模型机实验报告
复杂模型机实验报告

一、实验目的1. 了解复杂模型机的组成原理和结构特点;2. 掌握复杂模型机的操作方法和指令系统;3. 学会使用复杂模型机进行基本程序设计;4. 提高计算机组成原理和汇编语言的实际应用能力。
二、实验内容1. 复杂模型机简介复杂模型机是一种用于教学和研究的虚拟计算机系统,具有与真实计算机相似的硬件结构和指令系统。
它通常由运算器、控制器、存储器、输入输出设备等部分组成。
2. 实验步骤(1)熟悉复杂模型机的硬件结构1)了解运算器的组成和功能;2)了解控制器的组成和功能;3)了解存储器的组成和功能;4)了解输入输出设备的组成和功能。
(2)掌握复杂模型机的操作方法和指令系统1)学习复杂模型机的指令格式和寻址方式;2)掌握基本指令的使用方法,如数据传送、算术运算、逻辑运算、控制转移等;3)了解中断和异常处理机制。
(3)使用复杂模型机进行基本程序设计1)编写一个简单的程序,实现数据输入、处理和输出;2)使用复杂模型机的指令系统进行程序调试和优化。
(4)分析实验结果1)分析程序执行过程中的数据变化;2)分析程序执行过程中可能出现的问题及解决方法。
三、实验结果与分析1. 熟悉了复杂模型机的硬件结构,了解了运算器、控制器、存储器、输入输出设备等部分的功能。
2. 掌握了复杂模型机的操作方法和指令系统,能够使用基本指令进行程序设计。
3. 编写了一个简单的程序,实现了数据输入、处理和输出功能。
4. 分析了程序执行过程中的数据变化,发现了程序执行过程中可能出现的问题及解决方法。
四、实验总结1. 通过本次实验,加深了对计算机组成原理和汇编语言的理解,提高了实际应用能力。
2. 学会了使用复杂模型机进行基本程序设计,为今后学习计算机组成原理和汇编语言打下了基础。
3. 在实验过程中,遇到了一些问题,通过查阅资料和与同学讨论,最终解决了问题,提高了自己的解决问题的能力。
4. 建议在今后的实验中,进一步学习复杂模型机的更多指令和功能,提高自己的编程水平。
简单模型机组成原理实验报告

简单模型机组成原理实验报告简单模型机是一种学习机械原理和电子技术的教学工具,它可以帮助学生理解机械结构和电路原理,提高学生的实验能力和创新能力。
本文将介绍简单模型机的组成原理和实验过程。
一、简单模型机的组成原理简单模型机由机械结构和电路控制两部分组成。
机械结构包括电机、齿轮、链条、轮子、滑轮等零部件,这些零部件组成了模型机的动力系统。
电路控制包括电源、电机控制器、传感器、LED灯等电子元件,这些元件组成了模型机的控制系统。
模型机的动力系统和控制系统通过电线连接在一起,实现了模型机的运动和控制。
二、简单模型机的实验过程1. 组装机械结构。
根据模型机的说明书,将各个零部件按照要求组装在一起,包括电机、齿轮、链条、轮子、滑轮等零部件。
组装的过程需要注意每个零部件的位置和连接方式。
2. 连接电路控制。
将电源、电机控制器、传感器、LED灯等元件按照要求连接在一起,形成一个控制电路。
电路的连接需要注意电线的颜色和连接方式,确保电路的正常工作。
3. 调试机械结构。
将电源接上,打开电机控制器,测试机械结构的运动情况,包括电机转动、齿轮传动、轮子转动等。
如果出现异常情况需要及时停机检查。
4. 调试电路控制。
将传感器连接到电路控制中,测试传感器的工作情况,包括检测光线、声音、温度等。
如果传感器检测到异常情况,控制器会发出警报信号或控制电机停止运动。
5. 进行实验。
根据实验要求,调整机械结构和电路控制,进行不同的实验,包括测量速度、转动角度、距离等。
实验过程需要记录数据和结果,进行分析和总结。
三、结论通过简单模型机的组装和实验,可以帮助学生深入理解机械原理和电路控制原理,提高学生的实验能力和创新能力。
同时,模型机的组装和实验也可以培养学生的动手能力和团队精神,促进学生的综合素质的提高。
基本模型机的设计与实现实验报告

基本模型机的设计与实现实验报告本文将围绕“基本模型机的设计与实现实验报告”进行分析和阐述。
基本模型机的设计与实现是计算机系统课程中的重点内容,是学生理解计算机系统的核心;设计和实现基本模型机需要学生掌握计算机组成原理的基本知识,能够编写汇编语言程序和理解存储器层次结构等相关概念。
一、实验目的本次计算机系统实验的目的是掌握CPU的设计与实现,以及理解汇编语言的底层执行过程。
通过本次实验,学生可以深入了解计算机系统的基本组成部分,从而提高对计算机实现原理的认识和理解。
二、实验中设计与实现模型机的步骤1、确定模型机性能要求根据实验要求,我们需要设计出一个能够运行汇编语言程序的模型机。
此时,我们需要确定模型机的性能需求,如运行速度、存储容量和输入输出设备等方面。
2、设计和实现CPU在模型机中,CPU是核心部件,所以首先需要设计和实现CPU。
CPU需要包括寄存器、算术逻辑单元、控制器和取指令等组成部分。
由于我们使用的是逻辑电路实现,所以需要进行逻辑门设计,采用Verilog语言来实现。
3、设计和实现存储器存储器是CPU所需的重要组成部分之一,我们需要为CPU设计实现一套存储器,包括RAM和ROM两部分,其中RAM用于存储数据,ROM用于存储指令。
4、设计和实现输入输出设备在模型机中,输入输出设备也是必不可少的部分。
我们需要设计并实现一套输入输出设备,用于用户输入指令和数据,以及模型机输出结果。
5、编写汇编程序在完成模型机的设计和实现后,我们需要编写汇编程序来测试模型机的功能是否正常。
我们可以编写一些简单的汇编程序来测试模型机的运行速度和结果准确性。
三、实验结果与分析经过实验,我们成功地设计并实现了一套基本模型机,并编写了一些简单的汇编程序进行测试。
模型机具有较高的运行速度和存储容量,并且可以实现输入输出设备的基本功能。
同时,我们也发现了一些问题,如指令与数据存储的冲突等,需要进一步改进。
在完成实验过程中,我们深刻理解了计算机系统的结构和运作原理,提高了对计算机系统的认识和理解能力。
实验四 模型机设计与实现——实验报告

专业级班学号姓名实验报告实验四模型机的设计与实现一、实验目的1、构造一台基本模型计算机。
2、掌握在模型计算机上进行微程序编制、指令输入、运行调试的方法。
二、实验设备DVCC-C5JH计算机组成原理教学实验系统一台,排线若干。
三、实验原理:部件试验过程中,各部件单元的控制信号是人为模拟产生的,而本次实验将能在微程序控制下自动产生各部件单元空间信号,实现特定指令的功能,这里,计算机数据通路的控制将由微程序控制器来完成,CPU从内存中取出一条机器指令到指令执行结束的一个指令周期全部由微指令组成的序列来完成,即一条机器指令对应一个微程序。
四、实验内容1、模型机指令设计:(这里填写各模型机指令的指令助记符、指令机器编码、指令说明)DEC R0 0101 0000 (R0)-1→R0AND addr,R0 0110 0000 (R0) 与[addr]→R02、实验过程:先详细了解实验的原理然后进行以下步骤:(以下步骤应根据自己实际情况补充完整)⑴设计模型机的数据通路图,根据实际机器指令要求,设计微程序流程图及确定微地址;(下面绘制:①数据通路图;②微程序流程图及相应的微指令地址。
)1、2、PC A RPC AR RAM B US RAM B US SW R PC A RRAM B USR0BUS BUS R01 1103 04 12 07 31 10RAM B US02 R0DR1 05 (DR1)+(D R2)R006 PC A RRAM B US RAM B US32 17 R0DR125 13 PC A RRAM B US 26 14 R0DR1 (DR1)-1R0 PC A R RAM B US RAM B USR0DR1 (DR1)+(D R2)R01516 33 34 3536 37微指令代码PC AR PC+1(SW)BUS BUS DR1DR1RAMPC AR PC+1RAM BUS BUS DR1DR1LED21243020 2227⑵根据⑴的设计,编制好微程序;(下面写设计的微程序,要标出各微指令在控存中的地址,可以用联机调试中的十六进制形式编写)$ M00108101$ M0182ED01$ M0248C000$ M0304E000$ M0405B000$ M0506A201$ M06019A95$ M0719E000$ M08011000$ M0983ED01$ M0A87ED01$ M0B9AED01$ M0C96ED01$ M0D1BA201$ M0E9CED01$ M0F15A000$ M1092ED01$ M1194ED01$ M1217A000$ M13018001$ M14182000$ M15010A07$ M1681D100$ M17100A07$ M18118A06$ M19018202$ M1A0FE000$ M1B018AF5$ M1C1DE000$ M1D1EA000$ M1E1FB201$ M1F018AB9⑶根据⑴中的数据通路,连接好实验线路,仔细检查无误后接通电源;⑷将编制好的微程序写入控存;⑸使用上面设计好的机器指令编写机器指令程序,存放在内存中;(下面列出编写的机器指令程序,可以用联机调试中的十六进制形式编写,要写明对应的内存地址和相应的内存内容,且要进行简要的指令说明)$ P0000 IN$ P0110 ADD[0CH] R0+[0CH] -> R0$ P020C 01$ P0320 STA[0BH] R0->[0BH]$ P040D$ P0530 OUT[0BH] [0BH]->BUS$ P060D$ P0740 JMP[00H] 00H->PC$ P0800$ P0950 DEC [R0]-1->R0$ P0A60 AND [R0][0DH]->R0$ P0B0D 05$ P0C01 内容为01$ P0D05 内容为05⑹执行⑸中的机器指令程序,并验证前面的设计是否正确,若不正确请修改前面的设计和微程序;四、实验结果机器指令执行的情况:①第一次执行情况(记录实验时发生的情况包括何处错误):②第二次执行情况:……(调试过程根据自己情况进行填写)五、实验总结。
复杂模型机实验实验报告(共9篇)

复杂模型机实验实验报告(共9篇)_复杂模型机实验报告计算机组成原理实验报告实验题目:一台模型计算机的总体设计之复杂模型机设计实验目的:(1)在掌握部件单元电路实验的基础上,进一步将其组成系统,构造一台复杂模型计算机,建立一台基本完整的整机。
(2)为其定义至少五条机器指令,并编写相应的微程序,通过联机调试,观察计算机执行指令:从取指令、指令译码、执行指令等过程中数据通路内数据的流动情况,进一步掌握整机概念。
实验设备TDN-CM+教学实验系统一套、微型计算机一台、排线若干。
实验原理:(1)数据格式及指令系统:①数据格式模型机规定数据采用定点整数补码表示,字长为8位,其格式如下:其中,第7位为符号位,数值表示范围是-27 ≤X≤27-1 ②指令格式模型机设计4大类指令共16条,其中包括算术逻辑指令、I/O 指令、访问及转移指令和停机指令。
A.算术逻辑指令设计九条算术逻辑指令并用单字节表示,寻址方式采用寄存器直接寻址,其格式如下:其中,OP-CODE为操作码,RS为源寄存器,RD为目标寄存器,并规定:九条算术逻辑指令的助记符、功能和具体格式见表5.2-1。
B.访问及转移指令:模型机设计两条访问指令,即存数(STA)、取数(LDA),两条转移指令,即无条件转移(JMP)、结果为零或有进位转移(BZC),指令格式如下:其中,OP-CODE为操作码,RD为目的寄存器地址(LDA、STA 指令使用)。
D为位移量(正负均可),M为寻址模式,其定义如下:本模型机规定变址寄存器RI指定为寄存器R2。
C.I/O指令:输入(IN)和输出(OUT)指令采用单字节指令,其格式如下:其中,addr=01时,选中“INPUT DEVICE”中的开关组作为输入设备,addr=10时,选中“OUTPUT DEVICE”中的数码块作为输出设备。
D.停机指令:停机指令格式如下:HALT指令,用于实现停机操作。
③指令系统:本模型机共有16条基本指令,其中算术逻辑指令七条,移位指令两条,访问内存指令和程序控制指令四条,输入/输出指令两条,其它指令一条。
简单模型机实验报告

简单模型机实验报告篇一:模型机实验报告HUNAN UNIVERSITY课程实习报告题目:模型机学生姓名学生学号 XX0801328专业班级计算机科学与技术(3)班指导老师方恺晴完成日期思考题:1. 给定一个复合运算式子以及指令码IR[7..5]与八位BUS总线对应情况。
要求写出七条指令新的指令码并写出复合运算执行mif文件。
修改模型机电路调试程序以实现复合运算。
例:已知A=55H,B=8AH,C=F0H;IR[7..5]对应BUS8,BUS1,BUS3;写出(Aplus/B)^(/(/CplusB))的mif文件,并在模拟机上实现。
答:模拟机电路修改如下:存储器预设指令重设:计算结果:(A+/B)^(/(/C+B))=42H2. Microcomputer.vhd代码中进程ct1,ct2,ct3,ct4功能划分依据是什么?ct1:微序列控制器下址跳转。
ct2:实现各种指令,主要集中在实现从存储器或者寄存器释放数据到总线上。
ct3:完成各种指令,从总线上装载数据到相应的存储器或者寄存器中。
ct4:生成下址,判断下址生成方式,根据不太那个的方式生成下址。
3. Microcomputer.vhd代码中如何定义并初始化RAM?type ram is array(0 to 37)of std_logic_vector(7 downto 0); --38*8ramsignal ram8:ram:=(x”20”, x”1e”, x”80”, x”40”, x”20”, x”20”, x”1d”, x”c0”, x”20”, x”40”, x”21”, x”20”, x”1f”, x”80”, x”40”, x”22”, x”20”, x”1e”, x”c0”, x”22”, x”80”, x”e0”, x”21”, x”40”, x”23”, x”60”, x”23”, x”a0”, x”00”, x”55”, x”8a”, x”f0”,others=>x”00”) –initialize ram44. Microcomputer.vhd代码中bus_reg_t2 将ram8存储器中对应于ar中地址单元的数据取出来放到bus_reg_t2寄存器中。
模型机实验报告范文

模型机实验报告范文实验报告:模型机引言模型机是一种能够模拟真实飞行原理的飞行模拟器设备。
它具有模拟真实飞行环境的能力,并用电子方式提供各种飞行动作的控制和监测。
本实验报告旨在介绍模型机的原理和应用,并通过实验来验证模型机的飞行能力和准确性。
一、模型机的原理1.动力系统:模型机的动力系统由电动机、电调器和螺旋桨组成。
电动机提供动力,电调器控制电机的转速,螺旋桨则产生推力。
通过调节电机的转速和螺旋桨的角度,可以控制模型机的飞行状态和动作。
2.飞行姿态控制系统:模型机的姿态控制系统由陀螺仪和加速度计组成。
陀螺仪可以感知模型机的倾斜和转动,加速度计可以感知模型机的加速度。
通过对陀螺仪和加速度计的信号进行处理,可以对飞行姿态进行控制。
3.遥控系统:模型机的遥控系统包括遥控器和接收机。
遥控器由飞行员通过手柄进行控制,接收机接收遥控信号并将其转化为模型机动作。
遥控器可以控制模型机的方向、高度和速度等参数。
二、实验方法本实验使用一架模型机进行飞行模拟实验。
实验过程包括以下步骤:1.检查模型机的动力系统,确保电动机和螺旋桨工作正常。
2.检查模型机的姿态控制系统,确保陀螺仪和加速度计的正常工作。
3.进行遥控系统的校准,确保遥控信号的准确传输。
4.在开阔的空地上进行飞行实验。
首先以低速起飞,然后在空中进行一系列动作,如直线飞行、转弯、盘旋等。
通过遥控器控制模型机的动作,并通过观察和记录模型机的运动轨迹来验证模型机的飞行能力和准确性。
三、实验结果通过实验观察和记录,我们发现模型机在飞行过程中表现出良好的飞行能力和准确性。
它能够根据遥控器的指令进行各种飞行动作,如上升、下降、前进、后退、左转、右转等。
模型机的姿态控制系统能够保持模型机的水平飞行,并根据遥控信号进行相应的调整。
同时,模型机的动力系统能够提供足够的动力,使模型机能够在空中稳定飞行。
四、实验讨论1.模型机的飞行性能受到多种因素的影响,如风速、湿度、温度等。
在实际飞行中,飞行员需要根据实际情况进行相应的调整和控制。
基本模型机系统实验报告

一、实验目的1. 了解计算机的基本组成和原理,熟悉计算机硬件和软件的关系。
2. 掌握基本模型机的搭建方法和调试技巧。
3. 通过实验加深对计算机指令系统、微程序控制器和存储器等概念的理解。
二、实验原理计算机是由硬件和软件两部分组成的,硬件主要包括中央处理器(CPU)、存储器、输入输出设备等,软件则是指挥计算机完成各种任务的程序。
本实验通过搭建一个基本模型机,模拟计算机的基本工作过程,让学生深入了解计算机的组成和原理。
三、实验环境1. 实验设备:基本模型机实验箱、连接线、电源、计算机等。
2. 实验软件:Dais-CMH/CMH计算器组成原理教学实验系统。
四、实验内容1. 搭建基本模型机(1)根据实验箱的说明,将CPU、存储器、输入输出设备等硬件连接好。
(2)连接好电源,确保各部分电路正常工作。
(3)使用Dais-CMH/CMH计算器组成原理教学实验系统,编写控制程序,实现基本模型机的运行。
2. 调试基本模型机(1)检查硬件连接是否正确,确保电路无短路、断路等问题。
(2)编写控制程序,实现基本模型机的指令系统。
(3)通过调试,使基本模型机能够按照预期的工作流程运行。
3. 实验步骤(1)搭建基本模型机1)将CPU、存储器、输入输出设备等硬件连接好。
2)连接好电源,确保各部分电路正常工作。
3)使用Dais-CMH/CMH计算器组成原理教学实验系统,编写控制程序,实现基本模型机的运行。
(2)调试基本模型机1)检查硬件连接是否正确,确保电路无短路、断路等问题。
2)编写控制程序,实现基本模型机的指令系统。
3)通过调试,使基本模型机能够按照预期的工作流程运行。
4. 实验结果与分析(1)实验结果通过搭建和调试基本模型机,成功实现了计算机的基本工作过程,包括取指、译码、执行、存储等步骤。
(2)实验分析1)通过实验,加深了对计算机基本组成和原理的理解,认识到硬件和软件的紧密关系。
2)掌握了基本模型机的搭建方法和调试技巧,为以后的学习奠定了基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈尔滨工程大学实验报告实验名称:复杂模型机设计与实现班级:学号:姓名:实验时间:成绩:指导教师:程旭辉附小晶实验室名称:计算机专业实验中心一、实验名称:复杂模型机的设计与实现二、实验目的:1.综合运用所学计算机原理知识,设计并实现较为完整的计算机。
2.设计指令系统。
3.编写简单程序,在所设计的复杂模型计算机上调试运行。
三、实验设备:GW-48CPP系列计算机组成原理实验系统。
四、实验原理:1.数据格式8位,其格式如下:其中第7位为符号位,数值表示范围是:-1≤1。
2.指令格式所设计的指令分为四大类共十六条,其中包括算术逻辑指令、I/O指令、访问、转移指令和停机指令。
(1)算术逻辑指令设计9条算术逻辑指令并用单字节表示,采用寄存器直接寻址方式,其格式如下:其中,(2)访问指令及转移指令访问指令有2条,即存数(STA)、取数(LDA);2条转移指令,即无条件转移(JMP)、结果为零或有进位转移指令(BZC)其中,OP-CODE指令)。
D为位移量(正负均可),M为寻址模式,其定义如下:在本模型机中规定变址寄存器RI为寄存器R2。
(3)I/O指令输入(IN)和输出(其中,addr=01时,选中“OUTPUT DEVICE”中的LCD点阵液晶屏作为输出设备。
(4)停机指令指令格式如下:3.指令系统共有16条基本指令,其中算术逻辑指令7条,访问内存指令和程序控制指令4条,输入/输出指令2条,其本模型机的数据通路框图如图7-1。
根据机器指令系统要求,设计微程序流程图及确定微地址,如图7-2。
图7-2 微程序流程图五、实验内容:按照系统建议的微指令格式,参照微指令流程图,将每条微指令代码化,译成二进制代码表,并将二进制代码表转换为联机操作时的十六进制格式文件。
微代码定义如表7-1所示。
六、实验框图设计:模型机设计主要是包括:控制器、存储器、运算器、输入、输出。
主要的设计是SE-5是根据FC,FZ,T4,P[4..1],SWA,SWB,I[7..2]来控制输出的SE[1..6],控制地址的跳转。
当SE 输出0时Q 输出1,当SE 输出1时,Q 输出D ;$M00 018108 $M01 01ed82 $M02 00c050 $M03 00a004 $M04 00e0a0 $M05 00e006 $M06 00a007 $M07 00e0a0 $M08 00ed8a $M09 00ed8c $M0A 00a030 $M0B 008001 $M0C 00202f $M0D 00a00e $M0E 01b60f $M0F 95ea25 $M10 00ed83 $M11 00ed85 $M12 00ed8d $M13 00eda6 $M14 001001 $M15 030401 $M16 018016 $M17 3d9a01 $M18 019201 $M19 01a22a $M1A 03b22c $M1B 01a432 $M1C 01a233 $M1D 01a426 $M1E 318237 $M1F 318239 $M20 009001 $M21 038401 $M22 05db81 $M23 0180e4 $M24 018001 $M25 95aaa0 $M26 00a027 $M27 01bc28 $M28 95ea29 $M29 95aaa0 $M2A 01b42b $M2B 959b41 $M2C 01a42d $M2D 65ab6e $M2E 059a01 $M2F 078a09 $M30 050a08 $M31 019801 $M32 059a01 $M33 01b435 $M34 05db81 $M35 b99a41 $M36 0d9a01 $M37 298978 $M38 019801 $M39 198979 $M3A 019801 $M3B 070a08 $M3C 062009 $M3D 000000 $M3E 000000 $M3F 000000SE-5:(SE 6-1):在波形图中实现跳转的时候,会出现如图:刚开始对此变化不理解,自习观察SE6-1时,SE[6..1]作为控制端,SE为1时Q输出D,SE为0时Q输出1,达到跳转的功能,但是还隐含一个细节是:在SE有0的时候,SE不用T2的时钟触发,地址会直接会发生跳转,所以会出现如图微地址由20直接跳到31。
1和3:移位寄存器:SHEFT 和控制移位器的进位:说明:移位寄存器的M位有M[20]来控制,S[1..0]由M[22..21]来控制,控制进位由SHE_C0来控制,假设上次的移位器有进位,那么上次的SHEFT_CN输出1,在控制移位器进位的器件上,当需要进位时,即:AR=1,(通过观察微指令开看AR进位时才选中)那么会有进位,此时在下一次带进位的移位时,SHE_C0=1;2.控制ALU进位的器件:说明:在此器件中,AR为控制端,上次的进位溢出位FC连到D0上M[19]与Q非的或,连接到ALU_CN,当M[19]=1时表示不带进位的运算,那么ALU_CN的结果肯定是1,在下次运算时肯定是不带进位的运算。
当M[19]=0,时,表示运算器运算是带进位的运算,若上次的运算FC=1,若选中AR则,表示本次的运算时带进位的运算,则在T2周期时,Q=1,那么ALU_CN的输出是0,将结果输入到ALU的进位控制端,控制本次的进位运算。
4.通过编程控制可编码寄存器的选择:.内部结构:说明:这是通过两个2-4译码器组合而成的选择器,根据decoder_b 产生的控制信号,并且在编程时编写的 I0——I3指令来控制,RS,RD,RI.寄存器的选择。
为了方便起见,在实验过程中用一一对应的实现:R0RS; R1RD;R2RI;七、程序表设计:实验程序如下:根据框图的设计以及书中的指令系统功能表,在编码的时候考虑到的情况主要是用指令指定哪个寄存器,以及在实现LDA ,STA ,JMP ,BZC ,是选用的哪种寻址方式,为了全面的测试框图实现功能的正确性,在设计程序流程的时候所有的功能,以及所有的寻址方式都用到了,下面就是我设计的实验程序:表7-2微指令格式12 11 10 选择 0 0 0 0 0 1 RS-B 0 1 0 RD-B 0 1 1 RI-B 1 0 0 299-B 1 0 1 ALU-B 11PC-B9 8 7 选择 0 0 0 0 0 1 P (1) 0 1 0 P (2) 0 1 1 P (3) 1 0 0 P (4) 1 0 1 AR 1 1 0 LDPC15 14 13 选择 0 0 0 0 0 1 LDRi 0 1 0 LDDR1 0 1 1 LDDR2 1 0 0 LDIR 1 0 1 LOAD 1 1LDARA 字段B 字段C 字段1E000011110F在执行LDA是会用到0F1F000011110F在执行STA时会存到此地址200000000000在执行LDA存到此位置2101011001OUT读出RD中的数22001010102A JMP:跳回到断点位置230000100109执行JMP时用到此数七、实验过程分析:模型机过程分析:1.首先在ROM中已经存入了微代码,这里,在实验中发现35是错误的,正确的应该是:01A426,这是通过实验验证的。
在SE-5的控制下,产生SE信号,控制微代码的后六位是否发生改变,从而判定是否发生跳转,产生的微地址送到uaddr中,指示到下一条的指令。
2.每一条微代码,通过decodera,decoderb,decoderc,decoder2-4产生相应的控制信号,在观察了四个器件的的内部结构后,得出decodera选中的信号是输出1,得出decoderb选中的信号是输出0,得出decoderc选中的信号是输出1,decoder2-4输出0,这样在结合74148优先权编码器后才能完整的控制总线以及相应的输出。
3.reg_3是可编程寄存器,利用指令可以选用不同的寄存器,在此模型机自己设计了一个DECODERREG部件通过,RD_B, RD_B, RD_B,以及I3-I0来控制选用相应的寄存器。
为了方便起见,在实验过程中用一一对应的实现:R0RS;R1RD;R2RI;4.在微程序流程图中在进行相对寻址时框图47是错误的应该是:PC BUS,BUS DR2;波形图分析:1.开始执行程序,执行指令是40,执行的是IN指令,将27存入了指定的寄存器RD。
说明:为编程方便用I0,I1,I2,I3,来控制选取:2. 此时指令是:40,将26存入RS:3.指令:A1:(RD-RS)=27-26=01,将结果存入RD中。
4.将RD中的结果输出到led中显示:此时的指令是(OUT:59)。
5.执行ADC(91)指令:(RS+RD)=(26+01)=27存入RD中:6.执行OUT指令,将RD中的结果输出:7.执行INC指令,并将加1的结果输出到led中:8.执行AND(C1)指令,(RD)AND(RS)=(28 AND26)=20,然后执行OUT(59)指令,并将结果输出到led中显示:9.执行COM取反指令,RD中的值是20取反后为DF,并执行OUT指令后在led中显示:10.执行RRC指令,RS中值是26循环右移后的结果是13,并执行OUT指令,在led中显示:11.执行RLC指令,将RS中的26循环左移后的结果是4C并将结果在led中显示:12.执行MOV指令(RS->RD)=26,并执行OUT指令,在led中显示:13.先执行IN指令(01000010),将10存入到指定的RI寄存器中,然后执行LDA指令,将指令中的0F存入到RD中。
14.通过间接寻址方式执行STA(15)存数指令,将RD中的0F存入到RAM中:15.通过变址寻址方式执行JMP指令,跳到21执行OUT指令,读出LDA中RD中的数:16.执行OUT指令,将RD中的数读出来,然后执行JMP指令跳回到断点地址继续执行。
17.通过相对寻址方式,执行BZC指令:在PC 值为1A时将PC送到AR,此时RAM里的值是03H,并送入DR1,在执行完微地址为23后,PC的值变为1B,将1BH送入DR2中,03H与1BH相加,相加后FC与FZ的值都不为1,所以在进行P(3)测试后跳到了44.八、实验结果中遇到的问题:实验结果中遇到的问题:在刚开始的时候,在看流程图时,在刚开始的时候,明白微地址的跳转是如何实现的,但是每个框图的具体实现却搞得不是很明白,在看明白了decodea, decodeb, decodec,和74148以及reg_3的内部结构,才明白了具体的电路,以及最终的信号输出的正负,如何控制总线的选择,在不同的时钟周期,实现不同的功能。