第一讲:因式分解与化简求值上课讲义
《因式分解》说课课件

十字相乘法
总结词
适用于二次多项式的因式分解
详细描述
十字相乘法是一种特殊的因式分解方法,适用于二次多项式的因式分解。通过将二次项和常数项拆分成两个因数的乘 积,并在交叉相乘后得到一次项系数,从而找到多项式的因式分解形式。
举例
如对于多项式 $2x^2 + 5x - 3$,可以使用十字相乘法进行因式分解,得到 $(2x + 3)(x - 1)$。
《因式分解》说课课件
目录
• 课程导入 • 因式分解的定义与性质 • 因式分解的方法与技巧 • 因式分解的应用与实例 • 课堂互动与练习 • 课程总结与反思
01 课程导入
课程背景
数学中的因式分解是代数式变形的重要手段之一,是解决许多数学问题的关键。 在初中数学中,因式分解是解决一元二次方程、分式化简、函数等问题的必备技能。
02 03
详细描述
分组分解法是将多项式中的项进行分组,然后对每组分别 进行因式分解。这种方法适用于项数较多且有一定规律的 多项式。通过分组,可以更清晰地看出各项之间的关系, 从而更容易进行因式分解。
举例
如对于多项式 $x^2 + 2xy + y^2 - x + y$,可以将其分为 两组 $(x^2 + 2xy + y^2)$ 和 $(-x + y)$,分别进行因式分 解,得到 $(x + y)^2 - (x - y)$。
在方程求解中的应用
一元二次方程的求解
根与系数的关系
通过因式分解,可以将一元二次方程 化为两个一次方程,从而方便求解。
通过因式分解,可以方便地利用根与 系数的关系进行求解或化简方程。
分式方程的化简
通过因式分解,可以将分式方程化为 整式方程,简化求解过程。
因式分解ppt讲义

整式乘法 整式乘法 因式分解
(5).2πR+ 2πr= 2π(R+r)
因式分解
下列代数式从左到右旳变形是因式分解吗?
(1) a2 a a(a 1)
Байду номын сангаас
是
(2)(a 3)(a 3) a2 9
不是
(3)4x2 4x 1 (2x 1)2
不是
(4)x2 3x 1 x(x 3) 1
(5) x2 1 x( x 1 ) x
阐明
• 本课是在学生学习了整式乘法旳基础上,研究对整 式旳一种变形即因式分解,是把一种多项式转化成 几种整式相乘旳形式,它与整式乘法是互逆变形旳 关系.
你能发觉这两组等式之间 旳联络和区别吗? 它们旳左 右两边有何特点?
a(a+1)=__a_2+_a_____
a2+a=( a ) ( a+1)
(a+b)(a-b)=__a_2_-_b_2____ a2 - b2= ( a+b) ( a-b )
a2-2ab+b2=(a-b)2
十字相乘法
要点: 一拆(拆常数项), 二乘(十字相乘),
三验(验证十字相乘后旳和是否等于一次项.
x2 px q
x
a
x
b
x2+Px+q=(x+a)(x+b),其中p=a+b,q=ab
一般环节与注意点
1 一般环节: 先提公因式,再利用公式或十字相乘,后分组分 解,最终是重新整顿再分解.
注意: 1、要分解到不能再分为止,括号内合并同 类项后注意把数字因数提出来。
2、因式分解旳成果是连乘式。 3、因式分解旳成果里没有中括号。
因式分解讲义(精华版)

因式分解两课时(90分钟)开心一笑一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
制胜必备1、理解因式分解的概念2、掌握因式分解的基本方法:提取公因式法、公式法等3、能对简单多项式进行因式分解,并结合实际来应用一鼓作气希尔伯特说:“当我听别人讲解某些数学问题时,常觉得很难理解,甚至不可能理解。
这时便想,是否可以将问题化简些呢?往往,在终于弄清楚之后,实际上,它只是一个更简单的问题。
”秘诀:天才是一份灵感加上九十九份的汗水所成就的!1.因式分解的定义及与整式乘法的关系(1)因式分解:把一个多项式化为几个整式的积的形式(2)因式分解与整式乘法是互逆运算.2.因式分解的常用方法(1)提公因式法如果一个多项式的各项都含有一个相同的因式,那么这个相同的因式,就叫做公因式. 提公因式法用公式可表示为ma+mb+mc=m (a+b+c ),其分解步骤为:①确定多项式的公因式:公因式为各项系数的最大公约数与相同字母的最低次幂的乘积. ②将多项式除以它的公因式从而得到多项式的另一个因式.(2)运用公式法将乘法公式反过来对某些多项式进行因式分解,这种方法叫做公式法,即a 2-b 2=(a+b)(a-b),a 2±2ab +b 2=(a+b)2.3.因式分解解题的思考顺序(1)一提:如果多项式的各项有公因式,那么先提公因式;(2)二用:如果各项没有公因式,那么可以尝试运用公式法来分解;(3)三查:分解因式,必须进行到每一个多项式都不能再分解为止;分解因式的结果应为整式积的形式。
1.下列因式分解中,正确的是((A)1-x 2=(x+2)(x-2)(B)4x –2x 2–2=-2(x-1)2(C)(x-y)3–(y-x)=(x –y)(x –y+1)(x –y –1) 小菜一碟扫除障碍战况分析(D)x2–y2–x+y=(x+y)(x–y–1)2.下列各等式(1)a2-b2=(a+b)(a–b),(2)x2–3x+2=x(x–3)+2(3)-,(4)x2+-2-(x-)2从左到右是因式分解的个数为()(A)1个(B)2个(C)3个(D)4个3.若x2+mx+25是一个完全平方式,则m的值是()(A)20(B)10(C)±20(D)±104.若x2+mx+n能分解成(x+2)(x–5),则m=,n=;5.若二次三项式2x2+x+5m在实数范围内能因式分解,则m=;6.若x2+kx-6有一个因式是(x-2),则k的值是;作战之法【兵法案例】分解因式:a3-2a2+a=______【作战策略】因式分解常用的方法有提公因式法、公式法、分组分解法和十字相乘法。
初中因式分解讲义

初中因式分解讲义因式分解是初中数学中相当重要的一个概念,它是解决多项式问题的关键步骤。
通过因式分解,我们可以将一个多项式拆分成更简单的乘积形式,从而更好地理解和解决问题。
本讲义将介绍初中因式分解的基本方法和应用,帮助同学们系统地学习和掌握这一知识点。
一、因式分解的基本概念因式分解是指将一个多项式拆分成若干个乘积形式的过程。
在因式分解中,我们将多项式中的每一个项称为因式,拆分后的乘积形式称为因式分解式。
因式分解的结果应满足两个条件:1)拆分后的每个因式之积等于原多项式;2)每个因式都不能再进行继续拆分。
二、因式分解的基本方法1. 公因式提取法公因式提取法是指将多项式的公因式提取出来,并将多项式拆分成公因式与括号内的乘积形式。
通过公因式提取法,我们可以简化多项式的计算过程和展开过程。
举例说明:多项式7x+14可以进行公因式提取,提取公因式7后,原多项式可以写成7(x+2),这就是因式分解的结果。
2. 分组分解法分组分解法是指将多项式的项进行适当的分组,然后利用公式或特定规律进行因式分解。
举例说明:多项式x²+xy+2x+2y可以进行分组分解,将x²+xy作为一组,并将2x+2y作为另一组。
然后,在第一组中提取公因式x,第二组中提取公因式2,最终得到因式分解式为x(x+y)+2(x+y),即(x+2)(x+y)。
三、因式分解的应用因式分解在初中数学中有广泛的应用。
下面我们介绍几个典型的应用场景。
1. 最大公因数和最小公倍数在求最大公因数和最小公倍数的过程中,因式分解是非常有帮助的方法。
通过将两个数分别进行因式分解,然后提取公因式并相乘,我们可以得到它们的最大公因数;同时,将两个数进行因式分解,然后取分解式的所有因子的乘积,我们可以得到它们的最小公倍数。
2. 方程的解法在解一元二次方程和一元三次方程时,因式分解也经常被使用。
通过将方程进行因式分解,可以将原方程转化成更简单的乘积形式,从而更容易求解。
因式分解讲义(适合0基础的)

因式分解知识网络详解:因式分解的基本方法:1、提公因式法——如果多项式的各项有公因式,首先把它提出来。
2、运用公式法——把乘法公式反过来用,常用的公式有下列五个:平方差公式()()22a b a b a b -=+-; 完全平方公式()2222a ab b a b ±+=±; 3、分组分解法——适当分组使能提取公因式或运用公式。
要灵活运用“补、凑、拆、分”等技巧。
4、十字相乘法——))(()(2b x a x ab x b a x ++=+++ 【课前回顾】1.下列从左到右的变形,其中是因式分解的是( )(A )()b a b a 222-=-(B )()()1112-+=-m m m(C )()12122+-=+-x x x x (D )()()()()112+-=+-b ab a b b a a2.把多项式-8a 2b 3+16a 2b 2c 2-24a 3bc 3分解因式,应提的公因式是(),(A )-8a 2bc (B )2a 2b 2c 3(C )-4abc (D )24a 3b 3c 33.下列因式分解中,正确的是()(A )()63632-=-m m m m (B )()b ab a a ab b a +=++2(C )()2222y x y xy x --=-+-(D )()222y x y x +=+4.下列多项式中,可以用平方差公式分解因式的是()(A )42+a (B )22-a (C )42+-a (D )42--a5.下列各式中,能用完全平方公式分解因式的是().(A )4x 2-1(B )4x 2+4x -1(C )x 2-xy +y 2D .x 2-x +6.若942+-mx x 是完全平方式,则m 的值是()(A )3(B )4(C )12(D )±12 经典例题讲解:提公因式法:提公因式法是因式分解的最基本也是最常用的方法。
它的理论依据就是乘法分配律例:22x y xy -()()p x y q y x ---()()x a b y a b +-+变式练习:1.多项式6a 3b 2-3a 2b 2-21a 2b 3分解因式时,应提取的公因式是()A.3a 2bB.3ab 2C.3a 3b 2D.3a 2b 22.如果()222332x y mx x n -+=--,那么()A .m=6,n=yB .m=-6,n=yC .m=6,n=-yD .m=-6,n=-y3.()()222m a m a -+-,分解因式等于()A .()()22a m m --B .()()21m a m --C .()()21m a m -+D .以上答案都不能4.下面各式中,分解因式正确的是()A.12xyz -9x 2.y 2=3xyz(4-3xy)B.3a 2y -3ay+6y=3y(a 2-a+2)C.-x 2+xy -xz=-x(x 2+y -z)D.a 2b+5ab -b=b(a 2+5a)5.若a+b=7,ab=10,则22ab b a +的值应是()A .7B .10C .70D .176.因式分解1.6x 3-8x 2-4x2.x 2y(x -y)+2xy(y -x)3.()()x m ab m x a +-+4.()()()x x x --+-212运用公式法:把我们学过的几个乘法公式反过来写就变成了因式分解的形式: 平方差:)b a )(b a (b a 22-+=-完全平方:222)b a (b 2ab a ±=+±立方和:)b ab a )(b a (b a 2233+-+=+立方差:)b ab a )(b a (b a 2233++-=- 例1.把下列各式分解因式:(1)x 2-4y 2(2)22331b a +- (3)22)2()2(y x y x +--(4)442-+-x x例2.(1)已知2=+b a ,利用分解因式,求代数式222121b ab a ++的值 (2)已知0136422=+--+b a b a ,求b a +。
数学竞赛专题讲座---第一讲因式分解(一)

第一讲因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一:它被广泛地应用于初等数学之中:是我们解决许多数学问题的有力工具.因式分解方法灵活:技巧性强:学习这些方法与技巧:不仅是掌握因式分解内容所必需的:而且对于培养学生的解题技能:发展学生的思维能力:都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上:对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中:我们学过若干个乘法公式:现将其反向使用:即为因式分解中常用的公式:例如:(1)a2-b2=(a+b)(a-b):(2)a2±2ab+b2=(a±b)2:(3)a3+b3=(a+b)(a2-ab+b2):(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2:(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca):(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数:(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1):其中n为偶数:(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1):其中n为奇数.运用公式法分解因式时:要根据多项式的特点:根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4:(2)x3-8y3-z3-6xyz:(3)a2+b2+c2-2bc+2ca-2ab:(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形:直接使用公式(5):解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性:现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式:本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式:用它可以推出很多有用的结论:例如:我们将公式(6)变形为a3+b3+c3-3abc显然:当a+b+c=0时:则a3+b3+c3=3abc:当a+b+c>0时:则a3+b3+c3-3abc ≥0:即a3+b3+c3≥3abc:而且:当且仅当a=b=c时:等号成立.如果令x=a3≥0:y=b3≥0:z=c3≥0:则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项:从最高次项x15开始:x的次数顺次递减至0:由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1):所以说明在本题的分解过程中:用到先乘以(x-1):再除以(x-1)的技巧:这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时:整理、化简常将几个同类项合并为一项:或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时:需要恢复那些被合并或相互抵消的项:即把多项式中的某一项拆成两项或多项:或者在多项式中添上两个仅符合相反的项:前者称为拆项:后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多:这里只介绍运用拆项、添项法分解的几种解法:注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出:用拆项、添项的方法分解因式时:要拆哪些项:添什么项并无一定之规:主要的是要依靠对题目特点的观察:灵活变换:因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3:(2)(m2-1)(n2-1)+4mn:(3)(x+1)4+(x2-1)2+(x-1)4:(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目:由于分解后的因式结构较复杂:所以不易想到添加+ab-ab:而且添加项后分成的三项组又无公因式:而是先将前两组分解:再与第三组结合:找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在:同学们需多做练习:积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体:并用一个新的字母替代这个整体来运算:从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开:是关于x的四次多项式:分解因式较困难.我们不妨将x2+x看作一个整体:并用字母y来替代:于是原题转化为关于y 的二次三项式的因式分解问题了.解设x2+x=y:则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体:比如今x2+x+1=u:一样可以得到同样的结果:有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式:然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2:则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y:则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知:用换元法分解因式时:不必将原式中的元都用新元代换:根据题目需要:引入必要的新元:原式中的变元和新变元可以一起变形:换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体:但并没有设立新元来代替它:即熟练使用换元法后:并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母:且当互换这两个字母的位置时:多项式保持不变:这样的多项式叫作二元对称式.对于较难分解的二元对称式:经常令u=x+y:v=xy:用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u:xy=v:则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.练习一1.分解因式:(2)x10+x5-2:(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4:(2)x4-11x2y2+y2:(3)x3+9x2+26x+24:(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1:(2)x4+7x3+14x2+7x+1:(3)(x+y)3+2xy(1-x-y)-1:(4)(x+3)(x2-1)(x+5)-20.。
因式分解式讲义精讲

教育学科教师辅导讲义练习15、分解因式(1)893+-x x (2)4224)1()1()1(-+-++x x x (3)1724+-x x (4)22412a ax x x -+++x^4+x^2+2ax+1—a^2 = x^4+2x^2+1-x^2+2ax —a^2 =(x^2+1)^2-(x-a )^2=(x^2+1+x-a )(x^2+1-x+a)(5)444)(y x y x +++ (6)444222222222c b a c b c a b a ---++ -(a^2-b^2)^2-2c^2(a^2-b^2)+c^4=(a^2-b^2—c^2)^2(7) x 4 + 4 原式 = x 4 + 4x 2 + 4 – 4x 2= (x 2+2)2 – (2x )2= (x 2+2x +2)(x 2–2x +2) (8)x 4–23x 2y 2+y 4(9)(m 2–1)(n 2–1)+4mn七、待定系数法。
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
例16、分解因式613622-++-+y x y xy x分析:原式的前3项226y xy x -+可以分为)2)(3(y x y x -+,则原多项式必定可分为)2)(3(n y x m y x +-++ 解:设613622-++-+y x y xy x =)2)(3(n y x m y x +-++∵)2)(3(n y x m y x +-++=mn y m n x n m y xy x --+++-+)23()(622例8、分解因式2x 4 +7x 3 —2x 2 -13x+6解:令f (x )=2x 4 +7x 3 —2x 2 -13x+6=0 通过综合除法可知,f (x )=0根为 ,—3,-2,1 , 则2x +7x —2x -13x+6=(2x-1)(x+3)(x+2)(x —1) 9: 主元法先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解. 例10、分解因式a 2 (b-c )+b 2 (c —a )+c 2 (a-b ) 分析:此题可选定a 为主元,将其按次数从高到低排列解:a 2 (b —c)+b 2 (c-a )+c 2 (a-b )=a 2 (b-c )—a(b 2 —c 2)+bc(b-c) =(b-c ) [a 2 —a(b+c)+bc ] =(b-c )(a —b )(a-c ) 10双十字相乘法十字相乘法是利用))(()(2b x a x ab x b a x ++=+++这个公式,写成两排形式,把二次项系数的约数和常数项的约数进行十字交叉相乘,它们的和凑成一次项系数,那每一排即位多项式的一个因式,因为呈十字交叉相乘,故称为十字相乘法。
初中因式分解讲义

初中因式分解讲义一、什么是因式分解?在代数学中,当一个多项式可以写成几个乘积的形式时,我们将其称为因式分解。
这个过程可以简化多项式的计算和求解。
二、因式分解的基本原则在进行因式分解时,我们需要遵循以下基本原则:1. 最大公因数原则:寻找多项式中的最大公因数,将其提取出来,作为分解的一部分。
2. 求和差化积原则:利用求和差化积的方法,将多项式中的和差变为积,从而进行因式分解。
3. 公式转换原则:利用特定的公式,将多项式进行转换,以便于进行因式分解。
三、因式分解的方法1. 提取公因式法提取公因式法是最常用的因式分解方法之一。
当多项式的各项有公因子时,可以将这个公因子提取出来,并将剩余的部分进行因式分解。
例如:将3x+6分解为3(x+2)2. 公式转换法公式转换法利用特定的公式将多项式进行转换,然后进行因式分解。
例如:将a²-b²分解为(a+b)(a-b)3. 分组分解法当一个多项式中含有四项及以上,并且无法直接进行其他方法的因式分解时,可以尝试使用分组分解法。
例如:将2x²+6x+3分解为(x+1)(2x+3)四、因式分解的应用因式分解在代数中有广泛的应用,可用于求解方程、简化分式、化简根式等。
它是解决复杂代数问题的重要工具。
五、练习题1. 将4x²-9y²分解。
2. 将6a³b-15ab²分解。
3. 将x³+y³分解。
4. 将3x³-27y³分解。
六、总结因式分解是代数学中重要的概念和工具,通过提取公因式、公式转换和分组分解等方法,能够简化多项式的计算和求解。
掌握因式分解的方法和应用,对于初中代数学习至关重要。
希望以上初中因式分解讲义能帮助你更好地理解和掌握因式分解的知识和技巧。
如果需要更多的练习或进一步讨论,请随时提问。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲:因式分解与
化简求值
第一讲:因式分解与化简求值
【1】把下列各式分解因式
(1)ap an am +- (2)3a 2-9ab (3)z y y x 32242-
(4)c ab b a 323128+ (5)22363x xy xy ++
(6)22242a b ab b -+
(7)()()c b c b a +-+32 (8)2228217x y xy xy
-+- (9)222416m x mx --
(10)222564x y - (11)2249m n -
(12)222516b a -
(13)229m n +- (14))(5)(a b b a x -+-
(
15)2(2)(2)m a m a -+-
(16) 122-y x (17)22)()(y x y x --+
(18)22)(4)(9y x y x --+
(19)1232-x (20)35x x - (21)33205ab b a +-
(22)2244m mn n -+ (23)221664x ax a ++ (24)91242+-ab a
(25)2249284a ab b -+ (26)2225204x xy y -+ (27)4
1242++x x
【2】化简求值
(1)
(2) 11222---+-y x y xy x (2012广东省中考)
(3).先化简,再求值: x 2-x x +1÷ x x +1
,其中x =3+1.(2012珠海模拟)
(4)22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭ (5) 2311(1)x x x x x x x --⎛⎫+- ⎪+-⎝⎭
(6).化简求值:当x=21时,求11
21122-+
-++-x x x x x 的值.
(7)先化简,再求值:2
241222x x x x x ⎛⎫
-⨯ ⎪--+⎝⎭,其中1
4x =.(
2011从化毕业考)
(8)先化简,再求值:1)121(2
-÷---x x
x x
x x ,其中3-=x .(
2010广州铁一
中)
(9)化简求值:a a a a a a a ÷--++--2
21212
22,其中12+=a ;(2011广州一模)
(10)、先化简,在求值,1
1)1211(2+÷---+a a a
a ,其中13+=a (2012广州模拟)
(11)先化简,再求值 21122b a b a b a ab b
2⎛⎫-÷ ⎪-+-+⎝⎭,其中1a =+
1b =2012广州模拟)
(12)、先化简,再求值:2241222x x x x x ⎛⎫-⨯ ⎪--+⎝⎭,其中14x =.(广州模拟)
(13)先化简再求值:221121ab a b b b b +-+--+2236120a b ab +-=(2011广州南沙一模)
(14).先化简,再请你用喜爱的数代入求值x
x x x x x x x x 42)44122(322-+÷+----+。