分式与分式方程应用PPT课件

合集下载

北师版八年级下册第五章分式和分式方程复习课件(28张PPT)

北师版八年级下册第五章分式和分式方程复习课件(28张PPT)
解分式方程一定要 验根 。
【 例5】2019年中国设计了第一条采用我国自主研发的 北斗卫星导航系统的智能化高速铁路﹣﹣京张高铁, 作为2022年北京冬奥会重要交通保障设施。已知北京 至张家口铁路全长约180千米.按照设计,京张高铁 列车的平均行驶速度是普通快车的1.5倍,用时比普通 快车用时少了20分钟,求高铁列车的平均行驶速度.
1
2 2x x 1
)
x2 x
x
1
x的值从﹣2<x<3的整数值中选取。
解:(x
1
2
x
2x
1
)
x2 x
x
1
(x 1)(x 1) 2 2x x 2 x
x 1
x 1 x 1
x2
1 2 2x x 1
x 1 x2 x
x 2 2x 1 x 1 x 1 x2 x
a b ab . cc c (2)异分母分式的加减法则:先通分,化为同分母的分 式,然后按照同分母分式的加减法法则进行计算。
a c ad bc ad bc . b d bd bd bd
3.分式的混合运算:
先算乘方,再算乘除,最后算加减,有括号 的先算括号里面的.
计算结果要化为最简分式或整式.
解:(x
1
2
x
2x
1
)
x2 x
x
1
(x
1)(x x 1
1)
2 2x
x
1
x2 x
x
1
x2
1 2 2x x 1
x x2
1
x
x 2 2x 1 x 1 x 1 x2 x
满足﹣2<x<3的整数有 ﹣1,0,1,2, ∵分母x≠0,x+1≠0,x﹣1≠0

《分式方程》分式PPT优秀课件

《分式方程》分式PPT优秀课件

90 60 30 v 30 v
v6
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
思考 某次列车平均提速v km/h.用相同的时间,列车提速前行驶 s km,提速后比提速前多行驶50 km,提速前列车的平均
速度为多少? 路程= 速度·时间
路程
提速前 s
提速后 s+50
表达问题时,用字 母不仅可以表示未 知数(量) ,也可以 表示已知数(量).
找相等关系.
1
1
3
6
甲队施工1个月的工程量+甲队施工半个月的工程量
+乙队施工半个月的工程量=总工程量(记为1).
1 2x
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
典型例题
两个工程队共同参与一项筑路工程,甲队单独施工1个月完成
总工程的 1 ,这时增加了乙队,两队又共同工作了半个月,总 3
15.3 分式方程
学习目标
1.会列分式方程解决实际问题;
分 式
2.能根据题意找出正确的等量关系,列出分式方程并求解,会根据实

际意义验证结果是否合理;
程 的
3.通过分式方程的应用学习,培养学生的数学应用意识,提高分析问

题解决问题的能力;

4.通过解决实际问题,使学生感受到数学知识能够解决生活中的问题,
提升学生对数学的热爱.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
回顾
一艘轮船在静水中的最大航速为30 km/h,它以最大航速 沿江顺流航行90 km所用的时间,与以最大航速逆流航行 60 km所用的时间相等,则江水的流速为多少?
V顺水= V船速+ V水速 V逆水= V船速 – V水速 路程= 速度·时间 S= v·t

分式和分式方程总结 ppt课件

分式和分式方程总结 ppt课件
(2)分母中含未知数. 分式方程与整式方程的根本区别是什么?
17
解分式方程的步骤
解分式方程与解一元一次方程类似, 化——包括去分母(在方程两边都乘最简公分母,化为整式方程); 解——这个整式方程,得出未知数的值; 检验——所得到的值是否是原分式方程的根;写出答案
18
例7:
19
分式方程的增根问题:
求 k 的值.
21
分式方程无解时,求参数的值: 1、分式方程除了增根,没有其它的解时,把增根代 入转化后的整式方程即可求出参数的值; 2、分式方程转化为整式方程,使整式方程无解的参 数的值也是
22
例9:
23
练习:
24
列分式方程解应用题的方法与步骤
1.审:审题,找出相等关系. 2.设:一般求什么设什么——这是直接设,也可间接设. 3.列:根据等量关系列出分式方程. 4.解:解这个分式方程. 5.验:既要检验是否为所列分式方程的根,又要检验是 否符合实际情况. 6.答:完整地写出答案,注意单位. 这六个步骤关键是“列”,难点是“审”.
2 ⑤x2+2x+1;
a2b+ab2 ⑥2;
⑦x
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
后的结果为最简分式
7
分式的乘(除)法法则
两个分式相乘,把分子相乘的积作为积的分子,把分母 相乘的积作为积的分母.
两个分式相除,把除式的分子和分母颠倒位置后再与被 除式相乘.

《分式》PPT教学课件(第1课时)

《分式》PPT教学课件(第1课时)

a b2 a b2
1
b a4 a b4 a b2 .
注意 判断一个分式是不是最简分式,要严格按照定义来 判断,就是看分子、分母有没有公因式.分子或分母 是多项式时,要先把分子、分母因式分解.
三 分式的求值
分式的求值 对一些较复杂的分式求值,应先约分化简,再代入具体数据 求值.常用方法有整体代入法,倒数法,换元法和配方法等.
课堂小结
❖分式的概念 ①分子分母都是整式; ②分母中必含有字母. ❖分母中字母的取值不能使分母值为零,否则分式无意义. ❖当分子为零且分母不为零时,分式值为零. ❖分式的基本性质
课后作业
见《学练优》本课时练习
第十二章 分式和分式方程
分式
第2课时
学习目标
1.理解约分和最简分式的意义.(难点) 2.根据定义找出分式中分子与分母的公因式,并会约分. 3.理解分式求值的意义,学会根据已知条件求分式值.(重点)
1
;
2
a b
b a
2 4
;
3
x2
y 8x 8
.
解析: 最简分式: x2 y2 ; x2 2x 1 .
y2 2x2 8x 8
不是最简分式:
m2 2m 1 m2
1
;
a b
b a
2 4
.
m2 2m 1 m 12 m 1;
1 m2
m 1m 1 m 1
分式的特点 分式的特征是: ①分子、分母 都是 整式 ;
②分母中含有 字母 .
二 分式有(无)意义及分式值为0
观察与思考
探究 求下列分式的值:
x … -2 -1
0
1
2…
x x-2 …
1 2
1 3

北师大版八年级下册数学《分式方程》分式与分式方程PPT(第3课时)

北师大版八年级下册数学《分式方程》分式与分式方程PPT(第3课时)
分析:此题的主要等量关系是:
小丽家今年7月的用水量-小丽家去年12月的用水量 =5m3.
解:设该市去年居民用水的价格为x元/m3,则
今年的水价为
1
1 3
x
元/m3,根据题意,得
30 15 5.
1
1 3
x
x
解得
x 3. 2
经检验, x 3 是原方程的根.
2
3 2
1
1 3
2(元/m3
).
答:该市今年居民用水的价格为2元/m3.
解得x=10. 经检验,x=10是原方程的解,
答:原计划平均每月的绿化面积为10 km2.
随堂练习
6.一轮船往返于A、B两地之间,顺水比逆水快1小时到达.已知 A、B两地相距80千米,水流速度是2千米/小时,求轮船在静水 中的速度. 解:设船在静水中的速度为x千米/小时,根据题意得
80 80 1. x2 x2
方程两边同乘(x-2)(x+2)得 80x+160 -80x+160=x2 -4. 解得 x=±18.
x=-18(不合题意,舍去),
经检验,x=18是原方程的根. 答:船在静水中的速度为18千米/小时.
课堂小结
分式方程的 应用
常见类型
行程问题、工程问题、数字问题、 顺逆问题、利润问题等
一般解题步骤
课程讲授
1 分式方程的应用
解:设该市去年居民用水的价格为x元/m3,则今年的
水价为
1
1 3
x元/m3,根据题意,得
30 15 5.
1
1 3
x
x
解得 x 3 .
2
经检验,x 3 是原方程的根.
2
3 2

12.4 分式方程课件(共19张PPT)

12.4 分式方程课件(共19张PPT)
12.4 分式方程
第十二章 分式和分式方程
学习目标
1.理解分式方程的意义.2.了解解分式方程的基本思路和解法.3.理解解分式方程时出现的无解情况及增根.
学习重难点
理解并掌握解分式方程的基本思路和解法.
难点
重点
理解解分式方程时出现的无解情况及增根.
复习回顾
方程含有未知数的等式叫做方程.
一元一次方程只含有一个未知数(也称元),并且未知数的次数是1.
整式方程分母不含有未知数的方程.
情景引入
小红家到学校的路程为38 km.小红从家去学校总是先乘公共汽车,下车后再步行2 km,才能到学校,路途所用时间是1 h.已知公共汽车的速度是小红步行速度的9倍,求小红步行的速度.
一起探究
知识点2 分式方程的增根
总结归纳
解分式方程的一般步骤:
分式方程
整式方程
检验
若最简公分母=0(分式方程无意义)
若最简公分母≠0(分式方程有意义)
经检验,是原分式方程的解(根)
经检验,原分式方程无解,这样的根叫做分式方程的增根
例2 解方程:
解分式方程一定要注意验根.
随堂练习
D
拓展提升
B
归纳小结
上面得到的方程与我们已学过的方程有什么不同?这两个方程有哪些共同特点?
谈一谈
像上面得到的方程那样,分母中含有未知数的方程叫做分式方程.使得分式方程等号两端相等的未知数的值叫做分式方程的解(也叫做分式方程的根).
例题解析
例1 解方程:
思考
不是.因为当x=1时,x-1=0,即这个分式方程的分母为0,方程中的分式无意义,所以x=1不是这个分式方程的解(根).
探究新知
知识点1 分式方程及其解的概念

《分式方程》分式与分式方程PPT(第1课时)

《分式方程》分式与分式方程PPT(第1课时)
多读5页,结果提前一天读完,求他原计划平均每天读几页书.
解答方案:设李明原计划平均每天读书x页,用含x的代数式表示:
200
(1)李明原计划读完这本书需用 x 天;
(2)改变计划时,已读了 5x 页,还剩 200-x 页; 200 5x (3)读了5天后,每天多读5页,读完剩余部分还需 x+5 天;
B. 80 70 x x5
C. 80 70 D. 80 70
x5 x
x x5
个性化作业
3.甲做90个机器零件所用的时间与乙做120个机器零件所用的时间相等,又已知 平均每小时甲、乙两人一共做了35个零件.
90 = 120
设甲每小时做x个,则乙每小时做(35-x)个,由题意可列方程为 x 35 x .
(4)根据问题中的相等关系,列出相应方程
200 -1= 200 5x
x
x+5
5
.
随堂检测
4.某工地调来 72 人参加挖土和运土,已知 3 人挖出的土 1 人恰好能全部运走.怎样调配
劳动力才能使挖出的土能及时运走且不窝工。解决此问题,可设派 x 人挖土,其他人运土,
列方程为① 72 x 1 ②72- x = x ③ x +3 x =72 ④ x 3 上述所列方程正
如果设客车由高速公路从甲地到乙地所需的时间为xh,那么它由普通公路从甲地
到乙地所需的时间为 2x h. 根据题意,可列方程:
480 x
=
600 2x
45
.
随堂检测
1.甲、乙两地相距5千米,汽车从甲地到乙地,速度为v千米/时,可按时到
5 5
达.若每小时多行驶 千米,则汽车提前 v v+a 小时到达.
(4) 1 = 1 是分式方程. x 1 y -1

《分式方程》分式PPT课件 (共18张PPT)

《分式方程》分式PPT课件 (共18张PPT)
X(x―3)
X2-1=0
时,
3 x2 3、分式 2( x 3)与 x 2 3x 的最简公分母 是 2X(x―3) .
解分式方程
例1 解分式方程
x11 x1 2
分式方程
解: 方程的两边同乘以最简公分母2(x+1), 转 ● ● ● ● ● 化 x 1 1 得 2(x+1) · x1 2 · 2(x+1) 整式方程 ① 化简,得整式方程 2(x-1)=x+1
增根的定义
增根:在去分母,将分式方程转化为整 式方程的过程中出现的不适合于原方 · · · · · · 程的根. · · · 使分母值为零的根 产生的原因:分式方程两边同乘以一个 零因式后,所得的根是整式方程的根, · · · · 而不是分式方程的根. · · · ·
练 x(x 2) 解 : 方程两边同乘以最简公分母 , 一 2+ x -6=0 或x(x+1)-6=0 x 化简 , 得 . 练① ② 解得 x1= -3 , x2= 2 . ③ 检验:把x1= -3,代入最简公分母,
概 念 观察下列方程: 一元一次方程
1、2(x-1)=x+1;
一元二次方程
x2+x-20=0;
x+2y=1…
整式方程: 方程两边都是整式的方程.
1 x 1 1 1 1 x 1 5 x 9 x 0 ; ; 1 ; 2、 y 2 x 1 x 1 2 x 1 x 1 x 1
· · · · · · · · · x(x-2)=-3(-3-2)= 15 ≠0; 把x2= 2 ,代入最简公分母,
x 1 6 0 (填空)1、解方程: x 2 2 x 2 x
7
x(x-2)= 2(2-2) =0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求值.
解:原式=
2(x 3) (x 2)2

x2 x(x 3)

x
1
2
2 1 x(x 2) x 2
2x 1
x(x 2)
x
解方程:(注意与分式运算的区别)
(1) 7 4 6

x2 x x2 x x2 1
解:方程两边都乘以x(x+1)(x-1),去分母得:
解:设水流每小时流动x千米。 72 48
20 x 20 x
三.应用题.4.某学校要做一批校服,已 知甲做5件与乙做6件所用的时间相同, 且两人每天共做55件,求甲、乙两人 每天各做多少件?
7(x 1) 4(x 1) 6x,
7x 7 4x 4 6x
x 3 5
经检验 : x 3 是原方程的解 5
(2) 1 2 4 x1 x1 x2 1
解• :方程两边乘以(x+1)(x-1)得: (x 1) 2(x 1) 4 x 1 2x 2 4 x 1
二、解答题
1. 计算
m m
3

6 m2
9

2 m
3
解:原式 m
6
m3
m 3 (m 3)(m 3) 2
m 3 m3 m3
m3 m3
2. 先化简,再选择一个你喜欢的数代

2x 6 x 2 1 x2 4x 4 x2 3x x 2
x2 4 1. 若分式 x2 x 2 有意义,
则x应ቤተ መጻሕፍቲ ባይዱ足( B )
A、x≠-1 B、x ≠-1且x ≠2 C、x≠2 D、x ≠-1或x ≠2
2. 若将分式 4x2 y2 中的x、 2x 3y
y的值都扩大2倍,则分式的值
( A)
A、扩大2倍 B、不变 C、扩大3倍 D、扩大4倍
经检验 : x 1是原方程的解
三.应用题
• 1.农机厂职工到距工厂15千米的某 地去检修农机,一部分人骑自车走, 过了40分钟,其余的人乘汽车出发, 他们同时到达,已知汽车的速度是 自行车速度的3倍,求两种车的速 度。
分析:设自行车的速度为x千米/小
时,汽车的速度为3x千米/小时,
路程
速度
时间
v st
8x 28
28 8x
28 28 1 7x 8x 4
乙 7x 28 28
7x
(3)一船在静水中每小时航行20千米,顺水航行 72千米的时间恰好等于逆水航行48千米的时间, 求每小时的水流速度。
顺水航行 逆水航行
v
s
20 x 72
20 x 48
t
72 20 x
48 20 x
A、2a 1 a 1
B、 1 a 1
C、 1
D、 2
a 1
5. 若 1 1 1 ,则 y x x y xy x y
等于( A )
A、-1 C、-2
B、1 D、 3
6. 下列算式中正确的是( D )
A、 3.14 0
B、 (0.1)-2=0.001 C、 (10-2 ×5)°=1 D、10-4=0.0001
3.将 , (1)1 (-2)0,(-3)2这三个数按
6
从小到大的顺序排列正确的是(
)

A.(2)
0
(
1
)
1
(3)
0
C.(3)
2
6
(2)
0
(
1
)
1
6
B.(1)1 (2)0 (3)2 6
D.(2)0 (3)2 (1 )1 6
4. 化简 a2 a 1 得(C ) a 1
7.已知:x 1,m x 1,n x
x
x 1
则m、n的大小关系为( C )
A、m>n B、m=n C、 m<n D、无法确定
8. 解分式方程 x x 1 a x 1 x 2 x2 x 2
时产生增根,则a的值为( D )
A、2 C、 0或-3
B、-3 D、- 3或3
(千米) (千米/小时) (小时)
自行车 15
x
汽 车 15
3x
等量关系:
汽车所用时间=自行车所用时间- 小时
先填表,后列方程。(只列方程,不用解方程)
(2)甲、乙两人骑自行车各行28公里,甲比乙快
1 小时,已知甲与乙速度比为8:7,求两人速度。 4
解:设甲的速度8x千米/时, 乙的速度是7x千米/时。 甲
• 分式 • 分式有意义 • 分式的值为零 • 分式约分 • 分式通分 • 分式方程 • 增根
概念
计算应用
• 分式的加、减、乘、除、乘方 • 解分式方程
• —————————————— • 在分式有关的运算中,一般总是先把
分子、分母分解因式;
• 注意:过程中,分子、分母一般保持 分解因式的形式。
相关文档
最新文档