运用欧拉公式求定积分
欧拉积分及其应用

欧拉积分及其简单应用引言:我们知道无穷级数是构造新函数的一种重要工具,利用它我们可以构造出处处连续而处处不可微的函数,还可以构造出能填满正方形的连续曲线(参见常庚哲、史济怀著《数学分析教程》第三册第17章§17.8)含参量积分是构造新函数的另一重要工具,欧拉积分就是在应用中经常出现的含参量积分表示的函数。
它虽身为含参量积分的一种特例,被教科书编用于加深对含参量积分所表示的函数的分析方法的理解。
但本身也是许多积分的抽象概括,能为相关积分的计算带来方便。
欧拉积分包括:伽马(Gamma )函数:Γ(s)=⎰+∞--01dx e x x s , s>0.-----------(1)贝塔(Beta )函数:B(p ,q)= ⎰---1011)1(dx x x q p , p>0, q>0-------------(2)下面我们分别讨论这两个函数的性质:一、B 函数…………………Euler 第一积分1、 定义域:B(p ,q)=⎰---1011)1(dx x x q p =⎰---21011)1(dx x x q p +⎰---12111)1(dx x x q p = 1I + 2I对1I = ⎰---21011)1(dx x x q p当x →0时.1I =⎰-2101dx x p = ⎰-21011dx x p 其收敛须p>0 对2I =⎰---12111)1(dx x x q p. 当x →1时 , 2I =⎰--1211)1(dx x q ,令.1-x=t =⎰-2101dx tq = ⎰-21011dx t q 其收敛须.q>0. ∴B(p ,q) 定义域为p>0,q>0.2、 连续性 因为对∀p 。
>0,q 。
>0有11)1(---q p x x ≤1100)1(---q p x x p ≥p 。
,q ≥q 。
而⎰---101100)1(dx x x q p 收敛,故由魏尔斯特拉斯M 判别法知B(p ,q)在p 。
数学分析19_3欧拉积分

数学分析19_3欧拉积分欧拉积分是数学中的一种特殊积分方法,由瑞士数学家欧拉发现并命名。
它是一种通过变量替换将原有的积分转变为特殊函数的积分形式。
欧拉积分的一般形式为:∫(ax^m)/(bx^n+c^p) dx其中a、b、c、m、n、p为常数。
接下来我们将分别讨论当n≠m,n=m,n=1,p=1,p=2时的欧拉积分的具体求解方法。
1.当n≠m时:将被积函数中的x=cy^k进行替换,其中k为使得nk+m=0成立的常数。
则有:∫(ax^m)/(bx^n+c^p) dx = ∫(a*c^m/b)*(y^m-1)/(y^n+c^p) dy通过数学变换及欧拉积分的表格,可以得到积分的结果。
2.当n=m时:这种情况下,被积函数的分子和分母有相同的次数。
我们可以将分子提取出来,并进行积分,得到一些基本的函数表达式。
例如:∫(x^m)/(x^n+c^p) dx = ∫(x^m-x^n+x^n)/(x^n+c^p) dx= ∫(x^m-x^n)/(x^n+c^p) dx + ∫(x^n)/(x^n+c^p) dx前一个积分可以通过分解为偏分式的形式进行求解,后一个积分则可以通过欧拉积分表格给出的结果进行求解。
3.当n=1时:这种情况下,被积函数的分子是线性函数,可以通过分解为偏分式的形式进行求解。
而分母可以通过欧拉积分表格给出的结果进行求解。
4.当p=1时:这种情况下,被积函数的分母是线性函数,可以通过分解为偏分式的形式进行求解。
而分子则可以通过欧拉积分表格给出的结果进行求解。
5.当p=2时:这种情况下,被积函数的分子和分母都是二次函数。
我们可以对二次函数进行平移和旋转,使得原有的二次函数转变为一些基本的二次函数。
然后再通过变量替换的方法,将欧拉积分转化为一些基本二次函数的积分形式。
总之,欧拉积分是一种强大的工具,可以通过变量替换将原有的积分转换为特殊函数的积分形式,进而求得积分的结果。
但是在具体应用中,需要根据被积函数的形式选择合适的欧拉积分形式,以便于通过欧拉积分表格给出的结果进行求解。
利用欧拉方法计算积分

利用欧拉方法计算积分嘿,朋友们!今天咱来聊聊利用欧拉方法计算积分这事儿。
积分啊,就像是个藏在数学世界里的小宝藏,得用对方法才能把它挖出来。
而欧拉方法呢,就是一把挺厉害的小铲子。
你想想看,积分就好像是要你在一片复杂的数学地形里找到某个区域的总量。
这可不是随随便便就能搞定的呀!就像你要在一个大迷宫里找到特定的宝贝一样。
欧拉方法呢,就像是给了你一条特别的路线。
它一步一步地带着你往前走,虽然可能不是最完美的路径,但能让你实实在在地接近那个积分的答案。
比如说,咱有个函数,弯弯曲曲的,要直接算积分,那可真是让人头疼。
但用了欧拉方法,就好像给这个函数穿上了一双小靴子,能让它稳稳地往前走一小步一小步。
这一小步一小步积累起来,可不就离答案越来越近了嘛!它就像是个耐心的小探险家,一点一点地探索着积分的奥秘。
你可能会问了,那这欧拉方法就一定能找到准确答案吗?嘿嘿,那可不一定哦!就像你在迷宫里走,有时候也会走点小弯路呀。
但它至少能给你一个大概的方向,让你不至于在数学的海洋里迷失得太远。
而且哦,用欧拉方法计算积分还挺有趣的呢!就像是在玩一个解谜游戏,每一步都充满了挑战和惊喜。
你得仔细琢磨,怎么迈出这一小步,怎么让这个小靴子踏得更稳。
这可不是随随便便就能做好的哟!得花点心思,动点脑筋。
它虽然不是唯一的方法,但在很多时候,它真的能帮上大忙呢!就像你在困难的时候,突然有个好朋友伸出援手一样。
总之呢,利用欧拉方法计算积分,就像是开启了一段奇妙的数学之旅。
虽然路上可能会有坎坷,但当你最终找到那个答案的时候,那种成就感,哇,简直无与伦比!所以呀,大家可别小瞧了这个欧拉方法,好好去探索一番吧!说不定你会发现更多数学世界的奇妙之处呢!这就是我对利用欧拉方法计算积分的看法啦!。
欧拉积分及其应用

欧拉积分及其应用摘要:本文阐述了欧拉积分的定义,重点论述Gamma 函数和Bate 函数的性质及其在求定积分时的应用。
对r 函数与B 函数的关系式的证明提出简便的方法,最后推出1()r m的计算表达式,及r(x)新的表示式,从而得到余元公式新的证明方法。
使得对欧拉积分知识有了更深的认识,为定积分的求解提供了新的方法及思路,提高解题能力。
关键词:含参变量积分; Gamma 函数; Bate 函数; 余元公式1、 知识预备、(Bohr-Mollerup 定理)如果定义于(0,+ ∞)的函数f (x )满足以下条件:(1)f(x)>0 x ∀∈(0,+ ∞) f(1)=1;(2)(1)()f x x f x +=⋅ x ∀∈(0,+ ∞)(3)ln ()f x 为凸函数,那么必有f(x)=r(x) x ∀∈(0,+ ∞)。
、对于p 不是整数时22112(1)sin n n p p p p n ππ∞==+--∑、对于0<p<1时,122112(1)1p n n y pdy y p p n -∞+∞==+-+-∑⎰ $、瓦里斯公式:n =、对于(0,1]x ∈,我们有 221sin (1)n x x x n ππ∞==⋅-∏2、欧拉积分、定义含参变量的广义积分+s-1-x 0()x e dx r s ∞=⎰s>0 (1)1p-1q-10(,)x (1-x)dx B p q =⎰ p>0,q>0 (2)它们统称欧拉积分,其中前者又称格马Gamma 函数(r 函数),后者称贝塔Bate 函数(B 函数)。
(即r 函数与B 函数实际上是含参变量非正常积分表示的两个特殊函数) 、性质2.2.1、r 函数的性质 ·(1)r(s)在定义域时连续,且具有各阶连续导数(2)递推公式(1)()r s s r s +=⋅ (s>0) 如果s 取整数n ,那么有(1)()!r n n r n n +=⋅=(3)延拓后r(s)的函数在0,1,2,3s ≠---……外均收敛 (4)根据()()sss 1+Γ=Γ及()s s Γ+→0lim =∞+, ()s s Γ+∞→lim =∞+ 可得到图像:(5)函数的其他形式a)当x py = (p>0),则有r(s)= +s-1-x 0x e dx ∞⎰=+s-1-0()e dx py py ∞⎰=+s-1-0e dx py py ∞⎰(s>0,p>0)b)当2x y =,则有r(s)=+s-1-xx e dx ∞⎰= 22(-1)0dx s y ye+∞-⎰= 22-102dx s y y e +∞-⎰!2.2.2、B 函数的性质(1)(,)B p q 在p>0,q>0内连续 (2)对称性:(,)(,)B p q B q p = (3)1(,)(,1)1q B p q B p q p q -=-+- (p>0,q>1)1(,)(1,)1p B p q B p q p q -=-+- (p>1,q>0)(1)(1)(,)(1,1)(1)(2)q p B p q B p q p q p q --=--+-+- (p>1,q>1)(4)B 函数的其他形式a)在(2)式中,令2cos x ϕ=,则有212120(,)2cos q p B p q sin d πϕϕϕ--=⎰b)在(2)式中,令1yx y=+ (y>0),于是有1(,)(1)p p qy B p q dy y -+∞+=+⎰|dy y y dy y y dy y y qp p q p p q p p ⎰⎰⎰∞++-+-∞++-+++=+1110101)1()1()1(再对第二个式子令1y t=,整理得:dt t t dy y y dy y y q p q q p p q p p ⎰⎰⎰∞++-+-∞++-+++=+1110101)1()1()1( 所以111(,)(1)p q p qy y B p q dy y --++=+⎰(p>0,q>0) 、B 函数与r 函数联系()()(,)()r p r q B p q r p q =+ p>0,q>0证明:对于任意取定的q>0,我们考察这样的一个函数()(,)()()r p q B p q f p r q +=,以下证明该函数满足预备知识中定理的三个条件:(1)显然有f(p)>0 p ∀∈(0,+ ∞),并且1()(1)(1,)(1)1()()qr q r q B q qf r q r q +===(2)()()(,)(1)(1,)(1)()()()pp q r p q B p q r p q B p q p qf p pf p r q r q +++++++===(3)对于任意的q>0,因为ln ()r p q +和ln (,)B p q )都是变元x的凸函数,所以ln ()ln ()ln (,)ln ()f p r p q B p q r q =++-也是变元x 的凸函数。
欧拉积分知识点总结

欧拉积分知识点总结一、欧拉积分的概念1.1 定积分的定义首先,我们来回顾一下定积分的定义。
设函数$f(x)$在区间$[a, b]$上连续,将区间$[a, b]$分成$n$个小区间,每个小区间的长度为$\Delta x_i$,在第$i$个小区间上取任意一点$\xi_i$,那么定积分的定义就是:$$\lim_{n\to \infty}\sum_{i=1}^{n}f(\xi_i)\Delta x_i=\int_{a}^{b}f(x)dx$$1.2 欧拉积分的引入欧拉积分的概念由数学家欧拉在18世纪引入,它是对定积分的一种推广。
设函数$f(x, y)$在区域$D$上连续,将区域$D$分成$n$个小区域,每个小区域的面积为$\Delta A_i$,在第$i$个小区域上取任意一点$(\xi_i, \eta_i)$,那么欧拉积分的定义就是:$$\lim_{n\to \infty}\sum_{i=1}^{n}f(\xi_i, \eta_i)\Delta A_i=\iint_{D}f(x, y)dA$$1.3 欧拉积分的几何意义欧拉积分的几何意义是对二重积分的推广,它表示函数$f(x, y)$在区域$D$上的满面积分。
在二维平面上,欧拉积分可以理解为函数$f(x, y)$在区域$D$上的投影面积。
1.4 欧拉积分的物理意义欧拉积分在物理学中有着重要的应用,它可以表示物理量在空间中的分布情况。
比如,电荷密度、质量密度、能量密度等物理量可以通过欧拉积分来描述其在空间上的分布情况。
二、欧拉积分的性质2.1 线性性质与定积分类似,欧拉积分也具有线性性质。
即对于任意的常数$k_1,k_2$和函数$f(x, y),g(x,y)$,有:$$\iint_{D}(k_1f(x, y)+k_2g(x,y))dA=k_1\iint_{D}f(x, y)dA+k_2\iint_{D}g(x,y)dA$$2.2 改变积分顺序与二重积分类似,欧拉积分可以改变积分的顺序。
欧拉方程的求解

欧拉方程的求解1.引言在数学研究领域,我们经常会看到以数学家名字命名的概念、公式、定理等等,让人敬佩跟羡慕.但是,迄今为止,哪位数学家的名字出现得最多呢?他就是数学史上与阿基米德、牛顿、高斯齐名的“四杰”之一,人称“分析学的化身”的盲人数学家欧拉(Leonhard Euler,1707--1783).几乎在每一个数学领域都可以看到他的名字,譬如我们熟悉的“欧拉线”、“欧拉圆”、“欧拉公式”、“欧拉定理”、“欧拉函数”、“欧拉积分”、“欧拉变换”、“欧拉常数”欧拉还是许多数学符号的发明者,例如用π表示圆周率、e 表示自然对数的底、()f x 表示函数、∑表示求和、i 表示虚数单位以欧拉命名的数学名词有很多,本文主要讲解以欧拉命名的方程即“欧拉方程”.在文献[1]中,关于欧拉方程的求解通常采用的是变量变换的方法.变量变换法就是将所求的欧拉方程化为常系数齐次线性微分方程,然后再来求解这个常系数齐次线性微分方程的解,亦即求其形如K y x =的解,进而求得欧拉方程的解.但有些欧拉方程在用变量变换法求解时比较困难.本文在所学的欧拉方程的求解的基础上,对欧拉方程进行了简单的分类,并针对不同阶的欧拉方程的求解给出了不同的定理.最后在每类欧拉方程后面给出了典型的例题加以说明.2.几类欧拉方程的求解定义1 形状为()1(1)110n n n n n n y a x y a xy a y x ---'++++= (1)的方程称为欧拉方程. (其中1a ,2a ,,1n a -,n a 为常数)2.1二阶齐次欧拉方程的求解(求形如K y x =的解)二阶齐次欧拉方程: 2120x y a xy a y '''++=. (2) (其中1a ,2a 为已知常数)我们注意到,方程(2)的左边y ''、y '和y 的系数都是幂函数(分别是2x 、1a x 和02a x ),且其次依次降低一次.所以根据幂函数求导的性质,我们用幂函数K y x =来尝试,看能否选取适当的常数K ,使得K y x =满足方程(2). 对K y x =求一、二阶导数,并带入方程(2),得212()0K K K K K x a Kx a x -++=或212[(1)]0K K a K a x +-+=,消去K x ,有 212(1)0K a K a +-+=. (3)定义2 以K 为未知数的一元二次方程(3)称为二阶齐次欧拉方程(2)的特征方程.由此可见,只要常数K 满足特征方程(3),则幂函数K y x =就是方程(2)的解.于是,对于方程(2)的通解,我们有如下结论: 定理1 方程(2)的通解为(i) 1112ln K K y c x c x x =+, (12K K =是方程(3)的相等的实根) (ii)1212K K x c x y c +=, (12K K ≠是方程(3)的不等的实根) (iii)12cos(ln )sin(ln )x x c x x y c ααββ+=.(1,2K i αβ=±是方程(3)的一对共轭复根)(其中1c 、2c 为任意常数)证明 (i )若特征方程(3)有两个相等的实根: 12K K =,则11K x y =是方程(2)的解,且设2()u x y =,11()K y x u x =(()u x 为待定函数)也是方程(2)的解(由于21()y u x y =,即1y ,2y 线性无关),将其带入方程(2),得 11122111112[()2]()0K K K x K K u K xu x u a x K u xu a x u ''''-+++++=,约去1K x ,并以u ''、u '、u 为准合并同类项,得22111112(2)[(1)]0x u K a xu K a K a u '''++++-+=.由于1K 是特征方程(3)的二重根, 因此21112(1)0K a K a +-+=或112(1)0K a +-=,于是,得20x u ux '''+=或0xu u '''+=,即 ()0xu ''=, 故 12()ln u x c x c =+. 不妨取()ln u x x =,可得方程(2)的另一个特解12ln K y x x =,所以,方程(2)的通解为1112ln K K y c x c x x =+.(其中1c ,2c 为任意常数)(ii )若特征方程(3)有两个不等的实根: 12K K ≠,则11K x y =,22K y x =是方程(2)的解.又2211()21K K K K y x x y x -==不是常数,即1y ,2y 是线性无关的. 所以,方程(2)的通解为1212K K x c x y c +=.(其中1c ,2c 为任意常数)(iii )若特征方程(3)有一对共轭复根:1,2K i αβ=±(0β≠),则()1i x y αβ+=,()2i y x αβ-=是方程(2)的两个解,利用欧拉公式,有()ln 1(cos(ln )sin(ln ))i i x x x e x x i x y αβαβαββ+===+, ()ln 2(cos(ln )sin(ln ))i i x x x e x x i x y αβαβαββ--===-,显然,12cos(ln )2y y x x αβ+=和12sin(ln )2y y x x iαβ-=是方程(2)的两个线性无关的实函数解.所以,方程(2)的通解为12cos(ln )sin(ln )x x x x y c c ααββ=+.(其中1c ,2c 为任意常数)例1求方程20x y xy y '''-+=的通解. 解 该欧拉方程的特征方程为(1)10K K K --+=,即 2(1)0K -=, 其根为: 121K K ==, 所以原方程的通解为12(ln )y c c x x =+.(其中1c ,2c 为任意常数)例2 求方程280x y xy y '''--=的通解.解 该欧拉方程的特征方程为2(11)80K K +---=,即 2280K K --=, 其根为: 12K =-,24K =, 所以原方程的通解为4122c y c x x=+. (其中1c ,2c 为任意常数)例3 求方程的通解2350x y xy y '''++=. 解 该欧拉方程的特征方程为(1)350K K K -++=,即 2250K K ++=,其根为: 1,212K i =-±, 所以原方程的通解为121[cos(2ln )sin(2ln )]y c x c x x=+.(其中1c ,2c 为任意常数)2.2二阶非齐次欧拉方程的求解(初等积分法)二阶非齐次欧拉方程:212()x y a xy a y f x ++='''. (4)(其中1a ,2a 为已知实常数,()f x 为已知实函数)为了使方程(4)降阶为一阶线性微分方程,不妨设1121a K K =--,212a K K =, (5)则方程(4)变为212122)(1()K a x y K K xy K y f x +--+=''',即212()()()x xy K y K xy K y f x ---=''', (6)根据韦达定理,由(5)式可知,1K ,2K 是一元二次代数方程212(1)0K a K a +-+= (3) 的两个根.具体求解方法:定理2 若1K ,2K 为方程(2)的两个特征根,则方程(4)的通解为 212111[()]K K K K y x x x f x dx dx ----=⎰⎰. (7)证明 因为1K ,2K 为方程(2)的两个特征根,于是方程(4)等价于方程(6),令 2xy K y p '-=, 代入方程(6)并整理,得1()K f x p x x p =-' 和2K p y y x x'-=, 解之,得方程(4)的通解为212111[()]K K K K y x x x f x dx dx ----=⎰⎰.由定理2知,只需要通过两个不定积分(当(7)式中的积分可积时)即可求得方程(4)的通解.为了方便计算,给出如下更直接的结论.定理3 若1K ,2K 为方程(2)的两个特征根,则(i )当12K K =是方程(2)的相等的实特征根时,方程(4)的通解为11111[ln ()ln ()]K K K x x f x dx x x f x dx y x -----⋅=⎰⎰,(ii )当12K K ≠是方程(2)的互不相等的实特征根时,方程(4)的通解为112211121[()()]K K K K x x f x dx x x f x dx K K y ------=⎰⎰,(iii )当1,2K i αβ=±是方程(2)的共轭复特征根时,方程(4)的通解为111[sin(ln )cos(ln )()cos(ln )sin(ln )()]y x x x x f x dx x x x f x dx αααβββββ----=-⎰⎰证明 (ii )当12K K ≠是方程(2)的互不相等的的实特征根时, 将方程(1)的通解(7)进行分部积分,得21212112212121121111211212112111[()]1[()]1{[()]}1[]()()()K K K K K K K K K K K K K K K K K K K x x x f x dx dxx x f x dx dx K K x x x d x f x dx K K x x K K y x f x dx x f x dx x f x dx -------------------=-===--⎰⎰⎰⎰⎰⎰⎰⎰⎰(8) (iii )当1,2K i αβ=±是方程(2)的共轭复特征根时,122K K i β-=, 再由欧拉公式有1ln [cos(ln )sin(ln )]K i i x x x e x x i x x αβαβαββ+===+,2ln [cos(ln )sin(ln )]K i i x x x e x x i x x αβαβαββ--===-,将其代入(8)式,整理可得方程(4)的通解为111[sin(ln )cos(ln )()cos(ln )sin(ln )()]x x x x f x dx x x x f x dx y αααβββββ-----=⎰⎰(i )的证明和(ii )类似.例1求方程22234ln y xy y x x x x '''-+=+的通解.解 该欧拉方程所对应的齐次方程的特征方程为2440K K -+=, 特征根为 122K K ==, 所以由定理3,原方程的通解为23223222232122223212[ln (ln )ln (ln )]111{ln [(ln )ln ][(ln )(ln )]}23211ln [(ln )(ln )]62x x x x x dx x x x x x dx x x x c x x c x x c x x x x y x x c --+-⋅+++-+-+++===⎰⎰(其中1c ,2c 为任意常数)例2求方程2322x x y xy y x e -+='''的通解. 解 该欧拉方程所对应的齐次方程的特征方程为2320K K -+=,特征根为 12K =,21K =, 所以由定理3,原方程的通解为23323212212()()x x x x x xx x e dx x x x e dxx e c x xe e c c x c x xe y x ---=+---=++=⎰⎰(其中1c ,2c 为任意常数)例3求方程2cos(ln )2xx x y xy y -+='''的通解.解 该欧拉方程所对应的齐次方程的特征方程为2220k k -+=,特征根为 1,21K i =±, 所以由定理3,原方程的通解为212122cos(ln )]cos(ln )cos(ln )11sin(ln )cos(ln )cos(ln ))sin(ln )cos(ln )sin(ln )cos(ln )sin(ln )[sin(ln )]{sin(ln )(ln )cos(ln )[ln(cos(ln )]}[][sin(ln )ln x xx x dx dx x x x dx x dx x x x x c x y x x x x x x x x x x c x x c x c x x x ----+===+++=++⎰⎰⎰⎰cos(ln )ln(cos(ln ))]x x(其中1c ,2c 为任意常数)在定理3中,若令()0f x =,则得到二阶齐次欧拉方程(2)的通解.推论 方程(2)的通解为(i)1112ln K K x c x x y c +=, (12K K =是方程(2)的相等的实特征根) (ii)1212K K x c x y c +=, (12K K ≠是方程(2)的不等的实特征根) (iii)12cos(ln )sin(ln )x x c x x y c ααββ+=.(1,2K i αβ=±是方程(2)的共轭复特征根)(其中1c ,2c 为任意常数)2.3三阶非齐次欧拉方程的求解(常数变易法)三阶非齐次欧拉方程:32123()x y a x y a xy a y f x +++=''''''. (9)(其中1a ,2a ,3a 为常数) (9)对应的齐次方程为321230x y a x y a xy a y +++=''''''. (10) 特征方程为321123(3)(2)0K a K a a K a +-+-++=. (11)定理4 设1K 是方程(11)的根,2K 是方程22122112(31)[3(1)2]0K K a K K K a K a ++-+-++=的根,则(9)的通解为12211211(231)(22){[()]}K K K K a K K a x x x f x dx dx dx y x -++-++-=⎰⎰⎰ . (12)证明 根据条件1K y cx =(c 为任意常数)是方程(10)的解. 设1()K y c x x =是方程(9)的解(其中()c x 是待定的未知数), 将其代入方程(9),整理得1121111112(3)3231111213()(3)()[3(1)2]()[(3)(2)]()()K c x K a x c x K K a K a x c x K a K a a K a x c x xf x ---+-''''''+++-++++-+-++= (13)因为1K 是(11)的根,则321111213(3)(2)0K a K a a K a +-+-++=,于是(13)式化为1(3)121111112()(3)()[3(1)2]()()K c x K a x c x K K a K a x c x x f x -+--''''''+++-++=(14)这是以()c x '为未知函数的二阶欧拉方程. 设2K 为(14)对应的齐次方程的特征方程21111112(31)[3(1)2]0K K a K K K a K a ++-+-++=, (15)的根,则221121(23)(2)()[()]K K K a K K c x x x x f x dx dx -+++-'=⎰⎰.从而2211211(23)(22){[()]}()K K K a K K a x x x f x dx dx dx c x -++++-=⎰⎰⎰. 故方程(1)的通解为12211211(231)(22){[()]}K K K K a K K a x x x f x dx dx dx y x -++-++-=⎰⎰⎰.定理5 设1K 是方程(11)的根,2K 是方程(15)的根,则(i )当1K 是方程(11)的单实根,2K 是方程(15)的单实根,则(9)的通解为1212121121(2)1(3)(2)121[()()](32)1K K K K K K a K K a x y x x f x dx x x f x dx dx K K a -++-++++=-++-⎰⎰⎰(ii )当1K 是方程(11)的单实根,2K 是方程(15)的单虚根,则(9)的通解为111(2)(2){[sin(ln )cos(ln )()cos(ln )sin(ln )()]}K K K x x xx f x dx x x x f x dx dxy xαααβββββ-++-++-=⎰⎰⎰(其中11132K a α--=,β= (iii )当1K 是方程(11)的单实根,2K 是方程(15)的重实根,则(9)的通解为121212(2)(2){[ln ()ln ()]}K K K K K K x x x f x dx x x f x dx dx y x -++-++-⋅=⎰⎰⎰,(iv )当1K 是方程(11)的三重实根,方程(15)变为2210K K ++=,有21K =-,则(9)的通解为111(1)(1)1{[ln ()ln ()]}K K K y x x x x f x dx x x f x dx dx -+-+-=-⋅⎰⎰⎰. 证明 (i )因为2K 是方程(15)的单实根,得(14)的通解为212121121(2)1(3)(2)31211[()()](32)1()K K K K K a K K a x x f x dx x x f x dx K K a c x -++-++++--++-='⎰⎰则(9)的通解为1212121121(2)1(3)(2)3121[()()](32)1K K K K K K a K K a x y x x f x dx x x f x dx dx K K a -++-++++-=-++-⎰⎰⎰(ii )因为2K 是方程(14)的单虚根,此时方程(15)有一对共轭虚根1,22K =得(14)的通解为11(2)(2)[sin(ln )cos(ln )()cos(ln )sin(ln )()]()K K x x x x f x dx x x x f x dx c x αααβββββ-++-++-='⎰⎰则(9)的通解为111(2)(2){[sin(ln )cos(ln )()cos(ln )sin(ln )()]}K K K x x xx f x dx x x x f x dx dxy xαααβββββ-++-++-=⎰⎰⎰(其中11132K a α--=,β= (iii )因为2K 是方程(15)的重实根,得(9)的通解为121212(2)(2){[ln ()ln ()]}K K K K K K x x x f x dx x x f x dx dx y x -++-++-⋅=⎰⎰⎰.(iv )当1K 是方程(10)的三重实根(1133a K =-),方程(15)变为222210K K ++=,有21K =-,将1133a K =-,21K =-代入(12)式得11(1)11{[()]}K K y x x x x f x dx dx dx -+--=⎰⎰,对上式分部积分得(9)的通解为111(1)(1)1{[ln ()ln ()]}K K K x x x x f x dx x x f x dx dx y -+-+-⋅-⋅=⎰⎰⎰.例1 求三阶欧拉方程32366x y x y xy y x -+-=''''''的通解. 解 原方程对应的齐次方程为323660x y x y xy y -+-='''''',其特征方程为3261160K K K -+-=,解得其特征根为1,2,3,取 11K =, 将11K =,13a =-,26a =,代入方程(15),得2220K K -=,解得21K =或0,利用定理5(i )的通解公式有323212311[]ln 22y x x x dx x dx dx x x c x c x c x --=-=+++⎰⎰⎰. (其中1c ,2c ,3c 为任意常数)例2 求三阶欧拉方程3241313x y x y xy y x ''''''-+-=的通解. 解 原方程对应的齐次方程为32413130x y x y xy y ''''''-+-=,其特征方程为21613()()0K K K -+-=,从而解得特征单实根为11K =,将11K =,14a =-,213a =代入方程(15),得到222250K K -+=,解得 1,2212i K =±. 令212i K =+,则1α=,2β=, 利用定理5(ii )的通解公式有33213{[sin(2ln )cos(2ln )cos(2ln )sin(2ln )]}211ln [sin(2ln )cos(2ln )]816xx x x dx x x x dx dxx x c x c x c x y x ---=+-+=⎰⎰⎰(其中1c ,2c ,3c 为任意常数)2.4 n 阶齐次欧拉方程的求解(求形如K y x =的解)令K y x =是方程(1)的解,将其求导(需要求出y '、y ''(1)n y -、()n y )代入方程(1),并消去K x ,得 1(1)(1)(1)(1)(2)0n n K K K n a K K K n a K a ---++--++++=. (16)定义3 以K 为未知数的一元n 次方程(16)称为n 阶齐次欧拉方程(1)的特征方程.由此可见,如果选取k 是特征方程(16)的根,那么幂函数k y x =就是方程(1)的解.于是,对于方程(1)的通解,我们有如下结论:定理6 方程(1)的通解为112211n n n n y c y c y c y c y --=++++(其中1c ,2c 1n c -,n c 为任意常数),且通解中的每一项都有特征方程(16)的一个根所对应,其对应情况如下表:例1 求方程4(4)3(3)281550x y x y x y xy '''+++=的通解.]cos(ln k β解 该欧拉方程的特征方程为(1)(2)(3)8(1)(2)15(1)50K K K K K K K K K K ---+--+-+=,整理,得2(22)0K K K ++=,其根为120K K ==,3,41K i =-±,所以原方程的通解为3412ln cos(ln )sin(ln )c cy c c x x x x x=+++. (其中1c ,2c ,3c ,4c 为任意常数)例2 求方程(4)(3)432670x y x y x y xy y ++++='''的通解. 解 该欧拉方程的特征方程为(1)(2)(3)6(1)(2)7(1)10K K K K K K K K K K ---+--+-++=,整理,得410K +=,其根为1,2K i =-,3,4K i =(即一对二重共轭复根),所以原方程的通解为1234cos(ln )sin(ln )ln cos(ln )ln sin(ln )y c x c x c x x c x x =+++.(其中1c ,2c ,3c ,4c 为任意常数)3.结束语从前面的讨论过程来看,和教材中的变量变换法相比,本文中的解决办法更直接、更简单.但需要说明的是,本文中的定理和例题都是在0x>范围内对齐次欧拉方程求解的,如果要在0x<范围内对其求解,则文中的所有x>范围内的结果相似.ln x都将变为ln()x-,所得的结果和04.致谢经过这好几个月忙碌的学习跟工作,本次毕业论文的写作已经接近尾声了,但这次毕业论文的写作经历让我感受颇多.首先,自己要有很好的专业知识的储备,这也是写作的基础.其次,自己要有严谨的思维逻辑.再次,自己要善于思考,遇到不懂得问题就要勤于思考,查资料,问老师.最后,自己一定要有坚持不懈的精神.毕业论文的写作是一个长期的过程,在写作过程中我们难免会遇到各种各样的过程,但我们不能因此就放弃,而要做到坚持.要相信“有付出就一定会有所收获”的.在这里首先要感谢我的指导老师胡宏昌教授.胡老师平日里工作繁多,但在我做毕业论文阶段,他都给予了我悉心的指导,细心地纠正论文中的错误并给予指导.如果没有他的大力支持,此次论文的完成将变得非常困难.除了敬佩胡老师的专业水平外,他的治学严谨和科学研究的精神也值得我永远学习,并将积极影响我今后的学习和工作.然后还要感谢大学四年来我的所有的老师跟领导,为我们打下了坚实的专业知识的基础.最后祝各位评审老师身体健康,工作顺利!5、参考文献[1]王高雄,周之铭,朱思铭,王寿松.常微分方程[M].第3版.北京:高等教育出版社,2006:142-144.[2]华东师范大学数学系.数学分析(上)[M].第3版.北京:高等教育出社,1999:87-199.[3]钟玉泉.复变函数论[M].第3版.北京:高等教育出版社,2003:10-11.[4]胡劲松.一类欧拉方程特解的求解.重庆科技学院学报[J],2009,11(2):143-144.[5]胡劲松,郑克龙.常数变易法解二阶欧拉方程.大学数学[J],2005,21(2):116-119.[6]米荣波,沈有建,汪洪波.三阶欧拉方程求解的简化常数变易方法.海南师范大学学报[J],2008,21(3):260-263.[7]胡劲松.齐次欧拉方程的另一种求解方法.重庆工学院学报[J],2004,18(1):4-748.[8]冀弘帅.认识伟大的数学家----欧拉.数学爱好者[J],2006,10:52-53.[9]卓越科学家欧拉.中学生数理化(北师大版)[J],2007,Z2: 101-102.。
运用欧拉公式求定积分

对 被 积 函 数 中 含 有 三 角 函数 的定 积 分 , 常 采 用 三 角 公 式 进 行 恒 通 等变换 , 之易于求积分 , 使 由于 三 角 公 式 较 多 , 易 记 忆 ,利 用 欧 拉 公 不 ;
:
)
) 如
式. 把求 三 角 函 数 的 积 分转 化 为求 复 变 量 指数 函数 的 积 分 , 以 减 少 可
用这种联系 , 将一些三角 函数 的定积分 化为复变量指数 函数的定积分
成为可能 ; 面举例说 明: 下
例“计 fnX (1 4 算 nCn) s-O + i S 1
例1 计算定积分 J (为整数, e n =
)
解』i s 1 f寺(e 】1 押 ) :sI ( ) e ( 。n 0+ n cn = ( ) e - -
: =
( + 一 ) = 2 。 如= e e cs o
可 得 c = ( / e/ s x ( e ) 。 e+-) i =  ̄ x n e一~
.
= 。 +n ( 2) 1 ++ _ 』(v-) I- ‘ … ] 1 }n 2+ 1 e rL / (+ 2。 x n  ̄ 2
公 式 的记 忆 , 低 解 题 难 度 。 降
=
1
(/1n( / z ) 1 - ) 2 + +n ] + x
当 是 实 数 时 , 欧拉 公 式 由
. .
一“
.
.
e -c x +¥ IL . =cO 一l l os S I ̄ e S S n
=
1f 2 11 22.1 + ++] o a ) e).) . ) / 2/ 2x.+ [ x ( (++ (  ̄  ̄ x / . , I
欧拉积分在求解定积分中的应用

2
0
∫x - x d x
2 2
1
θ= B sin θ co sθ d ∫ 2
6 4
1
7 5 , 2 2
=
解 :法 1 通过三角换元法可得
a - x dx = a - x + a rc sin ∫ 2 2 a 1 1 ∫x - x d x = ∫ 4 - ( x - 2 ) d x 1 1 = + a rc sin2 t - t ∫ 4 - t d t = 2t 1 2 4
0
e ∫
+∞
-x
d x = 1, 即
x e ∫
n +∞ -x
Γ (α) =
0
x ∫
+∞
α- 1
e d x (α > 0 ) 我们称之为成
-x
Γ ( n + 1 ) = n! =
0
d x。
为 Γ函数 。 2 令 x = t 时 , 代入上式得 Γ (α) = 2 令 x = ln Γ (α) =
1. 1. 2 性质
4
北京印刷学院学报 , 1998, 1.
∫
-∞
+∞
1 +x 4 dx = 1 +x
2
0
∫1 + td t
+∞
Solv in g D ef in ite In tegra l Ca lcula tion by Usin g Euler In tegra l
TIAN B ing ( Editor of Academ ic Journal, B aotou Teachers’College; Baotou 014030 ) Abstract: The paper describes the definition and the nature of Euler Integral, discussed about the app lication of solving definite integral calculation by using Euler Integral . Key words: Keywords: Euler Integral; definition; nature; app lication
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2i
n- 1
1
( n+1) ix - ( n+1) ix
( e +e ) dx
2
! % & =
1
n n- 1
2i
π
0
ix - ix n- 1 ( n+1) ix
ix - ix - ( n+1) ix
( e - e ) e +( e - e ) e
dx
! ’% & % & ( =
1
n n- 1
1
n+1
2
π
0
2nix 1 2(n- 1)ix 2 2(n- 2)ix
- 2nix 1 - 2(n- 1)ix
( e +Cne +Cne +…+1) +( e +Cne +…+1)
dx
! % & =
1
n+1
2
π
0
2nix - 2nix
1 2( n- 1) ix 1 - 2( n- 1) ix
( e +e ) +( Cn e +Cn e
π ( n- 1) ix ( n- 3) ix
( e +e
0
( n- 5) ix
- ( n- 1) ix
+e +…+e ) dx
当 n 为偶数时,
n
"# π 2
$ n- ( 2k- 1) % ix - $ n- ( 2k- 1) % ix
原式=
(e
+e
) dx
0 k=1
n
# " 2
=
π $ n- ( 2k- 1) % ix - $ n- ( 2k- 1) % ix
! ! 解:
π sinnx dx=
π
1 2i
nix - nix
(e -e )
dx
0 sinx
0
1
ix - ix
(e -e )
2i
!=
π
(
ix
e
-
-
e
ix
)
(
(
e
n-
1)
ix
(
+e
n-
2)
ix
-
e
ix
(
+e
n-
3)
ix
-
e
2ix
-
+…+e
(
n-
1)
ix
)
0
ix - ix
e -e
dx
!π ( n- 1) ix ( n- 2) ix - ix ( n- 3) ix - 2ix
-
1
Cn-
1
2(
e
n-
1)
ix
+…+(
-
1)
n-
1
2ix
e
)
dx+
1
n n-
2i
1
!π - 2ix (e -
0
1 - 4ix
n- 1 - 2nix
Cn- 1 e +…+( - 1) e ) dx=0
!π nix
注意到: 当 n 为偶数时, e dx=0 0
! [1]
例5
计算
π sinnx dx
0 sinx
πn
cos xcosnxdx=
π1
ix - ix n
( e +e )
1
nix - nix
( e +e ) dx
0
0 2n
2
! =
1
n+1
2
π
(
0
2ix
e +1
ix
e
n nix - nix
) ( e +e ) dx
! % & =
1
n+1
2
π
2ix
n
- nix n
( e +1) +( 1+e )
dx
0
!% & =
2i
π 0
ix - ix ix
(e -e )e
n- 1 2ix
e+
ix - ix - ix
(e -e )e
n- 1 - 2ix
e
dx
! % $ =
1
n n- 1
2i
π
0
2ix
n- 1 2ix
- 2ix n- 1 - 2ix
( e - 1) e +( 1- e ) e
dx
=
1
n n- 1
2i
! % $ π
泡沫沥青技术适用于各种沥青路面和基层及含塑性指数的稳定 土材料。对旧有路面及基层材料, 可掺入一定比例的新石料, 利用发泡 技术使沥青成泡沫状态与再生的骨料粘结在一起, 经过摊铺碾压成 型, 形成全厚式的沥青基层。泡沫沥青混凝土具有很好的抗疲劳和抗 车辙性能, 对交通流量大的道路只需在上面加铺一层新的沥青面层, 对低交通流量路面进行表面处理即可。
低为 2% ̄3%。在采用泡沫沥青作为粘结剂时, 可同时加入少量水泥 ( 一 般 为 1% ̄2%) , 以 改 善 沥 青 与 骨 料 间 的 粘 结 性 , 同 时 , 防 止 裂 纹 发 生, 提高表层质量。
4.碾压成型。先用胶轮压路机初压, 再用钢轮压路机终压。 由于泡沫沥青混合料不耐水的侵害, 故完成的泡沫沥青层最后都需要 在 上 面 加 铺 能 抗 水 及 耐 磨 的 热 拌 沥 青 混 凝 土 层 。科
- ( n- 1) ix
= ( e +e e +e e +…+e ) dx
0
!π ( n- 1) ix ( n- 3) ix ( n- 5) ix
- ( n- 1) ix
= ( e +e +e +…+e ) dx
0
167
科技信息
○高校讲坛○
SC IE N C E & T E C H N O L O G Y IN FO R M A T IO N
(e
+e
) +1
dx
k=1
"π ( n- 1) ix ( n- 3) ix ( n- 5) ix
- ( n- 1) ix
= ( e +e +e +…+e ) dx
0
当 n 为偶数时,
n
"# π 2
$ n- ( 2k- 1) % ix
原式=
(e
+e- ix $ n- ( 2k- 1) %
0 k=1
"π
dx
k=1
n
# " " 2
=
k=1
π $ n- ( 2k- 1) % ix - $ n- ( 2k- 1) % ix
π
(e
+e
) dx+ dx
0
0
n
2
π
" =# 2cos( n- ( 2k- 1) ) xdx+π
k=1 0
n
# " 2
=
k=1
2 n- ( 2k- 1)
π
$ sin( n- ( 2k- 1) ) x % 0 +π=0+π=π=
对被积函数中含有三角函数的定积分, 通常采用三角公式进行恒
等变换, 使之易于求积分, 由于三角公式较多, 不易记忆, ; 利用欧拉公
式, 把求三角函数的积分转化为求复变量指数函数的积分, 可以减少
公式的记忆, 降低解题难度。
当 x 是实数时, 由欧拉公式
ix
- ix
e =cosx+isinx, e =cosx- isinx
【关键词】欧拉公式; 复变量函数; 定积分 Seek Definite Integr ation with Euler For mula ZHOU Ren – min
(Huaihua Medical College, Huaihua, Hunan 418000) 【Abstr act】Many flexible and difficult to remember triangle formulas were used during integrated function containing trigonometry. To reduce formula memory and lower difficulty, this paper tried to transform trigonometry into complex variables exponential function to seek definite integral. by Euler formula 【Key wor ds】Euler formula;complex variables exponential function;definite integral
● 【参考文献】
[ 1] 吉米多维奇.数学分析习题集[M].北京:人民教育出版社 1978.205- 206.
作者简介: 周人民( 1954—) , 男, 湖南溆浦人, 本科学历, 主要从事高等数学 教学。
[ 责任编辑: 田瑞鑫]
( 上接第 112 页) 再生施工中使用的粘结剂主要有泡沫沥青、乳化 沥青、水泥、石灰、粉煤灰等, 因造价和材料特性等因素, 目前就地冷再 生中泡沫沥青技术应用广泛。
+…+2
dx
=
1
n+1
2
% 2x
π
& 0 =
π 2n
! ! π nix - nix
π
注意到: ( e +e ) dx= 2cosnxdx=0
0
0
! [1]
π n- 1
例 4 计算 sin xcos( n+1) xdx
0
! !% & 解:
π n- 1
sin xcos( n+1) xdx=
0
π 0
1
ix - ix
=- 1