行四边形的性质,掌握待定系数法,函数图象上的点的坐标特征以及平行四边形的对边平行且相等,是解题的关键.25. 问题发现(1)如图①,ABC ∆为边长为的等边三角形,是AB 边上一点且CD 平分ABC ∆的面积,则线段CD 的长度为____;问题探究(2)如图②,ABCD 中,6,8,60AB BC B ==∠=︒,点M 在AD 上,点在BC 上,若MN 平分ABCD 的面积,且MN 最短,请你画出符合要求的线段MM ,并求出此时MN 与AM 的长度.问题解决(3)如图③,某公园的一块空地由三条道路围成,即线段AC AB BC 、、,已知160AB =米,120BC =米,90,AC ABC ∠=︒的圆心在AB 边上,现规划在空地上种植草坪,并AC 的中点修一条直路PM (点M 在 AB 上).请问是否存在PM ,使得PM 平分该空地的面积?若存在,请求出此时AM 的长度;若不存在,请说明理由.【答案】(12)AM=2.5,作图见详解;(3)存在PM ,使得PM 平分该空地的面积,AM= 146(米).【解析】【分析】(1)作CD ⊥AB 于点D ,利用等边三角形三线合一的性质和直角三角形的性质求出AD 的长,即可;(2)经过平行四边形对角线的交点的直线将平行四边形的面积分成相等的两部分,当MN ⊥BC 时,MN 最短,过A 作AE ⊥BC 于点E ,根据三角函数的定义,求AE 的长,即是MN 的长,再求出EN 的长,即AM 的长;(3)作AC 的垂直平分线EF 交AB 于点O ,交AC 于点D ,则点O 为AC 所在圆的圆心,通过锐角三角函数的定义,求得OD 的值,从而得AOD S ,OBCD S 四边形,在线段OB 上取点M ,连接PM ,使∆OPM 的面积=1050,进而求出OM ,即可求出AM 的值,然后得到结论.【详解】(1)如图①,作CD ⊥AB 于点D ,∵ABC ∆为边长为的等边三角形,∴AD=BD ,∴CD 平分ABC ∆的面积,∴(2)连接AC 、BD 交于点O ,过点O 作直线MN ,交AD 于M ,交BC 于N ,如图②,∵四边形ABCD 为平行四边形,∴OA=OC ,AD ∥BC ,∴∠CAD=∠ACB ,∵∠AOM=∠CON ,∴△AOM ≌△CON (ASA ),∴S △AOM =S △CON ,同理可得:△OMD ≌△ONB ,△AOB ≌△COD ,∴S △OMD =S △ONB ,S △AOB =S △COD ,∴S △AOM +S △AOB +S △BON =S △CON +S △COD +S △OMD ,即:MN 将四边形ABCD 分成面积相等的两部分,当MN ⊥BC 时,MN 最短,如图③所示,过A 作AE ⊥BC 于点E ,在Rt △ABE 中,∵∠ABC=60°,∴sin60°=AE AB,∴AE=2× ∵AD ∥BC ,AE ⊥BC ,MN ⊥BC ,∴∴此时MN 的长度为∵AE ∥MN ,AO=CO ,∴EN=CN ,∵BE=12AB=3, ∴CE=BC-BE=8-3=5,∴EN=2.5,∵AD ∥BC ,AE ⊥BC ,MN ⊥BC ,∴四边形AENM 是矩形,即:AM=EN=2.5;(3)存在PM ,使得PM 平分该空地的面积,理由如下:作AC 的垂直平分线EF 交AB 于点O ,交AC 于点D ,则点O 为AC 所在圆的圆心,如图④, ∵点P 是AC 的中点,∴点P 在直线EF 上,∵160AB =(米),120BC =(米),90ABC ∠=︒,∴=200(米),AD=12AC=100(米), ∵tan ∠BAC =34OD BC AD AB ==, ∴OD=34AD=75(米),∴11007537502AOD S =⨯⨯=(平方米), ∵112016096002ABC S =⨯⨯=(平方米), ∴960037505850OBCD S =-=四边形(平方米),∴图形OBCP 的面积比图形AOP 的面积多2100平方米,∴在线段OB 上取点M ,连接PM ,使∆OPM 的面积=1050(平方米),即可.∵sin ∠BAC=35OD BC OA AC ==, ∴OA=53OD=53×75=125(米), ∴OP=OA=125(米),过点M 作MN ⊥EF 于点N ,∴12OP ∙MN=1050,即:MN=2100÷125=845(米), ∵MN ∥AC ,∴∆AOD ~∆MON ,∴AD AO MN MO =,即:100125845MO =,解得:MO=21(米), ∴AM=AO+MO=125+21=146(米),∵AM <AB ,∴存在PM ,使得PM 平分该空地的面积,此时,AM= 146(米).【点睛】本题主要等边三角形的性质,平行四边形的性质,圆的基本性质,三角函数的定义以及相似三角形的判定和性质,熟练掌握垂径定理,三角函数的定义和相似三角形的性质,合理添加辅助线,构造直角三角形和相似三角形,是解题的关键.。
上海市2019年中考数学真题与模拟题分类 专题17 图形的变化之解答题(1)(50道题)(解析版)

专题17 图形的变化之解答题(1)参考答案与试题解析一.解答题(共50小题)1.(2019•上海)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.【答案】解:(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD是矩形,∴AD∥BC,∴∠AFD′=∠BHD′=90°.在Rt△AD′F中,D′F=AD′•sin∠DAD′=90×sin60°=45厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(4570)厘米.答:点D′到BC的距离为(4570)厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE.∵四边形ABCD是矩形,∴∠ADE=90°.在Rt△ADE中,AD=90厘米,DE=30厘米,∴AE30厘米,∴EE′=30厘米.答:E、E′两点的距离是30厘米.【点睛】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F的长度;(2)利用勾股定理求出AE的长度.2.(2019•上海)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC是菱形.【答案】证明:(1)如图1,连接BC,OB,OC,∵AB、AC是⊙O的两条弦,且AB=AC,∴A在BC的垂直平分线上,∵OB=OA=OC,∴O在BC的垂直平分线上,∴AO垂直平分BC,∴BD=CD;(2)如图2,连接OB,∵AB2=AO•AD,∴,∵∠BAO=∠DAB,∴△ABO∽△ADB,∴∠OBA=∠ADB,∵OA=OB,∴∠OBA=∠OAB,∴∠OAB=∠BDA,∴AB=BD,∵AB=AC,BD=CD,∴AB=AC=BD=CD,∴四边形ABDC是菱形.【点睛】本题考查了相似三角形的性质和判定,圆心角、弧、弦之间的关系,线段垂直平分线的性质,菱形的判定,垂径定理等知识点,能综合运用知识点进行推理是解此题的关键.3.(2019•上海)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.【答案】(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°﹣∠ADE,∵AD平分∠BAC,∴∠BAD∠BAC,同理∠ABD∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°﹣∠C,∴∠ADE(∠ABC+∠BAC)=90°∠C,∴∠E=90°﹣(90°∠C)∠C.(2)解:延长AD交BC于点F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE∥BC,∴∠AFB=∠EAD=90°,,∵BD:DE=2:3,∴cos∠ABC.(3)∵△ABC与△ADE相似,∠DAE=90°,∴∠ABC中必有一个内角为90°∵∠ABC是锐角,∴∠ABC≠90°.①当∠BAC=∠DAE=90°时,∵∠E∠C,∴∠ABC=∠E∠C,∵∠ABC+∠C=90°,∴∠ABC=30°,此时2.②当∠C=∠DAE=90°时,∠∠C=45°,∴∠EDA=45°,∵△ABC与△ADE相似,∴∠ABC=45°,此时2.综上所述,∠ABC=30°或45°,2或2.【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.4.(2018•上海)如图,已知△ABC中,AB=BC=5,tan∠ABC.(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.【答案】解:(1)作A作AE⊥BC,在Rt△ABE中,tan∠ABC,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在Rt△AEC中,根据勾股定理得:AC;(2)∵DF垂直平分BC,∴BD=CD,BF=CF,∵tan∠DBF,∴DF,在Rt△BFD中,根据勾股定理得:BD,∴AD=5,则.【点睛】此题考查了解直角三角形,线段垂直平分线的性质,以及等腰三角形的性质,熟练掌握勾股定理是解本题的关键.5.(2019•嘉定区二模)如图,在矩形ABCD中,点E是边AB的中点,△EBC沿直线EC翻折,使B点落在矩形ABCD内部的点P处,联结AP并延长AP交CD于点F,联结BP交CE于点Q.(1)求证:四边形AECF是平行四边形;(2)如果P A=PE,求证:△APB≌△EPC.【答案】证明:(1)由折叠得到EC垂直平分BP,设EC与BP交于Q,∴BQ=EQ∵E为AB的中点,∴AE=EB,∴EQ为△ABP的中位线,∴AF∥EC,∵AE∥FC,∴四边形AECF为平行四边形;(2)∵AF∥EC,∴∠APB=∠EQB=90°,由翻折性质∠EPC=∠EBC=90°,∠PEC=∠BEC,∵E为直角△APB斜边AB的中点,且AP=EP,∴△AEP为等边三角形,∠BAP=∠AEP=60°,∠CEP=∠CEB60°,在△ABP和△EPC中,∠∠,∴△ABP≌△EPC(AAS).【点睛】此题考查全等三角形的判定与性质,折叠的性质,熟练掌握全等三角形的判定与性质是解本题的关键.6.(2019•宝山区二模)如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,联结AP并延长AP交CD于F点,(1)求证:四边形AECF为平行四边形;(2)如果P A=PE,联结BP,求证:△APB≌△EPC.【答案】证明:(1)由折叠得到EC垂直平分BP,设EC与BP交于Q,∴BQ=EQ∵E为AB的中点,∴AE=EB,∴EQ为△ABP的中位线,∴AF∥EC,∵AE∥FC,∴四边形AECF为平行四边形;(2)∵AF∥EC,∴∠APB=∠EQB=90°,由翻折性质∠EPC=∠EBC=90°,∠PEC=∠BEC∵E为直角△APB斜边AB的中点,且AP=EP,∴△AEP为等边三角形,∠BAP=∠AEP=60°,∠∠∠∠在△ABP和△EPC中,∴△ABP≌△EPC(AAS)【点睛】此题考查全等三角形的判定与性质,折叠的性质,熟练掌握全等三角形的判定与性质是解本题的关键.7.(2019•崇明区二模)如图,已知△ABC中,AB=6,∠B=30°,tan∠.(1)求边AC的长;(2)将△ABC沿直线l翻折后点B与点A重合,直线l分别与边AB、BC相交于点D、E,求的值.【答案】解:(1)过A作AH⊥BC,垂足为H,如图1所示:∵AB=6,∠B=30°,AH⊥BC,∴AH=3,∵tan∠ACB,∴CH=2,∴AC;(2)由翻折得:BD AB=3,AE=BE,∠BDE=90°,∵cos B,∴,∴BE=2,∴AE=2,∴EH,∴EC=CH+EH=2,∴46.【点睛】本题考查了翻折变换的性质、含30°角的直角三角形的性质、三角函数、勾股定理等知识;熟练掌握翻折变换的性质是解决问题的关键.8.(2019•青浦区二模)已知:如图,在菱形ABCD中,AB=AC,点E、F分别在边AB、BC上,且AE=BF,CE与AF相交于点G.(1)求证:∠FGC=∠B;(2)延长CE与DA的延长线交于点H,求证:BE•CH=AF•AC.【答案】证明:(1)∵四边形ABCD为菱形,∴AB=BC,而AB=AC,∴AB=BC=AC,∴△ABC为等边三角形,∴∠B=∠BAC=60°,在△ABF和△CAE中,∴△ABF≌△CAE(SAS),∴∠BAF=∠ACE,∵∠FGC=∠GAC+∠ACG=∠GAC+∠BAF=∠BAC=60°,∴∠FGC=∠B;(2)如图,∵四边形ABCD为菱形,∴∠B=∠D,AD∥BC,∴∠BCE=∠H,∴△BCE∽△DHC,∴,∵△ABF≌△CAE,∴CE=AF∵CA=CB=CD,∴,∴BE•CH=AF•AC.【点睛】本题考查了相似三角形的判定与性质:判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;同时灵活运用相似三角形的性质进行几何计算.也考查了菱形的性质.9.(2019•浦东新区二模)已知:如图,在直角梯形ABCD中,AD∥BC,DC⊥BC,AB=AD,AM⊥BD,垂足为点M,连接CM并延长,交线段AB于点N.求证:(1)∠ABD=∠BCM;(2)BC•BN=CN•DM.【答案】证明:(1)∵AB=AD,∴∠ABD=∠ADB,∵AD∥BC,∴∠ADB=∠MBC,∴∠ABD=∠MBC,∵AB=AD,AM⊥BD,∴BM=DM,∵DC⊥BC,∴∠BCD=90°,∴CM=BM=DM,∴∠MBC=∠BCM,∴∠ABD=∠BCM;(2)∵∠BNM=∠CNB,∠NBM=∠NCB,∴△NBM∽△NCB,∴BN:CN=BM:BC,而BM=DM,∴BN:CN=DM:BC,∴BC•BN=CN•DM.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.10.(2019•静安区二模)已知:如图5,在矩形ABCD中,过AC的中点M作EF⊥AC,分别交AD、BC于点E、F.(1)求证:四边形AECF是菱形;(2)如果CD2=BF•BC,求∠BAF的度数.【答案】(1)证明:∵四边形ABCD为矩形,∴AD∥BC,∴∠1=∠2,∵点M为AC的中点,∴AM=CM.在△AME与△CMF中∠∠∴△AME≌△CMF(ASA),∴ME=MF.∴四边形AECF为平行四边形,又∵EF⊥AC,∴平行四边形AECF为菱形;(2)解:∵CD2=BF•BC,∴,又∵四边形ABCD为矩形,∴AB=CD,∴又∵∠ABF=∠CBA,∴△ABF∽△CBA,∴∠2=∠3,∵四边形AECF为菱形,∴∠1=∠4,即∠1=∠3=∠4,∵四边形ABCD为矩形,∴∠BAD=∠1+∠3+∠4=90°,∴即∠1=30°.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了菱形的判定与性质和矩形的性质.11.(2019•虹口区二模)如图,在▱ABCD中,AC与BD相交于点O,过点B作BE∥AC,联结OE交BC 于点F,点F为BC的中点.(1)求证:四边形AOEB是平行四边形;(2)如果∠OBC=∠E,求证:BO•OC=AB•FC.【答案】证明:(1)∵BE∥AC,∴△COF∽△BFE∴∵点F为BC的中点,∴CF=BF,∴OC=BE∵四边形ABCD是平行四边形,∴AO=CO∴AO=BE∵BE∥AC,∴四边形AOEB是平行四边形(2)∵四边形AOEB是平行四边形,∴∠BAO=∠E∵∠OBC=∠E,∴∠BAO=∠OBC∵∠ACB=∠BCO,∴△COB∽△CBA∴∵四边形ABCD是平行四边形,∴AC=2OC∵点F为BC的中点,∴BC=2FC∴即BO•OC=AB•FC【点睛】此题考查相似三角形的判定和性质,关键是根据平行四边形的性质和相似三角形的判定和性质解答.12.(2019•普陀区二模)已知:如图,在四边形ABCD中,AD<BC,点E在AD的延长线上,∠ACE=∠BCD,EC2=ED•EA.(1)求证:四边形ABCD为梯形;(2)如果,求证AB2=ED•BC.【答案】(1)证明:∵EC2=ED•EA∴而∠E=∠E∴△ECA∽△EDC∴∠EAC=∠ECD又∵∠ACE=∠BCD∴∠ACE﹣∠ACD=∠BCD﹣∠ACD即∠ECD=∠BCA∴∠EAC=∠BCA∴AE∥BC,∵AD<BC,故四边形ABCD是梯形.(2)证明:由(1)可知△ECA∽△EDC∴即得而由已知可得∴CD=AB,即梯形ABCD是等腰梯形∴∠B=∠BCD而∠BCD=∠EDC∴∠B=∠EDC由(1)知∠BCA=∠ECD∴△ABC∽△EDC∴而AB=CD∴AB2=ED•BC故AB2=ED•BC得证.【点睛】本题考查的是相似三角形的判定与性质,以及等腰梯形的判定与性质,通过比例式得出对应线段相等也是证明线段相等的一种方法.13.(2019•长宁区二模)如图,平行四边形ABCD的对角线AC、BD交于点O,点E在边CB的延长线上,且∠EAC=90°,AE2=EB•EC.(1)求证:四边形ABCD是矩形;(2)延长DB、AE交于点F,若AF=AC,求证:AE=BF.【答案】证明:(1)∵AE2=EB•EC∴又∵∠AEB=∠CEA∴△AEB∽△CEA∴∠EBA=∠EAC而∠EAC=90°∴∠EBA=∠EAC=90°又∵∠EBA+∠CBA=180°∴∠CBA=90°而四边形ABCD是平行四边形∴四边形ABCD是矩形即得证.(2)∵△AEB∽△CEA∴即,∠EAB=∠ECA∵四边形ABCD是矩形∴OB=OC∴∠OBC=∠ECA∴∠EBF=∠OBC=∠ECA=∠EAB即∠EBF=∠EAB又∵∠F=∠F∴△EBF∽△BAF∴而AF=AC∴BF=AE即AE=BF得证.【点睛】本题考查的是相似三角形的判定与性质及矩形的性质,利用三角形的相似进行边与角的转化是解决本题的关键.14.(2019•张店区二模)如图,已知梯形ABCD中,AD∥BC,AB=AC,E是边BC上的点,且∠AED=∠CAD,DE交AC于点F.(1)求证:△ABE∽△DAF;(2)当AC•FC=AE•EC时,求证:AD=BE.【答案】证明:(1)∵AD∥BC,∴∠DAC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠DAF=∠B,∵∠AEC=∠AED+∠DEC=∠B+∠BAE,∠AED=∠CAD=∠ACB,∴∠DEC=∠BAE,∵AD∥BC,∴∠DEC=∠ADF,∴∠BAE=∠ADF,∴△ABE∽△DAF.(2)∵AC•FC=AE•EC,AC=AB,∴AB•FC=AE•EC,∵∠B=∠FCE,∠BAE=∠FEC,∴△BAE∽△CEF,∴,∴,∴FC=EF,∴∠FEC=∠FCE,∵∠FCE=∠B,∴∠B=∠FEC,∴AB∥DE,∵AD∥BE,∴四边形ADEB是平行四边形,∴AD=BE.【点睛】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.15.(2019•普陀区二模)如图,已知点D、E分别在△ABC的边AB和AC上,DE∥BC,,△ADE 的面积等于3.(1)求△ABC的面积;(2)如果BC=9,且cot B,求∠AED的正切值.【答案】解:(1)∵DE∥BC,∴△ADE∽△ABC,∴()2,∵S△ADE=3,∴S△ABC=27.(2)如图,作AH⊥BC于H.∵S△ABC BC×AH=27,∴AH=6,∵cot B,∴BH=4,CH=9﹣4=5,∵DE∥BC,∴∠AED=∠C,∴tan∠AED=tan∠C.【点睛】本题考查相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.16.(2019•闵行区二模)如图1,点P为∠MAN的内部一点.过点P分别作PB⊥AM、PC⊥AN,垂足分别为点B、C.过点B作BD⊥CP,与CP的延长线相交于点D.BE⊥AP,垂足为点E.(1)求证:∠BPD=∠MAN;(2)如果sin∠,AB=2,BE=BD,求BD的长;(3)如图2,设点Q是线段BP的中点.联结QC、CE,QC交AP于点F.如果∠MAN=45°,且BE ∥QC,求的值.【答案】(1)证明:∵PB⊥AM,PC⊥AN,∴∠PBA=∠PCA=90°,∵∠BAC+∠PCA+∠BPC+∠PBA=360°,∴∠BAC+∠BPC=180°,∵∠BPD+∠BPC=180°,∴∠MAN=∠BPD;(2)解:∵BE⊥AP,∠D=90°,BE=BD,∴∠BPD=∠BPE.∴∠BPE=∠BAC,在Rt△ABP中,由∠ABP=90°,BE⊥AP,∴∠APB=∠ABE,∴∠BAC=∠ABE,∴sin∠BAC=sin∠ABE,∵AB=2,∴AE=6,∴BE2,∴BD=BE=2;(3)解:过点B作BG⊥AC,垂足为点G.过点Q作QH∥BD,设BD=2a,PC=2b,∵∠BPD=∠MAN=45°,∴DP=BD=2a,∴CD=2a+2b,在Rt△ABG和Rt△BDP中,∠BAC=∠BPD=45°,∴BG=AG,DP=BD,∵QH∥BD,点Q为BP的中点,∴PH PD=a.QH BD=a,∴CH=PH+PC=a+2b,∵BD∥AC,CD⊥AC,BG⊥AC,∴BG=DC=2a+2b.∴AC=4a+2b,∵BE∥QC,BE⊥AP,∴∠CFP=∠BEP=90°,又∠ACP=90°,∴∠QCH=∠P AC,∴△ACP∽△QCH,∴,即,解得,a=b,∴CH=3a.由勾股定理得,CQ a,∵∠QHC=∠PFC=90°,∠QCH=∠PCF,∴△QCH∽△PFC,∴,即,解得,FC a,∴QF=QC﹣FC a,∵BE∥QC,Q是PB的中点,∴PE=EF,∴△PQF与△CEF面积之比等于高之比,∴.【点睛】本题考查的是相似三角形的判定和性质、锐角三角函数的定义,掌握相似三角形的判定定理和性质定理是解题的关键.17.(2019•闵行区二模)如图,已知四边形ABCD是菱形,对角线AC、BD相交于点O,BD=2AC.过点A作AE⊥CD,垂足为点E,AE与BD相交于点F.过点C作CG⊥AC,与AE的延长线相交于点G.求证:(1)△ACG≌△DOA;(2)DF•BD=2DE•AG.【答案】证明:(1)∵在菱形ABCD中,AD=CD,AC⊥BD,OB=OD,∴∠DAC=∠DCA,∠AOD=90°,∵AE⊥CD,CG⊥AC,∴∠DCA+∠GCE=90°,∠G+∠GCE=90°,∴∠G=∠DCA,∴∠G=∠DAC,∵BD=2AC,BD=2OD,∴AC=OD,在△ACG和△DOA中,∠∠∴△ACG≌△DOA(AAS);(2)∵AE⊥CD,BD⊥AC,∴∠DOC=∠DEF=90°,又∵∠CDO=∠FDE,∴△CDO∽△FDE,∴,即得OD•DF=DE•CD,∵△ACG≌△DOA,∴AG=AD=CD,又∵OD BD,∴DF•BD=2DE•AG.【点睛】本题考查了全等三角形的性质和判定,相似三角形的性质和判定,菱形的性质,能综合运用定理进行推理是解此题的关键.18.(2019•崇明区二模)如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,对角线AC、BD相交于点O.过点D作DE⊥BC,交AC于点F.(1)联结OE,若,求证:OE∥CD;(2)若AD=CD且BD⊥CD,求证:.【答案】证明:(1)∵∠ABD=90°,DE⊥BC,∴AB∥DE,∴,∵,∴,∴OE∥CD;(2)∵AD∥BC,AB∥DE,∴四边形ABED为平行四边形又∵∠ABD=90°,∴四边形ABED为矩形,∴AD=BE,∠ADE=90°,又∵BD⊥CD,∴∠BDC=∠BDE+∠CDE=90°,∠ADE=∠ADB+∠BDE=90°,∴∠CDE=∠ADB,∵AD=CD,∴∠DAC=∠DCA,在△ADO和△CDF中∠∠∴△ADO≌△CDF(ASA),∴OD=DF,∵AB∥DE,∴,∵AD∥BC,∴,∴.【点睛】本题考查了矩形的性质和判定,相似三角形的性质和判定,直角梯形的性质等知识点,能综合运用知识点进行推理是解此题的关键.19.(2019•黄浦区二模)如图,已知四边形ABCD,AD∥BC,对角线AC、BD交于点O,DO=BO,过点C作CE⊥AC,交BD的延长线于点E,交AD的延长线于点F,且满足∠DCE=∠ACB.(1)求证:四边形ABCD是矩形;(2)求证:.【答案】解:(1)证明∵AD∥BC,∴,∵DO=BO,∴AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AC,∴∠ACD+∠DCE=90°,∵∠DCE=∠ACB,∴∠ACB+∠ACD=90°,即∠BCD=90°,∴四边形ABCD是矩形;(2)∵四边形ABCD是矩形,∴AC=BD,∠ADC=90°,∵AD∥BC,∴,∴∴,∵∠ADC=∠ACF=90°,∴∠,∴.【点睛】本题主要考查对矩形的性质,成比例的线段性质的理解和掌握,此题难度不大.20.(2019•黄浦区二模)已知四边形ABCD中,AD∥BC,∠ABC=2∠C,点E是射线AD上一点,点F是射线DC上一点,且满足∠BEF=∠A.(1)如图1,当点E在线段AD上时,若AB=AD,在线段AB上截取AG=AE,联结GE.求证:GE=DF;(2)如图2,当点E在线段AD的延长线上时,若AB=3,AD=4,cos A,设AE=x,DF=y,求y 关于x的函数关系式及其定义域;(3)记BE与CD交于点M,在(2)的条件下,若△EMF与△ABE相似,求线段AE的长.【答案】解:(1)∵AG=AE,∴∠.∵AD∥BC,∴∠A+∠ABC=180°,∵∠ABC=2∠C,∴∠,∴∠AGE=∠C,∵AD∥BC,∴∠D+∠C=180°,又∠BGE+∠AGE=180°,∴∠BGE=∠D,∵∠BEF+∠FED=∠A+∠GBE,∵∠BEF=∠A,∴∠FED=∠GBE,又AB=AD,AG=AE,∴BG=ED,∴△GBE≌△DEF(ASA),∴GE=DF;(2)在射线AB上截取AH=AE,联结EH,∵∠HBE=∠A+∠AEB,∠DEF=∠BEF+∠AEB,又∠BEF=∠A,∴∠HBE=∠DEF.∵AD∥BC,∴∠EDC=∠C,∠A+∠ABC=180°.∵AH=AE,∴∠,又∠ABC=2∠C,∴∠H=∠C,∴∠H=∠EDC,∴△BHE∽△EDF,∴.过点H作HP⊥AE,垂足为点P.∵,AE=AH=x,∴,,,∴,∵AB=3,AD=4,AE=x,DF=y,∴,∴>;(3)记EH与BC相交于点N.∵△EMF∽△ABE,∠BEF=∠A,∴∠AEB=∠EMF,或∠AEB=∠EFM,若∠AEB=∠EMF,又∠AEB<∠EMF,矛盾,∴此情况不存在,若∠AEB=∠EFM,∵△BHE∽△EDF,∴∠BEH=∠EFM,∴∠AEB=∠BEH,∵AD∥BC,∴∠AEB=∠EBC,∴∠BEH=∠EBC,∴BN=EN=BH=x﹣3,∵AD∥BC,∴,∴,∴,∴线段AE的长为.【点睛】本题属于相似三角形综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.21.(2019•黄浦区一模)如图,在△ABC中,点D在边BC上,∠CAD=∠B,点E在边AB上,联结CE 交AD于点H,点F在CE上,且满足CF•CE=CD•BC.(1)求证:△ACF∽△ECA;(2)当CE平分∠ACB时,求证:.【答案】(1)证明:∵∠ACD=∠BCA,∠CAD=∠B,∴△ACD∽△BCA,∴,∴AC2=CD•BC,∵CF•CE=CD•BC,∴AC2=CF•CE,∴,∵∠ACF=∠ECA,∴△ACF∽△ECA;(2)证明:∵CF•CE=CD•BC,∴,∵∠DCF=∠ECB,∴△CFD∽△CBE,∴∠CFD=∠B,∵∠CAD=∠B,∴∠CFD=∠CAD,∴A,F,D,C四点共圆,∴∠AFC=∠ADC,∵△ACF∽△ECA,∴∠CAE=∠AFC,∴∠CAE=∠ADC,∵当CE平分∠ACB,∴∠ACE=∠DCH,∴△ACE∽△DCH,∴()2,∵AC2=CD•BC,∴.【点睛】本题考查了相似三角形的判定和性质,角平分线的定义,熟练掌握相似三角形的判定和性质是解题的关键.22.(2019•长宁区一模)已知锐角∠MBN的余弦值为,点C在射线BN上,BC=25,点A在∠MBN的内部,且∠BAC=90°,∠BCA=∠MBN.过点A的直线DE分别交射线BM、射线BN于点D、E.点F 在线段BE上(点F不与点B重合),且∠EAF=∠MBN.(1)如图1,当AF⊥BN时,求EF的长;(2)如图2,当点E在线段BC上时,设BF=x,BD=y,求y关于x的函数解析式并写出函数定义域;(3)联结DF,当△ADF与△ACE相似时,请直接写出BD的长.【答案】解:(1)∵在Rt△ABC中,∠BAC=90°,∴cos∠BCA=cos∠MBN,∴∴AC=15∴AB20∵S△ABC AB×AC BC×AF,∴AF12,∵AF⊥BC∴cos∠EAF=cos∠MBN∴AE=20∴EF16(2)如图,过点A作AH⊥BC于点H,由(1)可知:AB=20,AH=12,AC=15,∴BH16,∵BF=x,∴FH=16﹣x,CF=25﹣x,∴AF2=AH2+FH2=144+(16﹣x)2=x2﹣32x+400,∵∠EAF=∠MBN,∠BCA=∠MBN∴∠EAF=∠BCA,且∠AFC=∠AFC,∴△F AE∽△FCA∴,∠AEF=∠F AC,∴AF2=FC×EF∴x2﹣32x+400=(25﹣x)×EF,∴EF∴BE=BF+EF∵∠MBN=∠ACB,∠AEF=∠F AC,∴△BDE∽△CF A∴∴∴y(0<x)(3)如图,若△ADF∽△CEA,∵△△ADF∽△CEA,∴∠ADF=∠AEC,∵∠EAF=∠MBN,∠EAF+∠DAF=180°,∴∠DAF+∠MBN=180°,∴点A,点F,点B,点D四点共圆,∴∠ADF=∠ABF,∴∠ADF=∠AEC=∠ABF,∴AB=AE,∵∠BAC=90°,∴∠ABC+∠ACB=90°,且∠ABF=∠AEC,∠ACB=∠MBN=∠EAF,∴∠AEC+∠EAF=90°,∠AEC+∠MBN=90°,∴∠BDE=90°=∠AFC,∵S△ABC AB×AC BC×AF,∴AF12,∴BF16,∵AB=AE,∠AFC=90°,∴BE=2BF=32,∴cos∠MBN,∴BE,如图,若△ADF∽△CAE,∵△ADF∽△CAE,∴∠ADF=∠CAE,∠AFD=∠AEC,∴AC∥DF∴∠DFB=∠ACB,且∠ACB=∠MBN,∴∠MBN=∠DFB,∴DF=BD,∵∠EAF=∠MBN,∠EAF+∠DAF=180°,∴∠DAF+∠MBN=180°,∴点A,点F,点B,点D四点共圆,∴∠ADF=∠ABF,∴∠CAE=∠ABF,且∠AEC=∠AEC,∴△ABE∽△CAE∴设CE=3k,AE=4k,(k≠0)∴BE k,∵BC=BE﹣CE=25∴k∴AE,CE,BE∵∠ACB=∠F AE,∠AFC=∠AFE,∴△AFC∽△EF A,∴,设AF=7a,EF=20a,∴CF a,∵CE=EF﹣CF a,∴a,∴EF,∵AC∥DF,∴,∴,∴DF,综上所述:当BD为或时,△ADF与△ACE相似【点睛】本题是相似综合题,考查了相似三角形的判定和性质,勾股定理,锐角三角函数等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.23.(2019•虹口区一模)如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.【答案】证明:(1)∵AB=AC,D是边BC的中点,∴AD⊥BC,∴∠ADC=90°,∴∠ADE+∠CDE=90°.∵DE⊥AC,∴∠CED=90°,∴∠CDE+∠DCE=90°,∴∠ADE=∠DCE.又∵∠AED=∠DEC=90°,∴△AED∽△DEC,∴,∴DE•CD=AD•CE;(2)∵AB=AC,∴BD=CD BC.∵F为DE的中点,∴DE=2DF.∵DE•CD=AD•CE,∴2DF•BC=AD•CE,∴.又∵∠BCE=∠ADF,∴△BCE∽△ADF,∴,∴AF•BC=AD•BE.【点睛】本题考查了相似三角形的判定与性质、等腰三角形的性质以及余角,解题的关键是:(1)利用相似三角形的判定定理证出△AED∽△DEC;(2)利用相似三角形的判定定理证出△BCE∽△ADF.24.(2019•浦东新区一模)将大小两把含30°角的直角三角尺按如图1位置摆放,即大小直角三角尺的直角顶点C重合,小三角尺的顶点D、E分别在大三角尺的直角边AC、BC上,此时小三角尺的斜边DE 恰好经过大三角尺的重心G.已知∠A=∠CDE=30°,AB=12.(1)求小三角尺的直角边CD的长;(2)将小三角尺绕点C逆时针旋转,当点D第一次落在大三角尺的边AB上时(如图2),求点B、E 之间的距离;(3)在小三角尺绕点C旋转的过程中,当直线DE经过点A时,求∠BAE的正弦值.【答案】解:(1)在Rt△ABC中,AC=AB cos30°=6,BC=6,由重心的性质得:,则CD=4,DE=8;(2)连接BE,过点C作CH⊥AB交于点H,BH BC=3,CH=BC sin60°=3,AH=9,HD,AD=AH﹣HD=9,∵∠ACD=∠ECB,,∴△ADC∽△BEC,∴,即:AD BE,∴BE(9)=3;(3)①如图,当DE在AC下方时,∵△ADC∽△BEC,∴∠BEC=∠ADC=∠AEB+∠CED=∠DCE+∠DEC=90°+∠CED,即:∠AEB=90°,在Rt△ABE中,AE2+BE2=AB2,设:BE=x,则AD x,AB=12,AE=AD+DE x+8,即:(x+8)2+x2=122,解得:x=42,②当DE在AC上方时,求得:x=42;sin∠BAE.【点睛】本题是三角形相似综合题,核心是确定图象旋转后的位置,利用相似确定边角关系,此类题目难度在于作图的准确性.25.(2019•普陀区一模)如图,点O在线段AB上,AO=2OB=2a,∠BOP=60°,点C是射线OP上的一个动点.(1)如图①,当∠ACB=90°,OC=2,求a的值;(2)如图②,当AC=AB时,求OC的长(用含a的代数式表示);(3)在第(2)题的条件下,过点A作AQ∥BC,并使∠QOC=∠B,求AQ:OQ的值.【答案】解:(1)如图①中,作CH⊥AB于H.∵CH⊥AB,∴∠AHC=∠BHC=90°,∵∠ACB=90°,∴∠ACH+∠BCH=90°,∵∠ACH+∠A=90°,∴∠BCH=∠A,∴△ACH∽△CBH,∴,∵OC=2,∠COH=60°,∴∠OCH=30°,∴OH OC=1,CH,∴,整理得:2a2﹣a﹣4=0,解得a或(舍弃).经检验a是分式方程的解.∴a.(2)如图②中,设OC=x.作CH⊥AB于H,则OH,CH x.在Rt△ACH中,∵AC2=AH2+CH2,∴(3a)2=(x)2+(2a x)2,整理得:x2+ax﹣5a2=0,解得x=(1)a或(1)a(舍弃),∴OC=(1)a,(3)如图②﹣1中,延长QC交CB的延长线于K.∵∠AOC=∠∠AOQ+∠QOC=∠ABC+∠OCB,∠QOC=∠ABC,∴∠AOQ=∠KCO,∵AQ∥BK,∴∠Q=∠K,∴△QOA∽△KCO,∴,∴,∵∠K=∠K,∠KOB=∠AOQ=∠KCO,∴△KOB∽△KCO,∴,∴【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.26.(2019•宝山区一模)如图,已知:梯形ABCD中,∠ABC=90°,∠DAB=45°,AB∥DC,DC=3,AB=5,点P在AB边上,以点A为圆心AP为半径作弧交边DC于点E,射线EP于射线CB交于点F.(1)若AP,求DE的长;(2)联结CP,若CP=EP,求AP的长;(3)线段CF上是否存在点G,使得△ADE与△FGE相似?若相似,求FG的值;若不相似,请说明理由.【答案】解:(1)如图1中,过点A,作AH∥BC,交CD的延长线于点H.∵AB∥CD,∴∠ABC+∠C=180°,∵∠ABC=90°,∴∠C=∠ABC=∠H=90°,∴四边形AHCB是矩形,∴AB=CH=5,∵CD=3,∴DH=CH﹣CD=2,∵∠HAB=90°,∠DAB=45°,∴∠HAD=∠HDA=45°∴HD=AH=2,AE=AP,根据勾股定理得,HE3,则ED=1;(2)连接CP,设AP=x.∵AB∥CD,∴∠EP A=∠CEP,即等腰△APE、等腰△PEC两个底角相等,∴△APE∽△PEC,∴,即:PE2=AE•CE,而EC=2PB=2(5﹣x),即:PC2=CE•AP=2(5﹣x)x,而PC2=PB2+BC2,即:PC2=(5﹣x)2+22,∴2(5﹣x)x=(5﹣x)2+22,解得:x(不合题意值已舍去),即:AP;(3)如图3中,在线段CF上取一点G,连接EG.设∠F=α,则∠APE=∠AEP=∠BPF=90°﹣α,则:∠EAP=180°﹣2∠APE=2α,∵△ADE∽△FGE,设∠DAE=∠F=α,由∠DAB=45°,可得3α=45°,2α=30°,在Rt△ADH中,AH=DH=2,在Rt△AHE中,∠HEA=∠EAB=2α=30°,∠HAE=60°,∴HE=AH•tan∠HAE=2,∴DE=HE﹣HD=22,EC=HC﹣HE=5﹣2,∵△ADE∽△FGE,∴∠ADC=∠EGF=135°,则∠CEG=45°,∴EG EC=52,∴,即:,解得:FG=31.【点睛】本题属于三角形相似综合题,涉及到解直角三角形、勾股定理等知识点,其中(3)中,利用三角形相似,确定α的大小,是本题的突破点,属于中考压轴题.27.(2019•黄浦区一模)在△ABC中,∠ACB=90°,BC=3,AC=4,点O是AB的中点,点D是边AC 上一点,DE⊥BD,交BC的延长线于点E,OD⊥DF,交BC边于点F,过点E作EG⊥AB,垂足为点G,EG分别交BD、DF、DC于点M、N、H.(1)求证:;(2)设CD=x,NE=y,求y关于x的函数关系式及其定义域;(3)当△DEF是以DE为腰的等腰三角形时,求线段CD的长.【答案】(1)证明:如图1中,∵OD⊥DF,BD⊥DE,∴∠ODF=∠BDE=90°,∴∠ODB=∠NDE,∵EG⊥AB,∴∠BGM=∠MDE=90°,∵∠BMG=∠EMD,∴OBD=∠DEN,∴△OBD∽△NED,∴.(2)解:如图1中,∵∠BCD=∠BDE=90°,∴tan∠DBC,∵,∴,在Rt△ABC中,AB5,∴OB=OA=2.5,∴,∴y x(0<x<2).(3)解:①如图2﹣1中,当DE=DF时,作OK⊥AC于K.∵∠OKD=∠DCF=∠ODF=90°,∴∠ODK+∠KOD=90°,∠ODK+∠CDF=90°,∴∠DOK=∠CDF,∴△OKD∽△DCF,∴,∴,∴CF x(2﹣x),∵DF=DE,DC⊥EF,∴∠CDE=∠CDF,∵∠CDE+∠CDB=90°,∠CBD+∠CDB=90°,∴∠∠CDE=∠CBD=∠CDF,∵∠DCF=∠DCB=90°,∴△DCF∽△BCD,∴,∴CD2=CF•CB,∴x2=x(2﹣x),解得x或0(舍弃)∴CD.如图2﹣2中,当DE=EF时,∵ED=EF,∴∠EDF=∠EFD,∴∠EDC+∠CDF=∠DBC+∠BDF,∵∠EDC=∠DBC,∴∠CDF=∠BDF,∵∠CDF+∠ADO=90°,∠BDF+∠BDO=90°,∴∠ADO=∠BDO,∵AO=OB,易知DA=DB,设DA=DB=4﹣x,在Rt△BCD中,∵BD2=CD2+BC2,∴(4﹣x)2=x2+32,∴x,∴CD.综上所述,CD的长为或.【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数解决问题,属于中考压轴题.28.(2019•徐汇区一模)如图,已知菱形ABCD,点E是AB的中点,AF⊥BC于点F,联结EF、ED、DF,DE交AF于点G,且AE2=EG•ED.(1)求证:DE⊥EF;(2)求证:BC2=2DF•BF.【答案】(1)证明:∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵AE2=EG•ED,∴,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴∠EAG=∠ADG,∵∠AGD=∠FGE,∴∠DAG=∠FEG,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∴∠FEG=90°,∴DE⊥EF;(2)解:∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴,∵∠FEG=∠DEF,∴△FEG∽△DEF,∴∠EFG=∠EDF,∴∠BAF=∠EDF,∵∠DEF=∠AFB=90°,∴△ABF∽△DFE,∴,∵四边形ACBD是菱形,∴AB=BC,∵∠AFB=90°,∵点E是AB的中点,∴FE AB BC,∴,∴BC2=2DF•BF.【点睛】本题考查了相似三角形的判定和性质,菱形的性质,直角三角形的性质,正确的识别图形是解题的关键.29.(2019•奉贤区一模)如图,已知梯形ABCD中,AB∥CD,∠DAB=90°,AD=4,AB=2CD=6,E 是边BC上一点,过点D、E分别作BC、CD的平行线交于点F,联结AF并延长,与射线DC交于点G.(1)当点G与点C重合时,求CE:BE的值;(2)当点G在边CD上时,设CE=m,求△DFG的面积;(用含m的代数式表示)(3)当△AFD∽△ADG时,求∠DAG的余弦值.【答案】解:(1)如图,∵DC∥EF,DF∥CE∴四边形DCEF是平行四边形∴CD=EF,∵AB=2CD=6,∴AB=2EF,∵EF∥CD,AB∥CD,∴EF∥AB,∴△CFE∽△CAB∴∴BC=2CE,∴BE=CE∴EC:BE=1:1=1(2)如图,延长AG,BC交为于点M,过点C作CN⊥AB于点N,交EF于点H∵AD⊥CD,CN⊥CD∴AD∥CN,且CD∥AB∴四边形ADCN是平行四边形,又∵∠DAB=90°∴四边形ADCN是矩形,∴AD=CN=4,CD=AN=3,∴BN=AB﹣AN=3,在Rt△BCN中,BC5∴BE=BC﹣CE=5﹣m,∵EF∥AB∴,即∴ME=BE=5﹣m,∴MC=ME﹣CE=5﹣2m,∵EF∥AB∴∴HC m,∵CG∥EF∴即∴GC∴DG=CD﹣GC=3∴S△DFG DG×CH(3)过点C作CN⊥AB于点N,∵AB∥CD,∠DAB=90°,∴∠DAB=∠ADG=90°,若△AFD∽△ADG,∴∠AFD=∠ADG=90°∴DF⊥AG又∵DF∥BC∴AG⊥BC。
2024年浙江省嘉兴市海宁第一中学中考数学模拟试卷

浙江省嘉兴市海宁一中2024年初中学业水平模拟测试数学试题卷卷I一、选择题(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.数1,01中,是负数的是()A.1B.0C D.-12.如图所示的几何体,它的主视图是()A.B.C.D.3.2023年12月27日,第58颗北斗卫星成功定点于距地球36000公里的同步轨道上,数据36000用科学记数法表示为()A.0.36×105B.3.6×105C.3.6×104D.36×1034.一个不透明的布袋里装有5个只有颜色不同的球,其中3个白球,2个红球.从布袋里任意摸出1个球,是白球的概率()A.45B.35C.25D.155.如图,△ABC与△DEF是位似三角形,点O为位似中心.OA=AD,则△ABC与△DEF的位似比为()A.1∶1B.2∶3C.1∶2D.1∶36.化简(-2a)3∙a=()A.-8a4B.-8a3C.-6a4D.-6a37.如图所示的△ABC,进行以下操作:①以A,B为圆心,大于12AB为半径作圆弧,相交点D,E;②以A,C为圆心,大于12AC为半径作圆弧,相交于点F,G.两直线DE,FG相交于△ABC外一点P,且分别交BC点M,N.若∠MAN=50°,则∠MPN等于()A.60°B.65°C.70°D.75°8.已知y是关于x的一次函数,下表列出了部分对应值,则m的值为()A.-1B.12C.0D.129.如图1,在矩形ABCD中,点E在BC上,连结AE,过点D作DF⊥AE于点F.设AE=x,DF=y,已知x,y满足反比例函数y=kx(k>0,x>0),其图象如图2所示,则矩形ABCD的面积为()图1图2A.B.9C.10D.10.如图,量筒的液面A-C-B呈凹形,近似看成圆弧,读数时视线要与液面相切于最低点C(即弧中点).小温想探究仰视、俯视对读数的影响,当他俯视点C时,记录量筒上点D的高度为37mm;仰视点C(点E,C,B在同一直线),记录量筒上点E的高度为23mm,若点D在液面圆弧所在圆上,量筒直径为10mm,则平视点C,点C的高度为()mm.A.30-B.37-C.23+D.23+卷Ⅱ二、填空题(本题有6小题,每小题3分,共18分)11.分解因式:m 2-4= .12.某校九(1)班同学每周课外阅读时间的频数直方图如图所示(每组含前一个边界值,不含后一个边界值).由图可知,该班每周阅读时间不低于4小时的学生一共有 人.13.已知扇形的圆心角为120°,它的半径为2,则扇形的面积为 (计算结果保留π).14.不等式2(x -1)>x +3的解为 .15.已知二次函数y =x 2+bx +c (b ,c 为常数且b >0,c <0),当-5≤x ≤0时,-11≤y ≤5,则c 的值为 . 16.如图1是古塔建筑中的方圆设计,寓意天圆地方.据古塔示意图,以塔底座宽AB 为边作正方形ABCD (图2),塔高AF =AC ,分别以点A ,B 为圆心,AF 为半径作圆弧,交于点G .正方形ABCD 内部由四个全等的直角三角形和一个小正方形组成,若点G 落在AM 的延长线上,连接GP 交DQ 于点T ,则GT GP的值为 .图1 图2三、解答题(本题有8小题,共72分)17.(本题8分)(10(1)|5|---.(2)计算:223221a a a a a a --+--. 18.(本题8分)如图,在△ABC 中,AB =AC ,AD 是BC 边上的高线,点E ,F 分别在AC ,CD 上,且∠1=∠2(1)求证:AD∥EF.(2)当CE∶AE=3∶5,CF=6时,求BC的长.19.(本题8分)如图,是3个相同大小的6×6的方格,图1中放置一副七巧板组成的正方形图案,其顶点均在格点上,称之为格点图形.利用七巧板中的3种图形,按下列要求作出符合条件的格点图形.(1)在图2中,拼成一个轴对称但不是中心对称的图形.(2)在图3中,拼成一个中心对称但不是轴对称的图形.图1图2图320.(本题8分)某校组织的知识竞赛中,每班参加的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次为100分,90分,80分,70分,学校将九年级一班和九年级二班的成绩整理并绘制统计图,如图所示.(1)分别求出九年级一班成绩的平均数、中位数和众数;(2)规定成绩在90分以上为优秀(含90分),已知九年级二班成绩的平均数为87.6分,中位数为80分,众数为100分,优秀率为48%,请你选择两个统计量综合评价两个班的成绩.21.(本题8分)汽车刹车后,还会继续向前滑行一段距离,这段距离称为“刹车距离”.刹车距离y(m)与刹车时间的速度x(m/s)有以下关系式:y=ax2+bx(a,b为常数,且a≠0).某车辆测试结果如下:当车速为10m/s时,刹车距离y为3m;当车速为15m/s,刹车距离y为7.5m.(1)求出a,b的值;(2)行车记录仪记录了该车行驶一段路程的过程,汽车在刹车前匀速行驶了20s,然后刹车直至停下.测得刹车距离为5m,问:记录仪中汽车行驶路程为多少米?22.(本题10分)在Y ABCD中,E,F分别是AB,CD的中点,EG⊥BD于点G,FH⊥BD于点H,连接GF,EH.(1)求证:四边形EHFG是平行四边形.(2)当∠ABD=45°,tan∠EHG=14,EG=1时,求AD的长.23.(本题10分)综合与实践:测算校门所在斜坡的坡度.【背景】如图1,某学校校门在一道斜坡上,该校兴趣小组想要测量斜坡的坡度.图1图2【素材1】校门前的斜坡上铺着相同的长方形石砖,如图2,从测量杆AB到校门所在位置DE在斜坡上有15块地砖.【素材2】在点A处测得仰角tan∠1=19,俯角tan∠2=524;在点B处直立一面镜子,光线BD反射至斜坡CE的点N处,测得点B的仰角tan∠3=15;测量杆上AB∶BC=5∶8,斜坡CE上点N所在位置恰好是第9块地砖右边线.【讨论】只需要在∠1,∠2,∠3中选择两个角,再通过计算,可得CE的坡度.24.(本题12分)如图,在Rt△ABC中,∠ABC=90°,BC=6,AB=8,点D在AC上,过点B,D,C所作的弧为优弧BDC,交AB于点E,作DF//BC交BDC于点F,BF与CE,CD分别交于点G,H,连接DE.(1)求证:点H 是AC 的中点.(2)当»BE,»ED ,»DF 中的两段相等时,求DE 的长. (3)记△ADE 的面积为1S ,△CDF 的面积为2S ,若122596S S ,求¼BDC 所在圆的半径.。
2024年福建福州第十六中学中考模拟数学试题含参考答案

2023—2024学年九年级数学模拟测试卷(命卷人:陈葳 高嵩嵩 审卷人:徐杰 满分:150分 完卷时间:120分钟)学校:______ 班级:______ 姓名:______ 座号:______一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.下列各数中,是无理数的是( )A .2B .227C .3.14159D2.如图所示的几何体的主视图是( )A .B .C .D .3.习近平总书记提出精准扶贫战略以来,各地积极推进精准扶贫,加大帮扶力度,全国脱贫人口数不断增加,脱贫人口接近11000000人,将数据11000000用科学记数法表示为( ) A .51110×.B .71110×.C .81110×.D .61110×4.若三角形两边的长分别为7和2,第三边的长为奇数,则第三边的长为( ) A .3B .5C .D .95.下列计算正确的是( )B .2623y y y ÷=C .()22326a a a a −+=−+ D .2ab ab ab −−=−6.春节期间某电影上映的第一天票房约为3亿元,第二、三天单日票房持续增长,三天累计票房9.63亿元,若第二、三天单日票房增长率相同,设平均每天票房的增长率为x ,则根据题意,下列方程正确的是( )A .()31963x +=. B .()231963x +=.C .()()23131963x x +++=.D .()()233131963x x ++++=.7.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M .交y 轴于点N ,再分别以点,M N 为圆心、大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为()1,1a b −+,则a 与b 的数量关系为( )A .0a b +=B .2a b −=C .1a b +=−D .0a b −=8.某校篮球队有20名队员,统计所有队员的年龄制成如下的统计表,表格不小心被滴上了墨水,看不清13岁和14岁队员的具体人数.在下列统计量中,不受影响的是( )A .中位数,方差.B .众数.方差C .平均数,中位数D .中位数,众数9.小亮新买了一盏亮度可调节的台灯,他发现调节的原理是:当电压为()220V 时,通过调节电阻控制电流的变化从而改变灯光的明暗.台灯的电流I (A)是电阻()2R Ω的反比例函数.下列说法正确的是( )A 电流I (A)随电阻()R Ω的增大而增大B .电流I (A)与电阻()R Ω220I R =C .当电阻R 为550Ω时,电流I 为05A .D .当电阻11002200R Ω≤≤Ω时,电流I 的范围为01A 02A I <≤..10.把9个数填入33×的方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宮格”.它源于我国古代的“洛书”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宮格”,则其中a 的值为( )A .7B .4C .1D .6二、填空题(本大题有6小题,每小题4分,共24分)11.据介绍,我国计划2030年前实现中国人首次登陆月球,开展月球科学考察及相关技术试验.月球表面没有大气层保温,昼夜温差非常大.面对太阳的一面温度可以达到零上127C,记作127C +,背向太阳的一面温度可以达到零下183C,记作______℃.12.圆锥底面半径为3cm ,母线长cm 则圆锥的侧面积为______2cm . 13.现有甲、乙两种糖果的单价如下表所示.甲种糖果 乙种糖果 单价(元/千克)3020将2千克甲种糖果和3千克乙种糖果混合成一袋什锦糖果,若商家用加权平均数来确定这袋什锦糖果的单价,则这袋什锦糖果的单价为______元千克.14.若m 是方程22310x x −+=的一个根,则2692024m m −+的值为______.15.如图,已知矩形ABCD 的长AB m =,宽AD n =,将矩形ABCD 先向上平移2m ,再向右平移2n得到矩形1111A B C D ,连接,,,AB BB DD D F ′′′′,连接A F ′交DE 于点G ,则图中面积为2mn的三角形为______.16.如图,在菱形ABCD 中,60A ∠=,点M N ,是边,AD AB 上任意两点,将菱形ABCD 沿MN 翻折,点A 恰巧落在对角线BD 上的点E 处,下列结论:①MED ENB ∽△△;②若15DME ∠=,则105ENB ∠=;③若菱形边长为4,M 是AD 的中点,连接MC ,则MC =:2:5DE BE =,则:3:4AM AN =,其中正确结论是______.三、解答题(本大题有9小题,共86分)17.(8分)计算:()03π4sin601−+−−−18.(8分)如图,在平行四边形ABCD 中,点,E F 分别在,AD BC 上, 点,G H 在BD 上,,DE BF BG DH ==.求证:DHE BGF ∠∠=.19.(8分)先化简,再求值:22124232aa a a a − +⋅−−+,其中2a =−.20.(8分)春节假期,福州市以“福州年,最有福”为主题,开展2024年中国新春文化旅游月活动,推出文旅节庆活动、文化惠民活动、文艺演出、文博展览等四大系列160余项文旅活动和50项文旅惠民举措,及文化传家之旅、闽都美食之旅等六大“福地寻春”主题线路,为市民游客提供更具多样性、体验感的新春活动,拉满春节氛围感,让市民游客感受浓浓的福派年味.据测算,春节假期,福州市累计接待游客629.5万人次,位居福建第一;游客来榕不仅可游览三坊七巷,烟台山历史风貌区,上下杭历史文化街区,马尾船政博物馆等福州著名景点,还可以品尝福州的鱼丸、肉燕、线面、佛跳墙等特色美食.小炜和小杰准备借此次旅行机会,一品福州美食.他们各自在鱼丸(记为A )、肉燕(记为B )、线面(记为C )、佛跳墙(记为D )四种美食中随机任选一种品尝.A .B .C .D .(1)小炜选择品尝佛跳墙的概率为______;(2)用画树状图或列表的方法,求小炜和小杰选择品尝不同种美食的概率.21.(8分)党的二十大报告提出:“加快建设高质量教育体系,发展素质教育”.为扎实做好育人工作,某校深入开展“阳光体育”活动.该校计划购买乒乓球拍和羽毛球拍用于“阳光体育大课间”和学生社团活动.已知一副羽毛球拍比一副乒乓球拍多30元,且用1000元购买乒乓球拍的数量和用2000元购买羽毛球拍的数量相等.(1)求每副乒乓球拍和每副羽毛球拍的价格;(2)学校计划采购乒乓球拍和羽毛球拍共100副,且乒乓球拍的数量不超过羽毛球拍数量的2倍,要想花费的资金总额最少,则最多购买乒乓球拍多少副?资金总额最少为多少元?22.(10分)如图,直线AB 经过O 上的点C ,并且,,OA OB CA CB O == 交直线OB 于,E D ,交OA 于点F ,连接EF 并延长交AB 于G .(1)求证:直线AB 是O 的切线;(2)若30,B CG ∠==BD 的长.23.(10分)为推进青少年近视的防控工作,教育部等十五部门发布了《儿童青少年近视防控光明行动工作方案(2021—2025年)》.方案中明确强调了校园视力筛查的重要性.视力筛查使用的视力表中蕴含着很多数学知识,如:每个“E ”形图都是正方形结构,同一行的“E ”是全等图形且对应着同一个视力值,不同的检测距离需要不同的视力表等.【素材1】国际通用的视力表以5米为检测距离.如图1,任选视力表中7个视力值n ,测得对应行的“E ”形图边长()mm b ,在平面直角坐标系中描点.【素材2】图2为视网膜成像示意图,在检测视力时,眼睛能看清最小“E ”形图所成的角叫做分辨视角θ.视力值n 与分辨视角θ(分)的对应关系近似满足()10510nθθ=≤≤.. 【素材3】如图3,当θ确定时,在A 处用边长为1b 的Ⅰ号“E ”测得的视力与在B 处用边长为2b 的Ⅱ号“E ”测得的视力相同.【探究活动】(1)当检测距离为5米时,①猜想n 与b 满足______函数关系(填:一次或二次或反比例); ②直接写出....n 与b 的函数关系式为______; ③求视力值1.2所对应行的“E ”形图边长.(2)当10n ≥.时,属于正常视力,根据函数增减性求出对应的分辨视角θ的范围.(3)在某次视力检测中,小何同学发现视力值1.2所对应行的“E ”形图边长为36mm .,设置的检测距离为3.5米.请问,设置的检测距离与该视力表是否匹配?若匹配,请说明理由;若不匹配,小何同学该如何调整自己的位置?24.(12分)在平面直角坐标系中,抛物线23y ax bx +−交x 轴于点()1,0A −.()3,0B ,交y 轴于点C .(1)求抛物线的解析式:(2)若点()()()1233,,2,F n y P n y Q n y −+,,都在该抛物线上,且总有231y y y <<,求n 的取值范围.(3)将原抛物线沿射线CA 个单位长度得到新抛物线,新抛物线与x 轴的正半轴交于点D ,请问在新抛物线上是否存在一点E ,使得90EDA OAC ∠∠+=若存在,则直接写出点E 的坐标;若不存在,则说明理由.25.(14分)已知,在ABC △中,,6AB AC BC ==.将ABC △绕点C 旋转使点B 落在直线AB 上的点D 处,点A 落在点E 处,直线DE 与直线BC 相交于点F ,射线AC 与射线DE 相交于点P ,连接AE .(1)当6AB <时,用直尺和圆规作出图形,并求证:①AD CE ∥;②2PE PD PF =⋅;(2)当点D 与点A 的距离为5时,求CP 的长.2023—2024学年九年级数学模拟测试参考答案:一、选择题1.D 2.A 3.B 4.C 5.B 6.D 7.A 8.D 9.D 10.C二、填空题11.-183 12.13.2414.202115.A D F ′′△16.①②④解析: 四边形ABCD 是菱形,AB AD ∴=,60A ABD ∠=∴ △是等边三角形,60ADB ABD ∠∠∴== ,由折叠性质可知,60,120A MEN MED BEN ∠∠∠∠==∴+= ,120,,~MED DME DME BEN MED ENB ∠∠∠∠+=∴=∴ △△,故①正确; 15,15DME BEN DME ∠∠∠=∴== , 1806015105ENB ∠∴−− ,故②正确;如图,作MH CD ⊥交CD 的延长线于点H在Rt DMH △中,90H ∠=,由①得:6060,30ADB BDC MDH DMH ∠∠∠∠==∴==M 是AD 的中点,21,DM DH MH ∴=∴=,CM ∴=,故③错误;设2,5DE a BE a ==,则7ABAD BD a ===,设BN x =,则7AN EN a x ==−, ME ED DM MED ENB EN BN EB ∼∴== △△,275MEa DM a x xa ∴==−()22710,a a x a EM AM DM xx−∴=== 7AM DM a += ,()227107a a x a a x x −∴+=,解得:83x a =, 1313,,:3:443AM a AN a AM AN ∴==∴=,故④正确; 三、解答题17.解:原式141=+−11=+−+2=18.证明: 四边形ABCD 是平行四边形,AD CB ∴∥.ADB CBD ∠∠∴=.,DE BF BG DH == ,()SAS DEH BFG ∴≌△△,DHE BGF ∠∠∴=19.解:原式()()()2222232a a a a a a ++−⋅+−+, 12a =+当2a =−时原式20.(1)14(2)画树状图如下:∴一共有16种等可能的情况,恰好小炜和小成选择品尝不同美食的情况有12种,∴恰好小炜和小杰选择品尝不同美食的概率为123164=21.(1)解:设每副乒乓球拍的价格是x 元,则每副羽毛球拍的价格是()30x +元.根据题意,得900180030x x =+,解得30x =, 经检验,30x =是所列分式方程的根,303060+=(元), 答:每副乒乓球拍的价格是30元,每副羽毛球拍的价格是60元. (2)解:设购买乒乓球拍a 副,则购买羽毛球拍()100a −副. 根据题意,得:()2100a a ≤−,解得2003a ≤, 设花费的资金总额为W 元,则()3060100306000W a a a =+−=−+, 300,W −<∴ 随a 的增大而减小,20033a ≤且a 为正整数, ∴当66a =时,W 取最小值, 306660004020W =−×+=最小, 答:要想花费的资金总额最少,则最多购买乒乓球拍66副,资金总额最少为4020元 22.(1)证明:如图,连接OC ,CA CB = ,OC ∴是OAB △的中线,OA OB = , OC AB ∴⊥,又 点C 在O 上,∴直线AB 是O 的切线;(2)解:设O 的半径为r ,,90OC AB OCB ∠⊥∴= ,()1130,22B OC OB OD BD ∠=∴==+ ,即()12r r BD =+, ,2BD r OB r ∴==,BC ∴=9060,BOC B OA OB ∠∠=−== ,2120AOB BOC ∠∠∴== ,即120FOD ∠= ,1602GEB FOD ∠∠∴== , 180180603090EGB GEB B ∠∠∠∴=−−=−−= , 在Rt EGB △中,23,30BE ED BD r r r B ∠++ ,1322EG BE r ∴==,BG ∴=CG BC ∴+, 解得2,2r BD =∴= 23.解:(1)①反比例; 2)72n b=. ③将12n =.代入72n b=.得:6b =; 答:检测距离为5米时,视力值1.2所对应行的“E ”形图边长为6mm ; (2)1n θ=,∴在自变量θ的取值范围内,n 随着θ的增大而减小,∴当10n ≥.时,010θ<≤., 又0510,0510θθ≤≤∴≤≤... ;(3)由素材可知,当某人的视力确定时,其分辨视角也是确定的, 由相似三角形性质得12b b =12检测距离检测距离, 由(1)知16366,5b =∴=2.检测距离, 解得检测距离2b 应为3m,3m 35m ≠.答:不匹配,检测距离2b 应调整为3m .(或者小何同学应当向视力表方向前进05m .) 24.(1)解:由题意得:2309330a b a b −−=+−=, 解得:12a b = =−, ∴抛物线的解析式为:223y x x =−−;(2) 抛物线223y x x =−−开口向上,且点()()()1233,,2,F n y P n y Q n y −+,,都在该抛物线上,且总有231y y y <<,∴点F 始终位于对称轴的左边,点Q 始终位于对称轴的右侧.①当点P 在对称轴上或右边时,()13121132n n n n ≥ ∴≤< +−<−− . ②当点P 在对称轴左边时,1121n n n <−<+− 01n ∴<< 综上所述:302n <<; (3)点E 的坐标为47,39 − 或25,39 −−. 解析:存在点E ,使得90EDA OAC ∠∠+= ,理由如下:抛物线223y x x =−−沿射线CA 个单位长度,()()1,0,0,3A C −−, 1,3OA OC ∴==,AC ∴===,∴抛物线向左右平移1个单位长度,再向上平移3个单位长度可得到新抛物线, ()222314y x x x =−−=−− , ()2211431y x x ∴=−−+=′+−,如图,当点E 在x 轴下方时,延长DE 交AC 于点G ,过点E 作ER x ⊥轴,垂足为R , 90,90EDA OAC OAC OCA ∠∠∠∠+=+= ,,90EDA ACO DGB ∠∠∠∴== ,90,tan tan ,ER OA ERD EDA ACO DR OC ∠∠∠=∴=∴= ,设()2,1E n n −,则(),0R n ,()21,11ER n DR n n ∴=−+=−−=+, 1,3OA OC == ,21113n n −+∴=+,即2331n n −+=+, 整理得:2320n n +−=,解得:32n =或1n =−(与点N 重合,舍去),25,39E ∴−− ; 如图,当点E 在x 轴上方时,过点E 作EK x ⊥轴,垂足为K ,同理得,90,90EDA ACO EKD AOC ∠∠∠∠=== ,tan tan ,TK OA EDA ACO NK OC∠∠∴=∴=, 设()2,1E t t −,则()21,11EK t DK t t =−=−−=+, 21113t t −∴=+,即2331t t −=+,整理得:2340t t −−= 解得:43t =或1t =−(与点N 重合,舍去),47,39E ∴−; 综上,点E 的坐标为47,39 −或25,39 −− . 25.(1)如图,为所求证明:①由旋转性质,得,CD CB ACB ECD ∠∠==, CBD CDB ∠∠∴=.AB AC = ,ABC ACB ∠∠∴=. BCD BAC ECA ∠∠∠∴==.AD CE ∴∥.②AD CE ∥ ,ADP CEP ∴∽△△,PD AP PE PC ∴=. ,AB CE AB CE =∥ ,∴四边形ABCE 是平行四边形.AE BC APE CPF ∴∴∥.∽△△,PE AP PD PE PF PC PE PF∴=∴=., 2PE PD PF ∴=⋅(2)①当6AB <时,点D 在边BA 的延长线上.ABC ACB CDB ∠∠∠== ,CBD ABC ∴∽△△, 2,BD BC BC BD BA BC BA∴=∴=⋅. 6,5BC AD ==, ()536BD BD ∴+=,解得9BD =(负根舍去) 4AB AC CE ∴===.,AD CE PCE PAD ∴∥∽ △△,CP CE AP AD∴=,即445CP CP =+. 解得16CP =. ②当6AB >时,点D 在边AB 上.同理可得4,9BD AB AC CE DE =∴====. ,AD CE APD CPE ∴∥∽ △△,CP CE AP AD ∴=,即995CP CP =−. 解得8114CP =. 综上所述,8114CP =或16CP =.。
最新北京中考数学真题模拟题汇编专题17:图形的变化之解答题

最新北京中考数学真题模拟题汇编专题17 图形的变化之解答题(14道题)参考答案与试题解析一.解答题(共14小题)1.(2019•门头沟区二模)如图,在等边三角形ABC中,点D为BC边上的一点,点D关于直线AB的对称点为点E,连接AD、DE,在AD上取点F,使得∠EFD=60°,射线EF与AC交于点G.(1)设∠BAD=α,求∠AGE的度数(用含α的代数式表示);(2)用等式表示线段CG与BD之间的数量关系,并证明.【答案】解:(1)∵△ABC是等边三角形,∴∠BAC=60°,∵∠BAD=α,∴∠FAG=60°﹣α,∵∠AFG=∠EFD=60°,∴∠AGE=180°﹣60°﹣(60°﹣α)=60°+α;(2)CG=2BD,理由是:如图,连接BE,过B作BP∥EG,交AC于P,则∠BPC=∠EGP,∵点D关于直线AB的对称点为点E,∴∠ABE=∠ABD=60°,∴∠EBD+∠C=180°,∴EB∥GP,∴四边形EBPG是平行四边形,∴BE=PG,∵∠DFG+∠C=120°+60°=180°,∴∠FGC+∠FDC=180°,∴∠ADB=∠BGP=∠BPC,∵AB=BC,∠ABD=∠C=60°,∴△ABD≌△BCP(AAS),∴BD=PC=BE=PG,∴CG=2BD.【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,平行四边形的判定和性质,对称的性质,添加恰当的辅助线构造全等三角形是本题的关键.2.(2019•东城区二模)如图,在△ABC中,AB=AC,D为BC中点,AE∥BD,且AE=BD.(1)求证:四边形AEBD是矩形;(2)连接CE交AB于点F,若∠ABE=30°,AE=2,求EF的长.【答案】(1)证明:∵AE∥BD,AE=BD,∴四边形AEBD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴∠ADB=90°,∴四边形AEBD是矩形.(2)解:∵四边形AEBD是矩形,∵∠ABE=30°,AE=2,∴BE=2,BC=4,∴EC=2,∵AE∥BC,∴△AEF∽△BCF,∴,∴EF EC.【点睛】本题考查相似三角形的判定和性质,矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(2019•东城区二模)如图,△ABC为等边三角形,点P是线段AC上一动点(点P不与A,C重合),连接BP,过点A作直线BP的垂线段,垂足为点D,将线段AD绕点A逆时针旋转60°得到线段AE,连接DE,CE.(1)求证:BD=CE;(2)延长ED交BC于点F,求证:F为BC的中点;(3)在(2)的条件下,若△ABC的边长为1,直接写出EF的最大值.【答案】证明:(1)∵将线段AD绕点A逆时针旋转60°得到线段AE,∴AD=AE,∠DAE=60°∴△ADE是等边三角形∵△ABC为等边三角形∴AB=AC,∠BAC=∠DAE=60°∴∠DAB=∠CAE,且AB=AC,AD=AE∴△ADB≌△AEC(SAS)∴BD=CE(2)如图,过点C作CG∥BP,交EF的延长线于点G,∵∠ADB=90°,∠ADE=60°∴∠BDG=30°∵CG∥BP∴∠G=∠BDG=30°,∵△ADB≌△AEC∴BD=CE,∠ADB=∠AEC=90°∴∠GEC=∠AEC﹣∠AED=30°∴∠G=∠GEC=30°∴GC=CE,∴CG=BD,且∠BDG=∠G,∠BFD=∠GFC∴△BFD≌△CFG(AAS)∴BF=FC∴点F是BC中点(3)如图,连接AF,∵△ABC是等边三角形,BF=FC∴AF⊥BC∴∠AFC=90°∴∠AFC=∠AEC=90°∴点A,点F,点C,点E四点在以AC为直径的圆上,∴EF最大为直径,即最大值为1【点睛】本题是几何变换综合题,考查了等边三角形的性质,全等三角形的判定和性质,旋转的性质,添加恰当辅助线构造全等三角形是本题的关键.4.(2019•平谷区二模)在等边三角形ABC外侧作射线AP,∠BAP=α,点B关于射线AP的对称点为点D,连接CD交AP于点E.(1)依据题意补全图形;(2)当α=20°时,∠ADC=40°;∠AEC=60°;(3)连接BE,求证:∠AEC=∠BEC;(4)当0°<α<60°时,用等式表示线段AE,CD,DE之间的数量关系,并证明.【答案】解:(1)如图,补全图形:(2)连接AD,∵三角形ABC为等边三角形,∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°,由对称可知,AD=AB,∴AD=AC,∵∠BAP=α=20°,∴∠DAB=40°,∴∠DAC=40°+60°=100°,∴∠ADC=∠ACD,∠AEC=∠ADC+∠DAE=40°+20°=60°,故答案为40,60;(3)由对称可知,∠BAE=∠DAE=α,∵AD=AB=AC,∴∠ADC,∠AEC=60°,∵∠ACB=60°,∠ACD=∠ADC=60°﹣α,∴∠BCE=α,∵∠ABC=60°,∠ABE=∠ADC=60°﹣α,∴∠BEC=60°,∴∠AEC=∠BEC;(4)当0°<α<60°时,CD=2DE+AE,证明:在CD上截取BG=BE,∵∠BEC=60°,∴△BGE是等边三角形,∴∠BGC=∠AED=120°,∵∠BCE=∠DAE=α,∴△BCG≌△DAE(AAS),∴AE=CG,∵EG=BE=DE,∴CD=2DE+CG,即CD=2DE+AE.【点睛】本题考查了轴对称,熟练运用等边三角形的性质是解题的关键.5.(2019•顺义区二模)已知:在△ABC中,∠BAC=90°,AB=AC.(1)如图1,将线段AC绕点A逆时针旋转60°得到AD,连结CD、BD,∠BAC的平分线交BD于点E,连结CE.①求证:∠AED=∠CED;②用等式表示线段AE、CE、BD之间的数量关系(直接写出结果);(2)在图2中,若将线段AC绕点A顺时针旋转60°得到AD,连结CD、BD,∠BAC的平分线交BD的延长线于点E,连结CE.请补全图形,并用等式表示线段AE、CE、BD之间的数量关系,并证明.【答案】证明:(1)①∵将线段AC绕点A逆时针旋转60°得到AD,∴AC=AD,∠DAC=60°∴∠BAD=∠BAC+∠CAD=150°,且AB=AC=AD ∴∠3=∠5=15°∵∠BAC=90°,AB=AC,AE平分∠BAC∴∠1=∠2=45°,∠ABC=∠ACB=45°又∵AE=AE,∴△ABE≌△ACE(SAS)∴∠3=∠4=15°∴∠6=∠7=30°∴∠DEC=∠6+∠7=60°∵∠AED=∠3+∠1=60°∴∠AED=∠CED②BD=2CE+AE理由如下:过点A作AH⊥BD于点H,∵∠EBC=∠ECB∴BE=CE,∵∠AED=60°,AH⊥BD∴AE=2EH∵AB=AD,AH⊥BD∴BD=2BH=2(BE+EH)=2BE+AE=2EC+AE(2)补全图形如图,2CE﹣AE=BD理由如下:如图2,以A为顶点,AE为一边作∠EAF=60°,AF交DB延长线于点F.∵∠BAC=90°,AB=AC,AE平分∠BAC∴∠BAE=∠CAE=45°,∠ABC=∠ACB=45°.∵将线段AC绕点A逆时针旋转60°得到AD,∴AC=AD,∠DAC=60°∴∠DAE=∠DAC﹣∠CAE=15°,AB=AD∴∠ABD=∠ADB,∠BAD=30°∴∠ABD=∠ADB=75°∴∠AED=∠ADB﹣∠DAE=60°∵∠EAF=60°又∵∠EAF=60°,∴∠F=60°∴△AEF是等边三角形.∴AE=AF=EF.∵AC=AD,∠CAE=∠DAF=45°,AE=AF,∴△CAE≌△DAF(SAS).∴CE=DF.∵AB=AC,∠BAE=∠CAE=45°,AE=AE,∴△BAE≌△CAE(SAS).∴BE=CE.∴BE=CE.∵DF+BE﹣EF=BD,∴2CE﹣AE=BD【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质,添加恰当的辅助线构造全等三角形是本题的关键.6.(2019•石景山区二模)如图在△ABC中,∠ACB=90°,AC=BC,E为外角∠BCD平分线上一动点(不与点C重合),点E关于直线BC的对称点为F,连接BE,连接AF并延长交直线BE于点G.(1)求证:AF=BE;(2)用等式表示线段FG,EG与CE的数量关系,并证明.【答案】解:(1)如图,连接CF.∵,∠ACB=90°,CE平分∠BCD,∴∠BCE=45°,∵点E、F关于直线BC对称,∴CE=CF,∠FCB=∠BCE=45°,∴∠FCA=45°,在△FCA与△ECB中,∴△FCA≌△ECB(SAS),∴AF=BE;(2)FG,EG与CE的数量关系:GE2+GF2=2CE2,证明:∵△FCA≌△ECB,∴∠AFC=∠BEC,∵∠AFC+∠CFG=180°,∴∠CFG+∠CEG=180°,∴∠ECF+∠EGF=180°,∵∠ECF=45°+45°=90°,∴∠EGF=90°,连接EF,∴GE2+GF2=EF2,∵CE=CF,∴CE2+CF2=2CE2=EF2,∴GE2+GF2=2CE2.【点睛】本题考查了轴对称的性质与等腰直角三角形的性质,熟练运用勾股定理、三角形全等的判定与性质是解题的关键.7.(2019•朝阳区一模)如图,在Rt△ABC中,∠A=90°,AB=AC,将线段BC绕点B逆时针旋转α°(0<α<180),得到线段BD,且AD∥BC.(1)依题意补全图形;(2)求满足条件的α的值;(3)若AB=2,求AD的长.【答案】解:(1)满足条件的点D和D′如图所示.(2)作AF⊥BC于F,DE⊥BC于E.则四边形AFED是矩形.∴AF=DE,∠DEB=90°,∵AB=AC,∠BAC=90°,AF⊥BC,∴BF=CF,∴AF BC,∵BC=BD,AF=DE,∴DE BD,∴∠DBE=30°,∴∠D′BC=120°+30°=150°,∴满足条件的α的值为30°或150°.(3)由题意AB=AC=2,∴BC=2,∴AF=BF=DE,∴BE DE,∴AD,AD′=2().【点睛】本题考查旋转变换,等腰直角三角形的性质等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题.,属于中考常考题型.8.(2019•石景山区一模)如图,在等边△ABC中,D为边AC的延长线上一点(CD<AC),平移线段BC,使点C移动到点D,得到线段ED,M为ED的中点,过点M作ED的垂线,交BC于点F,交AC于点G.(1)依题意补全图形;(2)求证:AG=CD;(3)连接DF并延长交AB于点H,用等式表示线段AH与CG的数量关系,并证明.【答案】解:(1)补全的图形如图1所示.(2)证明:∵△ABC是等边三角形,∴AB=BC=CA.∠ABC=∠BCA=∠CAB=60°.由平移可知ED∥BC,ED=BC.∴∠ADE=∠ACB=60°.∵∠GMD=90°,如图1,∴DG=2DM=DE.∵DE=BC=AC,∴DG=AC.∴AG=CD.(3)线段AH与CG的数量关系:AH=CG.证明:如图2,连接BE,EF.∵ED=BC,ED∥BC,∴四边形BEDC是平行四边形.∴BE=CD,∠CBE=∠ADE=∠ABC.∵GM垂直平分ED,∴EF=DF.∴∠DEF=∠EDF.∵ED∥BC,∴∠BFE=∠DEF,∠BFH=∠EDF.∴∠BFE=∠BFH.∵BF=BF,∴△BEF≌△BHF(ASA).∴BE=BH=CD=AG.∵AB=AC,∴AH=CG.【点睛】本题考查平移变换、等边三角形的性质、三角形全等的性质和判定、平行四边形的判定和性质等知识,解题的关键灵活应用所学知识解决问题,正确作出辅助线构造全等三角形是解题的关键,属于中考常考题型.9.(2019•西城区一模)如图,在△ABC中,∠ABC=90°,BA=BC.将线段AB绕点A逆时针旋转90°得到线段AD,E是边BC上的一动点,连接DE交AC于点F,连接BF.(1)求证:FB=FD;(2)点H在边BC上,且BH=CE,连接AH交BF于点N.①判断AH与BF的位置关系,并证明你的结论;②连接CN.若AB=2,请直接写出线段CN长度的最小值.【答案】(1)证明:如图1中,∵BA=BC,∠ABC=90°,∴∠BAC=∠ACB=45°,∵线段AB绕点A逆时针旋转90°得到线段AD,∴∠BAD=90°,BA=AD,∴∠FAD=∠FAB=45°,∵AF=AF,∴△FAD≌△FAB(SAS),∴BF=DF.(2)①解:结论:AH⊥BF.理由:如图2中,连接CD.∵∠ABC+∠BAD=180°,∴AD∥BC,∵AD=AB=BC,∴四边形ABCD是平行四边形,∵∠ABC=90°,∴四边形ABCD是矩形,∵AB=BC,∴四边形ABCD是正方形,∵BA=CD,∠ABH=∠DCE,BH=CE,∴△ABH≌△DCE(SAS),∴∠BAH=∠CDE,∵∠FCD=∠FCB=45°,CF=CF,CD=CB,∴△CFD≌△CFB(SAS),∴∠CDF=∠CBF,∴∠BAH=∠CBF,∵∠CBF+∠ABF=90°,∴∠BAH+∠ABF=90°,∴∠ANB=90°,∴AH⊥BF.②如图3中,取AB的中点O,连接ON,OC.∵∠ANB=90°,AO=OB,∴ON AB=1,在Rt△OBC中,OC,∵CN≥OC﹣ON,∴CN1,∴CN的最小值为1.【点睛】本题属于几何变换综合题,考查了正方形的判定和性质,全等三角形的判断和性质,三角形的三边关系等知识,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.10.(2019•平谷区一模)在△ABC中,∠ABC=120°,线段AC绕点A逆时针旋转60°得到线段AD,连接CD,BD交AC于P.(1)若∠BAC=α,直接写出∠BCD的度数(用含α的代数式表示);(2)求AB,BC,BD之间的数量关系;(3)当α=30°时,直接写出AC,BD的关系.【答案】解:(1)∵线段AC绕点A逆时针旋转60°得到线段AD,∴△ACD是等边三角形,∴∠ACD=60°,∵∠ABC=120°,∴∠BAC+∠BCA=60°,∴∠BCD=∠ACD+∠BCA=60°+60°﹣α=120°﹣α,即∠BCD=120°﹣α.(2)BD=AB+BC.如图1,延长BA使AE=BC,连接DE.由(1)知△ADC是等边三角形,∴AD=CD.∵∠DAB+∠DCB=∠DAB+∠DAE=180°,∴∠DCB=∠DAE.∴△ADE≌△CDB(SAS).∴BD=BE.∴BD=AB+BC.(3)如图2,AC,BD的数量关系是:;位置关系是:AC⊥BD于点P.理由如下:∵∠BAC=30°,∠ABC=120°,∴∠ACB=30°,∴AB=BC,∵AD=DC,∴BD垂直平分AC,∴∠ABD=60°,∠DAB=90°,∴,∴.【点睛】本题考查的是图形旋转的性质及等边三角形的判定与性质,熟知旋转前、后的图形全等是解答此题的关键.11.(2019•通州区一模)如图,在等边△ABC中,点D是线段BC上一点.作射线AD,点B关于射线AD的对称点为E.连接CE并延长,交射线AD于点F.(1)设∠BAF=α,用α表示∠BCF的度数;(2)用等式表示线段AF、CF、EF之间的数量关系,并证明.【答案】解:(1)连接AE.∵点B关于射线AD的对称点为E,∴AE=AB,∠BAF=∠EAF=α,∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴∠EAC=60°﹣2α,AE=AC,∴[180°﹣(60°﹣2α)]=60°+α,∴∠BCF=∠ACE﹣∠ACB=60°+α﹣60°=α.(2)结论:AF=EF+CF.证明:如图,作∠FCG=60°交AD于点G,连接BF.∵∠BAF=∠BCF=α,∠ADB=∠CDF,∴∠ABC=∠AFC=60°,∴△FCG是等边三角形,∴GF=FC,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°,∴∠ACG=∠BCF=α,在△ACG和△BCF中,,∴△ACG≌△BCF.∴AG=BF,∵点B关于射线AD的对称点为E,∴BF=EF,∴AF﹣AG=GF,∴AF=EF+CF.【点睛】本题考查作图﹣轴对称变换,全等三角形的判定和性质,等边三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.12.(2019•门头沟区一模)如图,∠AOB=90°,OC为∠AOB的平分线,点P为OC上一个动点,过点P 作射线PE交OA于点E.以点P为旋转中心,将射线PE沿逆时针方向旋转90°,交OB于点F.(1)根据题意补全图1,并证明PE=PF;(2)如图1,如果点E在OA边上,用等式表示线段OE,OP和OF之间的数量关系,并证明;(3)如图2,如果点E在OA边的反向延长线上,直接写出线段OE,OP和OF之间的数量关系.【答案】解:(1)补全图形(如图1);理由:如图1中,作PQ⊥PO交OB于Q∴∠OPQ=∠EPF=90°∴∠EPO=∠FPQ,又∵OC平分∠AOB,∠AOB=90°,∴∠EOP=∠POB=45°,又∵∠POQ+∠OQP=90°,∴∠PQO=45°,∴∠POE=∠PQF=∠POQ,∴PO=PQ.∴△EPO≌△FPQ(ASA),∴PE=PF,(2)结论:线段OE,OP和OF之间的数量关系是OF+OE OP.理由:如图1中,∵△EPO≌△FPQ,∴OE=FQ.又∵OQ=OF+FQ=OF+OE,又∵OQ OP,∴OF+OE OP.(3)结论:线段OE,OP和OF之间的数量关系是OF﹣OE OP.理由:如图1中,作PQ⊥PO交OB于Q∴∠OPQ=∠EPF=90°∴∠EPO=∠FPQ,又∵OC平分∠AOB,∠AOB=90°,∴∠AOP=∠POB=45°,又∵∠POQ+∠OQP=90°,∴∠PQO=45°,∴∠POA=∠PQO=∠POQ=45°,∴PO=PQ,∠POE=∠PQE=135°,∴△EPO≌△FPQ(ASA),∴PE=PF,OE=FQ.又∵OQ=OF﹣FQ=OF﹣OE,又∵OQ OP,∴OF﹣OE OP.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.13.(2019•延庆区一模)在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+3a﹣2(a≠0)的对称轴与x轴交于点A,将点A向右平移3个单位长度,向上平移2个单位长度,得到点B.(1)求抛物线的对称轴及点B的坐标;(2)若抛物线与线段AB有公共点,结合函数图象,求a的取值范围.【答案】解:(1)抛物线的对称轴为直线x2,∴点A的坐标为(2,0).∵将点A向右平移3个单位长度,向上平移2个单位长度,得到点B,∴点B的坐标为(2+3,0+2),即(5,2).(2)分a>0和a<0两种情况考虑:①当a>0时,如图1所示.∴25a﹣20a+3a﹣2≥2,∴a;②当a<0时,如图2所示.∵y=ax2﹣4ax+3a﹣2=a(x﹣2)2﹣a﹣2,∴,∴a≤﹣2.综上所述:a的取值范围为a或a≤﹣2.【点睛】本题考查了坐标与图形的变化﹣平移:掌握点平移的坐标规律和二次函数的性质以及二次函数图象上点的坐标特征,解题的关键是:(1)利用二次函数的性质,求出点A的坐标;(2)分a>0和a<0两种情况,利用数形结合找出关于a的一元一次不等式(或一元一次不等式组).14.(2019•北京模拟)在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连结CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°①如图1,∠DCB=60°②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;(2)如图3,若点P在线段CB的延长线上,且∠A=α(0°<α<90°),连结DP,将线段DP绕点D 逆时针旋转2α得到线段DF,连结BF,请直接写出DE.BF、BP三者的数量关系(不需证明)【答案】解:(1)①∵∠A=30°,∠ACB=90°,∴∠B=60°,∵AD=DB,∴CD=AD=DB,∴△CDB是等边三角形,∴∠DCB=60°.②补全图形如图2,结论:CP=BF.理由如下:∵∠ACB=90°,D是AB的中点,DE⊥BC,∠A=α,∴DC=DB=AD,DE∥AC,∴∠A=∠ACD=α,∠EDB=∠A=α,BC=2CE,∴∠BDC=∠A+∠ACD=2α,∵∠PDF=2α,∴∠FDB=∠CDP=2α﹣∠PDB,∵线段DP绕点D逆时针旋转2α得到线段DF,∴DP=DF,在△DCP和△DBF中,∴△DCP≌△DBF(SAS),∴CP=BF,CP=BF.(2)结论:BF﹣BP=2DE•tanα.理由:如图3,∵∠ACB=90°,D是AB的中点,DE⊥BC,∠A=α,∴DC=DB=AD,DE∥AC,∴∠A=∠ACD=α,∠EDB=∠A=α,BC=2CE,∴∠BDC=∠A+∠ACD=2α,∵∠PDF=2α,∴∠FDB=∠CDP=2α+∠PDB,∵线段DP绕点D逆时针旋转2α得到线段DF,∴DP=DF,在△DCP和△DBF中,∴△DCP≌△DBF(SAS),∴CP=BF,而CP=BC+BP,∴BF﹣BP=BC,在Rt△CDE中,∠DEC=90°,∴tan∠DCE,∴CE=DE tanα,∴BC=2CE=2DE tanα,即BF﹣BP=2DE tanα.【点睛】本题考查了三角形外角性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP≌△DBF是解此题的关键,综合性比较强,证明过程类似.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年河南省中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣32.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×10153.(3分)某几何体的左视图如图所示,则该几何体不可能是()A. B.C.D.4.(3分)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=35.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分 B.95分,90分 C.90分,95分 D.95分,85分6.(3分)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根7.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.(3分)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB 在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1) B.(2,1)C.(1,) D.(2,)10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣二、填空题(每小题3分,共15分)11.(3分)计算:23﹣= .12.(3分)不等式组的解集是.13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为.14.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP 的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.15.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN 所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A 0≤x<30 4B 30≤x<60 16C 60≤x<90 aD 90≤x<120 bE x≥120 2请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b= ,m= ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)20.(9分)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•河南)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣3【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)(2017•河南)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•河南)某几何体的左视图如图所示,则该几何体不可能是()A. B.C.D.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.4.(3分)(2017•河南)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.(3分)(2017•河南)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分 B.95分,90分 C.90分,95分 D.95分,85分【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3分)(2017•河南)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•河南)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3分)(2017•河南)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.9.(3分)(2017•河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1) B.(2,1)C.(1,) D.(2,)【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C′(2,),故选D.【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.(3分)(2017•河南)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣【分析】连接OO′,BO′,根据旋转的性质得到∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S△B′O′B﹣(S扇形O′OB﹣S△OO′B)=×1×2﹣(﹣×2×)=2﹣.故选C.【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.二、填空题(每小题3分,共15分)11.(3分)(2017•河南)计算:23﹣= 6 .【分析】明确表示4的算术平方根,值为2.【解答】解:23﹣=8﹣2=6,故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单.12.(3分)(2017•河南)不等式组的解集是﹣1<x≤2 .【分析】先求出不等式的解集,再求出不等式解集的公共部分.【解答】解:解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集是﹣1<x≤2,故答案为﹣1<x≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(3分)(2017•河南)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为m<n .【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.(3分)(2017•河南)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12 .【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.15.(3分)(2017•河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM 的长为+或1 .【分析】①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)(2017•河南)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=+1,y=﹣1代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9分)(2017•河南)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A 0≤x<30 4B 30≤x<60 16C 60≤x<90 aD 90≤x<120 bE x≥120 2请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50 人,a+b= 28 ,m= 8 ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.(9分)(2017•河南)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)(2017•河南)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)【分析】如图作CE⊥AB于E.设AE=EC=x,则BE=x﹣5,在Rt△BCE中,根据tan53°=,可得=,求出x,再求出BC、AC,分别求出A、B两船到C的时间,即可解决问题.【解答】解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.20.(9分)(2017•河南)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B (3,1).(1)填空:一次函数的解析式为y=﹣x+4 ,反比例函数的解析式为y=;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.【分析】(1)先将B(3,1)代入反比例函数即可求出k的值,然后将A代入反比例函数即可求出m的,再根据B两点的坐标即可求出一次函数的解析式.(2)设P的坐标为(x,y),由于点P在直线AB上,从而可知PD=y,OD=x,由题意可知:1≤x≤3,从而可求出S的范围【解答】解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10分)(2017•河南)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B 种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【分析】(按买3个A种魔方和买4个B种魔方钱数相同解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.(按购买3个A种魔方和4个B种魔方需要130元解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.【解答】(按买3个A种魔方和买4个B种魔方钱数相同解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600;w活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500,解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500,解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300,解得:m<50;当w活动一=w活动二时,有15.6m+520=1300,解得:m=50;当w活动一>w活动二时,有15.6m+520>1300,不等式无解.综上所述:当0<m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活m的函数关系式.动二关于22.(10分)(2017•河南)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是PM=PN ,位置关系是PM⊥PN ;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在AB的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大,是一道中考常考题.23.(11分)(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);。