CPU与简单模型机设计 实验报告汇总
CPU与简单模型机设计实验中的关键问题分析

CPU与简单模型机设计实验中的关键问题分析摘要:模型机设计实验是计算机组成原理实验中的一个综合性较强的实验,要求学生在掌握各部件单元电路的基础上,构建一台模型计算机。
文章选用TD-CMA实验教学系统,针对采用微程序控制器设计的CPU与简单模型机设计实验,从连线排查、指令设计、微程序设计、指令控制、程序运行等方面分析该实验中的关键问题,并给出每个问题的解决方法。
关键词:计算机组成原理;微程序控制器;简单模型机;TD-CMA0 引言CPU与简单模型机设计实验是计算机组成原理实验中的一个综合性较强的实验,对学生的理论要求、能力要求较高。
在美国的一些主流大学中,计算机组成原理实验强调从顶层(应用和软件)到底层(硬件)的掌握与了解,实验方式一般采用高级语言实现对硬件的模拟;有些大学则要求学生采用VHDL、Verilog 等硬件描述语言进行功能部件和小型系统的设计与实现,并在FPGA等硬件上进行测试验证。
从文献[4]可以看出,国内大学计算机组成原理课程的实验已经由验证性实验逐渐过渡到处理器设计及计算机系统搭建的层次上。
与模型机设计相关的实验仍然是重点实验内容,只是实现方式和难度不同。
例如,有些学校开设的实验会引入MIPS、流水、Cache等功能设计。
根据控制器部件的工作原理,模型机控制器可分为硬布线控制器和微程序控制器两种,还可根据设计的模型机所含指令系统分为简单模型机和具有特定功能的模型机,因此模型机的设计也有不同的类型。
笔者选取微程序控制器的基本模型机设计进行分析。
TD-CMA教学实验系统是西安唐都科教仪器公司推出的新一代计算机组成原理与系统结构教学实验设备。
该系统硬件的电路布局按照计算机组成结构进行模块化设计,配有CMA’监控软件,可以实现从部件到整机实验的数据通路图实时动态图形调试界面演示,且都具有单拍、单周期、连续等调试功能,通路图的调试过程也具有保存和回放功能。
笔者采用TD-CMA实验教学系统,针对以微程序控制器为基础的简单模型机设计实验,从连线排查、指令设计、微程序设计、指令控制、程序运行等多个方面分析微程序控制器模型机实验中的关键问题,给出了每个问题的解决方法。
基本模型机的设计与实现实验报告

基本模型机的设计与实现实验报告本文将围绕“基本模型机的设计与实现实验报告”进行分析和阐述。
基本模型机的设计与实现是计算机系统课程中的重点内容,是学生理解计算机系统的核心;设计和实现基本模型机需要学生掌握计算机组成原理的基本知识,能够编写汇编语言程序和理解存储器层次结构等相关概念。
一、实验目的本次计算机系统实验的目的是掌握CPU的设计与实现,以及理解汇编语言的底层执行过程。
通过本次实验,学生可以深入了解计算机系统的基本组成部分,从而提高对计算机实现原理的认识和理解。
二、实验中设计与实现模型机的步骤1、确定模型机性能要求根据实验要求,我们需要设计出一个能够运行汇编语言程序的模型机。
此时,我们需要确定模型机的性能需求,如运行速度、存储容量和输入输出设备等方面。
2、设计和实现CPU在模型机中,CPU是核心部件,所以首先需要设计和实现CPU。
CPU需要包括寄存器、算术逻辑单元、控制器和取指令等组成部分。
由于我们使用的是逻辑电路实现,所以需要进行逻辑门设计,采用Verilog语言来实现。
3、设计和实现存储器存储器是CPU所需的重要组成部分之一,我们需要为CPU设计实现一套存储器,包括RAM和ROM两部分,其中RAM用于存储数据,ROM用于存储指令。
4、设计和实现输入输出设备在模型机中,输入输出设备也是必不可少的部分。
我们需要设计并实现一套输入输出设备,用于用户输入指令和数据,以及模型机输出结果。
5、编写汇编程序在完成模型机的设计和实现后,我们需要编写汇编程序来测试模型机的功能是否正常。
我们可以编写一些简单的汇编程序来测试模型机的运行速度和结果准确性。
三、实验结果与分析经过实验,我们成功地设计并实现了一套基本模型机,并编写了一些简单的汇编程序进行测试。
模型机具有较高的运行速度和存储容量,并且可以实现输入输出设备的基本功能。
同时,我们也发现了一些问题,如指令与数据存储的冲突等,需要进一步改进。
在完成实验过程中,我们深刻理解了计算机系统的结构和运作原理,提高了对计算机系统的认识和理解能力。
Cpu与简单模型机

1.写入微程序
将下面微代码写入芯片
地址
HEX
高八位
A字段
21,19-12位
CN_I
S3-S0
uM_PC7..uM_PC0
00
6F0ED001
6F
00
0 11101101
0
0000
01
08
3B0AF009
3B
00
0 10101111
0
0000
09
09
5D0AF00A
5D
00
0 10101111
PC+1IN---RO
RO---B
R0----A
A+B----RO
RO---OUT
实验过程及
结果记录
一 准备好实验仪
二.写入微程序,机器程序
三.本机运行(出现错误)
输入数据10101000即为A8
多次检验发现错误,微指令与机器指令的首地址出现问题
实验结果
分析
思考
1在不同地址 输入微指令(信号
uM_PC7..uM_PC0
计算机组成原理实验报告
实验名称
Cpu与简单模型机
实验日期
2016.11.14
学生姓名
学号
班级
实验目的
(简述实验的目的及意义)
(1) 了解并掌握一个基础的CPU的组成原理
(2) 在前几章介绍的各单元电路的基础上,构造一个简单模型计算机
(3) 给简单模型机设计4条机器指令,并编写每条机器指令的微指令,上机调试,掌握整机概念。
;START:IN R0
;从IN单元读入数据送 R0
00000001
0000 0000
CPU-与简单模型机设计实验

评语: 课中检查完成的题号及题数:课后完成的题号与题数:成绩: 自评成绩: 85实验报告实验名称:CPU 与简单模型机设计实验日期:2015.11.17 班级: 2 学号:13 姓名:周小多一、实验目的:1. 掌握一个简单CPU 的组成原理。
2. 在掌握部件单元电路的基础上,进一步将其构造一台基本模型计算机。
3. 为其定义五条机器指令,编写相应的微程序,并上机调试掌握整机概念。
二、实验内容:1.要实现一个简单的CPU,并且在此CPU 的基础上,继续构建一个简单的模型计算机。
CPU 由运算器(ALU)、微程序控制器(MC)、通用寄存器(R0),指令寄存器(IR)、程序计数器(PC)和地址寄存器(AR)组成,如图2-1-1 所示。
这个CPU 在写入相应的微指令后,就具备了执行机器指令的功能,但是机器指令一般存放在主存当中,CPU 必须和主存挂接后,才有实际的意义,所以还需要在该CPU 的基础上增加一个主存和基本的输入输出部件,以构成一个简单的模型计算机。
2.本模型机和前面微程序控制器实验相比,新增加一条跳转指令JMP,共有五条指令:IN(输入)、ADD(二进制加法)、OUT(输出)、JMP(无条件转移),HLT(停机),其指令格式如下(高4位为操作码):助记符机器指令码说明IN 0010 0000 IN→R0ADD 0000 0000 R0 + R0→R0OUT 0011 0000 R0→OUTJMP addr 1100 0000 addr→ PCHLT 0101 0000 停机3. 设计一段机器程序,要求从IN 单元读入一个数据,存于R0,将R0 和自身相加,结果存于R0,再将R0 的值送OUT 单元显示。
根据要求可以得到如下程序,地址和内容均为二进制数。
地址内容助记符说明00000000 00100000 ; START: IN R0 从IN 单元读入数据送R000000001 00000000 ; ADD R0,R0R0 和自身相加,结果送R000000010 00110000 ; OUT R0R0 的值送OUT 单元显示00000011 11100000 ; JMP START跳转至00H 地址00000100 0000000000000101 01010000 ; HLT停机三、项目要求及分析:1. 试修改现有的指令系统,将加法指令的功能修改为R0的内容和某个存储单元的内容相加;增加存数、取数和减法三条机器指令,指令助记符分别为STA、LAD 和SUB,指令操作码分别为十六进制的60、70和80。
简单模型机实验报告

简单模型机实验报告篇一:模型机实验报告HUNAN UNIVERSITY课程实习报告题目:模型机学生姓名学生学号 XX0801328专业班级计算机科学与技术(3)班指导老师方恺晴完成日期思考题:1. 给定一个复合运算式子以及指令码IR[7..5]与八位BUS总线对应情况。
要求写出七条指令新的指令码并写出复合运算执行mif文件。
修改模型机电路调试程序以实现复合运算。
例:已知A=55H,B=8AH,C=F0H;IR[7..5]对应BUS8,BUS1,BUS3;写出(Aplus/B)^(/(/CplusB))的mif文件,并在模拟机上实现。
答:模拟机电路修改如下:存储器预设指令重设:计算结果:(A+/B)^(/(/C+B))=42H2. Microcomputer.vhd代码中进程ct1,ct2,ct3,ct4功能划分依据是什么?ct1:微序列控制器下址跳转。
ct2:实现各种指令,主要集中在实现从存储器或者寄存器释放数据到总线上。
ct3:完成各种指令,从总线上装载数据到相应的存储器或者寄存器中。
ct4:生成下址,判断下址生成方式,根据不太那个的方式生成下址。
3. Microcomputer.vhd代码中如何定义并初始化RAM?type ram is array(0 to 37)of std_logic_vector(7 downto 0); --38*8ramsignal ram8:ram:=(x”20”, x”1e”, x”80”, x”40”, x”20”, x”20”, x”1d”, x”c0”, x”20”, x”40”, x”21”, x”20”, x”1f”, x”80”, x”40”, x”22”, x”20”, x”1e”, x”c0”, x”22”, x”80”, x”e0”, x”21”, x”40”, x”23”, x”60”, x”23”, x”a0”, x”00”, x”55”, x”8a”, x”f0”,others=>x”00”) –initialize ram44. Microcomputer.vhd代码中bus_reg_t2 将ram8存储器中对应于ar中地址单元的数据取出来放到bus_reg_t2寄存器中。
机组实验报告三—非常简单CPU与相对简单的CPU模拟器实验

非常简单CPU与相对简单的CPU模拟器实验实验目的:本次实验主要是在非常简单和相对简答的CPU模拟器上观察程序的运行,更加形象直观的了解CPU中程序运行的各个步骤以及各个寄存器和逻辑单元在各个步骤时发挥的作用。
加深对CPU的分析和理解。
实验方法:在Java Runtime Eviroment软件平台下通过运行CPU模拟器,输入指令程序,然后运行,直接观察CPU的寄存器部分和状态图部分的运行,记录并进行分析,理解。
实验准备:在启动模拟器之前必须先行安装Java Runtime Eviroment软件,准备好VSCPU.zip、RSCPU.zip两个文件,并建目录“c:\实验”,将VSCPU.zip、RSCPU.zip 放置其中。
实验步骤与CPU的截图分析:一、非常简单的CPU模拟器:在做好前面的准备工作后,即可以开始非常简答的CPU模拟器模拟:1、先将目录c:\实验下的VSCPU.zip解压至D:\vscpu2、打开D:\vscpu\VSCPU中的index.html页面以运行“非常简单CPU模拟器”。
如下图所示的页面:3、观看该模拟器使用方法的动画:(如果了解操作步骤此步也可以省略)D:\vscpu\VSCPU\Very Simple-FLASH\VerSimpleCPUSCREEN.html。
4、输入教材P168页程序,在模拟器中观察程序的运行。
如下图所示:分析:在输入程序的时候,应注意像27H,39H这些数据前面要加上DB,并且要有空格,然后才能运行程序。
上面的六行指令是书上的指令,下面就是要运行一下,动态观察CPU的运行过程。
运行CPU模拟器的步骤如下:首先在输完代码之后要先进行编译,点击Assemble按钮你,编译成功,后分别点击1、View Register Section 按钮,即是CPU寄存器部分的运行图2、View Memory按钮,即是内存部分的运行图3、View Control Unit按钮,即是控制单元的运行图,分别从这三个图观察CPU 的运行过程。
cpu设计实验报告

cpu设计实验报告CPU设计实验报告1. 引言计算机是现代社会不可或缺的工具,而中央处理器(CPU)则是计算机的核心组件之一。
本实验旨在设计和实现一个简单的CPU,以加深对计算机组成原理的理解,并通过实践掌握CPU的基本工作原理。
2. CPU设计概述我们的CPU设计基于冯·诺依曼结构,包括指令寄存器(IR)、程序计数器(PC)、算术逻辑单元(ALU)和寄存器文件等关键组件。
CPU的指令集采用RISC(精简指令集计算机)风格,指令长度为32位。
3. 指令集设计我们设计了一套简单的指令集,包括算术运算指令(加法、减法、乘法、除法)、逻辑运算指令(与、或、非)以及数据传输指令(加载、存储)。
指令的格式包括操作码、源操作数和目标操作数。
4. 寄存器文件设计寄存器文件是CPU中用于存储数据的重要组件。
我们设计了一个包含8个通用寄存器的寄存器文件,每个寄存器的宽度为32位。
通过寄存器文件,CPU能够高效地进行数据的读取和存储。
5. 控制单元设计控制单元是CPU中的重要模块,负责解析指令并控制各个组件的操作。
我们设计了一个简单的控制单元,使用有限状态机(FSM)来实现指令的解析和控制信号的生成。
控制单元根据指令的操作码,决定对应的操作,并将操作所需的控制信号发送给其他组件。
6. 数据通路设计数据通路是CPU中各个组件之间的数据传输路径。
我们设计了一个简单的数据通路,包括指令寄存器、程序计数器、寄存器文件、算术逻辑单元等。
数据通路能够将指令中的操作数从寄存器文件中读取出来,并将运算结果写回到寄存器文件。
7. CPU实现与验证我们使用硬件描述语言(HDL)对CPU进行实现,并通过仿真和测试验证其正确性。
通过编写测试程序,我们能够对CPU的各个指令进行测试,并检查其运行结果是否符合预期。
8. 结果与分析经过测试,我们的CPU能够正确执行设计的指令集,并产生正确的运算结果。
通过性能测试,我们还评估了CPU的运行速度和效率,并与其他现有的CPU进行了比较。
CPU 与简单模型机设计实验

《计算机组诚愿理》实验报告实验序号:04 实验项目名称: CPU 与简单模型机设计实验(2)载入指令文件,进行验证:(3)运行指令(程序):将时序与操作台单元的开关KK1 和KK3 置到‘运行’档,实验类型选择简单模型机,CON单元中按CLR清零,检测结果是否与预测的一致。
四、实验结果与数据处理(过程分析):(1)启动IN单元,向其中输入操作数(这里值为03);(2)启动程序计数器(PC),然后自动进行加1操作,将指令地址存放到地址寄存器(AR);(3)从存储器当中读取指令,并将它存放到指令寄存器(IR)当中,然后对指令进行编译处理,形成控制信号,来控制各个部件的工作;(4)启动读操作,将IN单元当中操作数(03)读入到R0寄存器;(5)接着从PC中取出第二条指令的地址,并自动加1,并将它存放到AR当中;(6)从存储器当中取出第二条指令,并将它存放到IR当中,并进行编译;(7)将存储器R0中的03值送到A和B当中;(8)启动ALU运算器,执行加操作,并将运算结果送往R0当中;(8)同样从PC当中第三条指令(将运算结果送往OUT单元显示),取指令流程与上述类似;执行操作,将运算结果送往OUT单元进行显示;五、分析与讨论(心得)答:这是一个简单的CPU是由运算器(ALU)、微程序控制器(MC)、通用寄存器(R0),指令寄存器(IR)、程序计数器(PC)和地址寄存器(AR)组成;这个实验是了解了一些指令::IN(输入)、ADD(二进制加法)、OUT(输出)、JMP (无条件转移),HLT(停机);再者,就是观察运行载入的指令文件的过程,通过数据通路图整个过程的变化即数据的流向及处理情况,尝试着去理解CPU在MC的控制下CPU的其他部件(ALU RO IR PC AR)的调用和处理的细节;通过这。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机科学与技术系
实验报告
专业名称计算机科学与技术
课程名称计算机组成与结构
项目名称 CPU与简单模型机设计实验
班级
学号
姓名
同组人员无
实验日期 2015-11-15
一、实验目的
1.掌握一个简单CPU的组成原理;
2.在掌握部件单元电路的基础上,进一步将其构造一台基本模型计算机;
3.为其定义五条机器指令,编写相应的微程序,并上机调试掌握整机概念。
二、实验逻辑原理图与分析
2.1 实验逻辑原理图及分析
本实验要实现一个简单的CPU,并且在此CPU的基础上,继续构建一个简单的模型计算机。
CPU由运算器(ALU)、微程序控制器(MC)、通用寄存器(RO)、指令寄存器(IR)、程序计数器(PC)和地址寄存器(AR)组成,如图下图所示。
这个CPU在写入相应的微指令后,就具备了执行机器指令的功能,但是机器指令一般存放在主存当中,CPU必须和贮存挂接后,才有实际的意义,所以还需要在该CPU的基础上增加一个主存和基本的输入输出部件,以构成一个简单的模型计算机。
基本CPU构成原理图
系统的程序计数器(PC)和地址寄存器(AR)集成在一片CPLD芯片中。
CLR连接至CON单元的纵情断CLR,按下CLR按钮,将是PC清零,LDPC和T3相与后作为计数器的计数时钟,当LOAD为低时,计数时钟到来后将CPU内总线的数据打入PC。
程序计数器(PC)原理图
2.2 逻辑原理图分析
本模型机;和前面微程序控制器实验相比,新增加一条跳转指令JMP,供有五条指令:IN(输入)、ADD(二进制加法)、OUT(输出)、JMP(无条件转移)、HLT(停机)、其指令格式瑞霞(高4为为操作码):
其中JMP为双字节指令,其余均为单字节指令,********为addr对应的二进制地址码。
微程序控制器实验的指令是通过手动给出的,现在要求CPU自动从存储器读取指令并执行。
系统涉及到的微程序流程如下图所示,当拟定“取指”微指令时,该微指令的判别测试字段为P<1>测试。
由于“取指”微指令是所有微程序都使用的公用微指令,因此P<1>的测试结果出现多分支。
本机用指令寄存器的高6位(IR7—IR2)作为测试条件,出现5路分支,占用5个固定为地址单元,剩下的其他地方就可以一条微指令占用控制一个微地址单元随意填写,微程序流程图上的但愿地址为16进制。
当全部为程序设计完毕后,应将每条微指令代码化,下表即为将下图的微程序流程图按微指令格式转化而成的“二进制微代码表”。
简单模型机微程序流程图
二进制微代码表
三、数据通路图及分析(画出数据通路图并作出分析)
数据通路图
四、实验数据和结果分析
4.1 实验结果数据和结果数据分析如图所示
联机写入的程序如下:
; //*************************************// ; // // ; // 微控器实验指令文件 // ; // // ; // By TangDu CO.,LTD //
; // // ; //*************************************//
; //** End Of Main Memory Data **//
$P 00 20 ;START:IN RO 从IN单元读入数据送RO $P 01 00 ;ADD RO,RO RO和自身相加,结果送RO $P 02 30 ;OUT RO RO的值送OUT单元显示
$P 03 E0 ;JMP START 跳转至00H地址
$P 04 00
$P 05 50 ;HLT 停机
; //***** End Of Main Memory Data *****//
; //***** Start Of MicroController Data *****//
$M 00 000001 ; NOP
$M 01 007070 ; CON(INS)->IR, P<1>
$M 04 002405 ; R0->B
$M 05 04B201 ; A加B->R0
$M 30 001404 ; R0->A
$M 32 183001 ; IN->R0
$M 33 280401 ; R0->OUT
$M 35 000035 ; NOP
; //** End Of MicroController Data **//
联机写入和校验后,得如下结果:
(1)从IN单元读入数据送至AR。
首先,AR地址为00,计数器PC加1,机器指令代码送至MEM单元,MEM=20。
(2)MEM中的机器指令代码送至IR单元,再到控制器,进行译码操作。
(3)RO寄存器读入IN单元输入的数据
(4)AR地址为01,计数器PC加1,机器指令代码送至MEM单元,MEM=00。
(5)MEM中的机器指令代码送至IR单元,再到控制器,进行译码操作。
(6)将读入的数据送到A暂存器,再送到B暂存器。
最后将RO和自身相加,结果送到RO。
(7)进行计数译码操作,将RO的值送至OUT单元,输出。
(8)再进行计数译码,跳转到00,返回第一条机器指令
4.2 结果数据分析
从IN单元输入的数据是02,最后输出的数据是04,结果是正确的。
五、实验问题分析、思考题与小结
5.1实验问题分析
实验要完整无错误的进行,首先要确保实验接线图连线的正确性才能确保在进行实验时数据通路流向以及数据的的正确性,这样才能到达实验的目的;在进行实验过程中需要理解每一步骤的原因,也加强自己的理解性和掌握程度;实验前要理解实验原理,以便于提高实验效果速率。
5.2 小结
本次实验是CPU与简单模型机设计实验,刚开始可能是真的不懂该实验要干什么,对一些知识点很陌生,完全不知道怎么下手,后来通过老师和同学的帮助,慢慢知道了实验的目的。
难怪别人都说计算机组成原理不懂的通过做实验也就明白了。
当然,在学习实验之前,预习是一定要的,这样更能掌握实验的主要部分,以及操作流程,也能让自己很快的上手,达到老师布置给我们的任务。
还有一次实验就要结束了,希望自己能够做到更好。
得分(百分制)
实验报告分析评价。