理论力学简明教程复习题题库--(物理专业用) 新 优质文档
《理论力学》试题答案以及复习要点汇总(完整版)最新最全面(完整版)

《理论力学》试题答案以及复习要点汇总(试题附后面)第一部分静力学第1 章.静力学基本概念和物体的受力分析1.静力学基本概念力是物体间相互的机械作用,这种作用使物体运动状态发生变化或使物体产生变形。
前者称为力的运动效应,后者称为力的变形效应。
力对物体的作用决定力的三要素:大小、方向、作用点。
力是一定位矢量。
刚体是在力作用下不变形的物体,它是实际物体抽象化的力学模型。
等效若两力系对物体的作用效应相同,称两力系等效。
用一简单力系等效地替代一复杂力系称为力系的简化或合成。
2.静力学基本公理力的平行四边形法则解成两个力的分解法则。
给出了力系简化的一个基本方法,是力的合成法则,也是一个力分二力平衡公理是最简单的力系平衡条件。
加减平衡力系公理是研究力系等效变换的主要依据。
作用与反作用定律概括了物体间相互作用的关系。
刚化公理给出了变形体可看作刚体的条件。
3. 约束类型及其约束力限制非自由体位移的周围物体称为约束。
工程中常见的几种约束类型及其约束力光滑接触面约约束力作用在接触点处,方向沿接触面公法线并指向受力物体。
束柔索约束约束力沿柔索而背离物体。
约束力在垂直销钉轴线的平面内,并通过销钉中心。
约束力的方向不能预铰链约束先确定,常以两个正交分量 F x 和F y 表示。
滚动支座约束约束力垂直滚动平面,通过销钉中心。
约束力通过球心,但方向不表示。
能预先确定,常用三个正交分量F x,F y,F z球铰约束止推轴承约束约束力有三个分量Fx,F y ,F z 。
4. 受力分析对研究对象进行受力分析、画受力图时,应先解除约束、取分离体,并画出分离体所受的全部已知载荷及约束力。
画受力图的要点(1)熟知各种常见约束的性质及其约束力的特点。
判断二力构件及三力构件,向。
并根据二力平衡条件及三力平衡条件确定约束力的方(2)(3)熟练、正确表出作用力与反作用力。
受力分析三步曲:分离物体、画主动力、画约束力(约束个数、约束类型、用约束力代替约束)第2、3 章.平面力系1. 力矩力矩是度量力对物体转动效果的物理量。
理论力学题库(含答案)

理论⼒学题库(含答案)理论⼒学---11-1.两个⼒,它们的⼤⼩相等、⽅向相反和作⽤线沿同⼀直线。
这是(A)它们作⽤在物体系统上,使之处于平衡的必要和充分条件;(B)它们作⽤在刚体系统上,使之处于平衡的必要和充分条件;(C)它们作⽤在刚体上,使之处于平衡的必要条件,但不是充分条件;(D)它们作⽤在变形体上,使之处于平衡的必要条件,但不是充分条件;1-2. 作⽤在同⼀刚体上的两个⼒F1和F2,若F1 = - F2,则表明这两个⼒(A)必处于平衡;(B)⼤⼩相等,⽅向相同;(C)⼤⼩相等,⽅向相反,但不⼀定平衡;(D)必不平衡。
1-3. 若要在已知⼒系上加上或减去⼀组平衡⼒系,⽽不改变原⼒系的作⽤效果,则它们所作⽤的对象必需是(A)同⼀个刚体系统;(B)同⼀个变形体;(C)同⼀个刚体,原⼒系为任何⼒系;(D)同⼀个刚体,且原⼒系是⼀个平衡⼒系。
1-4. ⼒的平⾏四边形公理中的两个分⼒和它们的合⼒的作⽤范围(A)必须在同⼀个物体的同⼀点上;(B)可以在同⼀物体的不同点上;(C)可以在物体系统的不同物体上;(D)可以在两个刚体的不同点上。
1-5. 若要将作⽤⼒沿其作⽤线移动到其它点⽽不改变它的作⽤,则其移动范围(A)必须在同⼀刚体内;(B)可以在不同刚体上;(C)可以在同⼀刚体系统上;(D)可以在同⼀个变形体内。
1-6. 作⽤与反作⽤公理的适⽤范围是(A)只适⽤于刚体的内部;(B)只适⽤于平衡刚体的内部;(C)对任何宏观物体和物体系统都适⽤;(D)只适⽤于刚体和刚体系统。
1-7. 作⽤在刚体的同平⾯上的三个互不平⾏的⼒,它们的作⽤线汇交于⼀点,这是刚体平衡的(A)必要条件,但不是充分条件;(B)充分条件,但不是必要条件;(C)必要条件和充分条件;(D)⾮必要条件,也不是充分条件。
1-8. 刚化公理适⽤于(A)任何受⼒情况下的变形体;(B)只适⽤于处于平衡状态下的变形体;(C)任何受⼒情况下的物体系统;(D)处于平衡状态下的物体和物体系统都适⽤。
理论力学复习题答案.doc

一、选择题1、A (4分)2、D (4分)3、B (4分)4、A (4分)二、填空题1、ωml 21,ω231ml 2、2243ωmR , ω223mR 3、 2/15三、判断题1、( × )2、( √ )3、( √ )四、计算题解:分别取CD 和整体为研究对象,列CD 杆平衡方程:02sin ,0=⨯-+⨯⇒=∑a F M a F M B C β (3分) )(5sin 2↑=-=KN aMF F B β(向上) (1分)列整体平衡方程:23sin 43,00sin ,00cos ,02=--++⇒=∑=+⨯-+⇒=∑=+⇒=∑qa Fa a F M M M F a q F F F F F F B A A NB AY Y AX X βββ (7分)将ο30,4,/1,.20,10=====βm a m KN q m KN M KN F 代入方程,联立求解,可得)(35←-=KN F AX (水平向右) , )(4↑=KN F AY (铅直向上), m KN M A .24= (逆时针) (4分)五、计算题解:动点:套筒A动系:固连在O 2B 上 (1分) 作速度平行四边形 (4分)r e a V V V += (2分)s cm V a /40=s rad A O /41=ω (3分)s cm V r /320= (2分)2/340s cm a C = (3分)六、计算题解: AB 作平面运动,以A 为基点,分析B 点的速度。
由图中几何关系得:(4分)(4分)(2分)B A BA =+r r rv v v cot30103cm/s B A v v ==o 20cm/s sin 30A BA vv ==o 1rad sBAAB v lω==方向如图所示。
七、计算题解:用动能定理求运动以杆为研究对象。
由于杆由水平位置静止开始运动,故开始的动能为零,即:01=T (1分)杆作定轴转动,转动到任一位置时的动能为222222181)32(1212121ωωml l l m ml J T O =⎥⎦⎤⎢⎣⎡-+==(1分) 在此过程中所有的力所作的功为ϕsin 6112mgl mgh W ==∑ (1分) 由2112T T W -=∑得22110sin 186ml mgl ωϕ-=23sin g l ωϕ=ω= (2分)将前式两边对时间求导,得:d 3d 2cos d d g t l tωϕωϕ= 3cos 2gl αϕ= (1分)A现求约束反力:质心加速度有切向和法向分量:tcos 4C g a OC αϕ=⋅=n2sin 2C g a OC ωϕ=⋅= (2分) 将其向直角坐标轴上投影得:t n3sin cos sin cos 4Cx C C ga a a ϕϕϕϕ=--=-t n23cos sin (13sin )4Cy C C g a a a ϕϕϕ=-+=-- (2分)由质心运动定理可得;,Cx x Cy y ma F ma F =∑=∑3sin cos 4Ox mgF ϕϕ-= 23(13sin )4Oy mg F mg ϕ--=- (3分)解得:3sin 28Ox mg F ϕ=-2(19sin )4Oy mgF ϕ=+ (2分)一、选择题(每题 4 分,共 16 分)1、A (4分)2、A (4分)3、C (4分)4、C (4分)二、填空题(每空 4 分,共 20 分)1、杆的动量为ωml 21,杆对O 轴的动量矩为ω231ml , 2、 此瞬时小环M 的牵连加速度a e 为 2ωR ,小环M 科氏加速度a C 为 r V ω2 3、夹角θ应该满足的条件是 f φθ2≤三、判断题(每空 3 分,共 9 分)1、( × )2、( √ )3、( √ )四、计算题(共 15 分)解:)(↑=-⨯+⨯=kN 35)22(1M aqa a F a F B ;(5分) )(kN 40←==qa F Cx ,)(↑=-=-=kN 53540B Cy F F F ;(5分))(kN 80←=Ax F ,)(kN5↑=Ay F ,m kN 240⋅=A M (逆时针)。
理论力学复习题(答案)

理论力学复习题一、填空题1、力对物体的作用效果一般分为力的外效应和力的内效应。
2、作用在刚体上的力可沿其作用线任意移动,而不改变该力对刚体的作用效果。
3、质点动力学的三个基本定律:惯性定律、力与加速度之间的关系定律、作用力与反作用力定律4、质点系动能定理建立了质点系动能的改变量和作用力的功之间的关系。
5、一对等值、反向、不共线的平行力组成的特殊力系,称为力偶6、两个或两个以上力偶的组合称为力偶系。
7、力矩与矩心的位置有关,力偶矩与矩心的位置无关。
8、物体质量的改变与发生这种改变所用合外力的比值叫做加速度。
9、力的三要素为大小、方向和作用点。
10、物体相对于地球静止或作匀速直线运动称为平衡状态。
11、作用在一个物体上的两个力使物体平衡,这两个力一定是大小相等、方向相反、作用在同一条直线上。
12、平面运动的速度分析法有三种方法基点法、速度瞬心法和速度投影法。
13、在刚体的平面运动中,刚体的平移和转动是两种最基本运动。
14、动力学的三个基本定律:动量定理、动量矩定理、动能定理。
15、空间力系分为空间汇交力系和空间力偶。
16、带传动中,带所产生的约束力属于柔性约束,带只能承受拉约束。
17、质点动力学的三个基本定律:惯性定律、力与加速度之间的关系定律、作用力与反作用力定律18、质点系动能定理建立了质点系动能的改变量和作用力的功之间的关系。
19、当力为零或力的作用线过矩心时,力矩为零,物体不产生效果。
二、判断题1实际位移和虚位移是位移的两种叫法(×)2.作用力和反作用力等值、反向、共线、异体、且同时存在。
(√)3.力偶无合力。
(×)4.运动物体的加速度大,它的速度也一定大。
(×)5.平面任意力系的合力对作用面内任一点之矩等于力系中各分力对于同一点之矩的代数和。
(√)6.若力偶有使物体顺时针旋转的趋势,力偶矩取正号;反之,取负号。
(×)7.既不完全平行,也不完全相交的力系称为平面一般力系(√)8.二力构件是指两端用铰链连接并且只受两个力作用的构件。
理论力学复习题

理论力学复习题1(总13页) -本页仅作为预览文档封面,使用时请删除本页-《理论力学复习参考题》(10土本)一、填空题(每题5分,共计20分)1、如图所示,已知力F及其作用点A的坐标为(1、1、0),求力F在三个坐标轴上的投影和对三个轴之矩。
=Fz=)F(mxF(my)==)F(mz2、如图所示各杆,其长度为,LDOCDABAO31====2L,CO2=AO1杆的转动角速度为ω,试确定其余杆作什么运动它们的角速度为多少(填入下表)=yF=xF23二、判断题1.当某平面一般力系的主矢量0F F /R ==∑i时,则该力系一定有合力偶。
( ) 2.力偶只能使刚体转动,而不能使刚体移动.( )3. 当一物体上有几处与周围物体接触时,这几个接触面的摩擦力同时达到临界平衡状态。
( )4.只要点作匀速运动,其加速度总为零。
( )5、在点的合成运动问题中,某瞬时动坐标上一点的速度称为动点的牵连速度。
( )6、摩擦力作为未知的约束反力,其大小和方向完全可以由平衡方程确定。
( )7、运动学只研究物体运动的几何性质,而不涉及引起运动的物理原因。
( )8.牵连运动是指动系上在该瞬时与动点重合的点对于静系的运动。
( )9.动系相对于静系的运动称为牵连运动。
( )10.平面图形的角速度与图形绕基点的角速度始终相等。
( )11.不管质点系作什么样的运动,也不管质点系内各质点的速度如何,只要知道质点系的总质量和质心速度,即可得知质点系的动量。
( )12.内力不改变质点系的动量,却能改变质点系内各部分的动量。
( )13.变力的冲量为零时则变力F 必为零。
( )14.质点系的动量等于外力的矢量和。
( )15.质点系的质心位置保持不变的条件是作用于质点系的外力主矢恒为零及质心的初速度为零。
16. 质点系的内力不能改变质点系的动量与动量矩17.若系统的动量守恒,则其对任意点的动量矩一定守恒;若系统对某点的动量矩守恒;则其动量一定守恒。
理论力学复习题(含答案)

理论⼒学复习题(含答案)《理论⼒学》复习题A⼀、填空题1、⼆⼒平衡和作⽤反作⽤定律中的两个⼒,都是等值、反向、共线的,所不同的是⼆⼒平衡是作⽤在⼀个物体上,作⽤效果能抵消、作⽤⼒与反作⽤⼒是作⽤在两个物体上,作⽤效果不能抵消。
2、平⾯汇交⼒系平衡的⼏何条件是;平衡的解析条件是。
静滑动摩擦系数与摩擦⾓之间的关系为tanφ=fs。
点的切向加速度与其速度的变化率⽆关,⽽点的法向加速度与其速度的变化率⽆关。
的条件,则点作牵连运动。
6、动点相对于的运动称为动点的绝对运动;相对于系的运动称为动点的相对运动;⽽相对于的运动称为牵连运动。
转动题7图题8图8、图⽰均质圆盘,质量为,半径为R,则其对O轴的动量矩为。
9、在惯性参考系中,不论初始条件如何变化,只要质点不受⼒的作⽤,则该质点应保持静⽌或等速直线⼼.在下述公理、规则、原理和定律中,适⽤的有D)。
A.⼆⼒平衡公理⼒的平⾏四边形规则加减平衡⼒系原理⼒的可传性分析图中画出的5个共⾯⼒偶,与图(a)所⽰的⼒偶等效的⼒偶是()。
图(b)图(c)图(d)图(e)题2图3.平⾯⼒系向点1简化时,主⽮,主矩,如将该⼒系向另⼀点2简化,则(D)。
B.C.D.4.将⼤⼩为100N的⼒F沿x、y⽅向分解,若F在x轴上的投影为86.6?N,⽽沿x⽅向的分⼒的⼤⼩为115.47?N,则F在y轴上的投影为(B)。
A.?0;B.?50N;C.?70.7N;D.?86.6N;题4图题5图5.如图所⽰,当左右两⽊板所受的压⼒均为F时,物体A夹在⽊板中间静⽌不动。
若两端⽊板所受压⼒各为2F,则物体A所受到的摩擦⼒为(A)。
与原来相等是原来的两倍是原来的四倍点作曲线运动时,“匀变速运动”指的是(B)。
=常⽮量=常量=常⽮量=常量刚体作平动时,刚体内各点的轨迹(C)。
⼀定是直线⼀定是曲线可以是直线,也可以是曲线可以是直线,也可以是不同半径的圆⼀对外啮合或内啮合的定轴传动齿轮,若啮合处不打滑,则任⼀瞬时两轮啮合点处的速度和加速度所满⾜的关系为()。
理论力学考试试题(题库-带答案)

好好1学习理论力学期末考试试题1-1、自重为P=100kN的T字形钢架ABD,置于铅垂面内,载荷如图所示。
其中转矩M=20kN.m,拉力F=400kN,分布力q=20kN/m,长度l=1m。
试求固定端A的约束力。
解:取T型刚架为受力对象,画受力图.1-2如图所示,飞机机翼上安装一台发动机,作用在机翼OA上的气动力按梯形分布:q=60kN/m,1 q=40kN/m,机翼重2p=45kN,发动机1重p2=20kN,发动机螺旋桨的反作用力偶矩M=18kN.m。
求机翼处于平衡状态时,机翼根部固定端O所受的力。
解:1-3图示构件由直角弯杆EBD以及直杆AB组成,不计各杆自重,已知q=10kN/m,F=50kN,M=6kN.m,各尺寸如图。
求固定端A处及支座C的约束力。
1-4已知:如图所示结构,a,M=Fa, FFF,求:A,D处约束12力.解:1-5、平面桁架受力如图所示。
ABC为等边三角形,且AD=DB。
求杆CD的内力。
1-6、如图所示的平面桁架,A端采用铰链约束,B端采用滚动支座约束,各杆件长度为1m。
在节点E和G上分别作用载荷F=10kN,E F=7 GkN。
试计算杆1、2和3的内力。
解:2-1图示空间力系由6根桁架构成。
在节点A上作用力F,此力在矩形ABDC平面内,且与铅直线成45o角。
ΔEAK=ΔFBM。
等腰三角形EAK,FBM和NDB在顶点A,B和D处均为直角,又EC=CK=FD=D。
M若F=10kN,求各杆的内力。
2-2杆系由铰链连接,位于正方形的边和对角线上,如图所示。
在节点D沿对角线LD方向作用力F。
在节点C沿CH边铅直向下作用力F。
D如铰链B,L和H是固定的,杆重不计,求各杆的内力。
2-3重为P=980N,半径为r=100mm的滚子A与重为1 P=490N 2的板B由通过定滑轮C的柔绳相连。
已知板与斜面的静滑动摩擦因数f=0.1。
滚子A与板B间的滚阻系数为δ=0.5mm,斜面倾角α=30o,s柔绳与斜面平行,柔绳与滑轮自重不计,铰链C为光滑的。
《理论力学》复习题

理论力学复习题一、填空题 1.质量为m 的质点运动到点)0,,00y x (时的速度为j v i v v y x +=,则该质点的动量大小为 ,动能为 ,相对于原点的动量矩的大小为 。
2.在平方反比引力场中,用总能量E 可作为质点轨道的判据,则(1)0=E 轨道为 ; (2)0>E 轨道为 ; (3)0<E 轨道为 。
3.刚体任意力系可以简化为一个主矢和一个主矩,其中 与简化中心有关, 与简化中心无关。
4.平面极坐标中速度的两个分量为r v = ,θv = ;加速度的两个分量是r a = ,θa = 。
5.在平方反比引力场中,求解轨道方程的方法有(1) ;(2) ;(3) 。
6.质量为1kg 的质点其运动方程为k j t i t r 322++=,则该质点在0=t 时的动量大小为 ,动能为 ,相对于原点的动量矩的大小为 ,外力对原点的力矩大小为 。
7.质量为1kg 的质点运动到点(1,2,3)时的速度为k j i v ++=22m/s ,该质点动量的大小为 ,动能的大小为 __,相对于原点的动量矩的大小为 。
8.在保守力场中,求解势能的三种方法分别为:(1) ; (2) ; (3) 。
9.质量为1kg 的质点其运动方程为k j t i t r 22++=,则该质点在0=t 时的动量大小为 ,动能为 ,相对于原点的动量矩的大小为 ,外力对原点的力矩大小为 。
10.质点做平面运动,其速率保持不变,则切向加速度大小为 ,加速度与速度 。
11.质点径向加速度是由于 和 的改变而产生的。
12.有心力场中,质点轨道微分方程(即比耐公式)为 。
14.位置矢量大小的改变产生的速度叫 速度,径向速度大小的改变及横向速度方向的改变产生的速度叫 速度。
15.位置矢量大小的改变产生的速度叫 速度,位置矢量方向改变的速度叫 速度,速度大小改变产生的加速度叫 加速度,速度方向改变产生的加速度叫加速度。
16.写出开普勒三定律的数学表达式 、 、 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《理论力学》复习题
题库
第一章质点力学
点沿空间曲线运动,在点M 处其速度为j i v
34+= ,加速度a
与速度
v
夹角030=β,且2/10s m a =。
求轨迹在该点密切面内的曲率半径ρ和
切向加速度τa 。
答:由已知条件j i v
34+=得
s m v /53422=+= 法向加速度20/530sin s m a a n == 则曲率半径m a v n
52
==ρ 切向加速度 20/66.830cos s m a a ==τ
一点向由静止开始作匀加速圆周运动,试证明点的全加速度和切向加速度的夹角α与其经过的那段圆弧对应的圆心角β之间有如下关系βα2tan =
证明:设点M 沿半径为R 的圆作圆周运动,t 时刻走过的路程为AM=s ,速度为v ,对应的
圆心角为β。
由题设条件知
()
()b C ds
dv v dt dv a a Ra v a a n ===
==τττα2
tan
C 为常数 积分(b)式得⎰⎰=s
v
ds a vdv 00τ 所以()c s a v τ22= 将(c )式代入(a ),并考虑βR s =,所以βα2tan =
质点M 的运动方程为)(2),(32m t y m t x == 求t=1秒时,质点速度、切向加速度、法向加速度的大小。
解:由于)(44),(3s
m t y s m x
=== 所以有()
s m y x v 516922=+=+= 又:222169t y x
v +=+= 则()()
()s m
t
t t t v
a t 2.3169232321692
12
121
21
2=+=⋅+==-
()
()()
s
m
a a a s
m y
x a s m y x t n 4.22.3164,4,02
2222=-=-==+===
点M 沿半径为R 的圆周运动。
如果
K K a a n
(-=τ
为已知常数),以初始位置为原点,原点初速度为0v 。
求点的弧坐标形式的运动方程及点的速度减少一半时所经历的时间。
解:设点的初始位置为A 。
依题意
KR
v K a a dt dv n 2
-=-==τ 积分上式⎰⎰-=v
v
t
dt KR v dv 00
2
1 KR t v v -=-110 得t v KR RKv v 00+= 则弧坐标形式的运动方程为⎪⎭
⎫ ⎝⎛
+=+=⎰KR t v KR dt t k KR KRv s t
00001ln
当20v v =
时0
v KR t =
一质点沿圆滚线θsin 4a s =的弧线运动,如θ 为常数,则其加速度亦为一常数,试证明之。
式中θ为圆滚线某点P 上的切线与水平线(x 轴)所成的角度,s 为P 点与曲线最低点之间的曲线弧长。