小学奥数教案——容斥问题

合集下载

容斥原理教案

容斥原理教案

容斥原理教案教案标题:容斥原理教案教学目标:1. 了解容斥原理的概念和基本原理;2. 能够应用容斥原理解决实际问题;3. 培养学生的逻辑思维和问题解决能力。

教学重点:1. 容斥原理的概念和基本原理;2. 容斥原理的应用。

教学难点:1. 运用容斥原理解决实际问题;2. 培养学生的逻辑思维和问题解决能力。

教学准备:1. 教师准备:教案、教学课件、习题、实例;2. 学生准备:课本、笔记本、笔。

教学过程:一、导入(5分钟)1. 引入容斥原理的概念,通过提问激发学生的思考,例如:“你们是否遇到过需要计算多个集合交集或并集的问题?如何解决这样的问题?”2. 引导学生思考容斥原理的应用场景和意义。

二、概念讲解(15分钟)1. 通过教学课件或板书,简明扼要地介绍容斥原理的概念和基本原理,包括容斥原理的公式表达和推导过程。

2. 通过实例演示容斥原理的应用,引导学生理解容斥原理的具体运用方法。

三、练习与巩固(20分钟)1. 分发习题,让学生个别或小组进行解答,帮助学生熟悉容斥原理的应用步骤。

2. 针对学生解答中出现的错误或困惑,进行及时的指导和解答,并帮助学生理解和纠正错误。

四、拓展与应用(15分钟)1. 给予学生一些拓展题目,让他们运用容斥原理解决更复杂的问题,培养学生的问题解决能力。

2. 鼓励学生尝试不同的解题方法,提高他们的创新思维和灵活运用能力。

五、总结与反思(5分钟)1. 总结容斥原理的基本概念和应用方法;2. 让学生对本节课的学习进行反思,提出问题和困惑。

教学延伸:1. 布置相关作业,巩固学生对容斥原理的理解和应用;2. 鼓励学生自主学习和探索更多容斥原理的应用领域。

教学资源:1. 教学课件:包括容斥原理的概念、公式和实例;2. 习题:涵盖容斥原理的基本应用题目。

评估与反馈:1. 教师通过课堂练习、问题解答和学生的表现来评估学生的掌握程度;2. 针对学生的错误和困惑,及时进行指导和解答,以及个别辅导。

小学奥数容斥原理教案

小学奥数容斥原理教案

小学奥数容斥原理教案【篇一:四年级奥数讲义:容斥原理(1)】四年级数学讲义奥数:容斥原理(1)教学目标:1、理解容斥原理,会画图分析其中关系,正确的找出答案。

2、培养学生的逻辑思维和数学思考能力。

3、培养学生良好的书写习惯。

一、教学衔接二、教学内容(一)知识介绍容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。

即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b的事物的个数=na+nb-nab。

(二)例题精讲 nanb例1、一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。

又问:“谁做完数学作业?请举手!”有42人举手。

最后问:“谁语文、数学作业都没有做完?”没有人举手。

求这个班语文、数学作业都完成的人数。

【思路导航】完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。

这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。

所以,这个班语文、数作业都完成的有:79-48=31人。

例2、某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。

问多少个同学两题都答得不对?【分析与解答】已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。

又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。

所以,两题都答得不对的有36-33=3人。

例3、某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?【分析与解答】要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人。

(完整版)小学四年级奥数容斥问题

(完整版)小学四年级奥数容斥问题

容斥问题(一)容斥问题涉及到一个重要的原理——包含与排除原理,也称为容斥原理,即当两个计数部分有重复包含时,为了不重复地计数,应从它们的和中排除重复部分。

这一讲我们先介绍容斥原理1对n个事物,如果采用两种不同的分类标准:按性质a分类与性质b分类(如图1),那么,具有性质a或性质b的事物的个数=Na+Nb-Nab。

例1.一个班有55名学生,订阅《小学生数学报》的有12人,订阅《今日少年报》的有9人,两种报纸都订阅的有5人。

(1)订阅报纸的总人数有多少?(2)两种报纸都没订阅的有多少人?例2.一个旅行社有36人,其中会英语的有24人,会俄语的有18人,两样都不会的有4人,两样都会的有多少人?例3.在1到100的全部自然数中,既不是6的倍数也不是5的倍数的数有多少个?例4.艺术节那天,学校的画廊里展了了每个年级学生的图画作品,其中有23幅画不是五年级的,有21幅画不是六年级的,五、六年级参展的画共有8幅。

其他年级参展的画共有多少幅?练习与思考1.将边长分别为4厘米和5厘米的正方形纸片部分重叠,盖在桌面上(如图6),已知重叠的部分为9平方厘米,两块正方形纸片盖住桌面的总面积是多少平方厘米?2.二(2)班有50名学生,下课后每人都至少做完了一门作业,其中做完语文作业的有35人,做完数学作业的有40人,两种作业都做完的有多少人?3.有62名学生,其中会弹钢琴的有11名,会吹竖笛的有56名,两样都不会的有4名,两样都会的有多少名?4.某校选出50名学生参加区作文比赛和数学比赛,作文比赛获奖的有14人,数学比赛获奖的有12人,有3人两项比赛都获奖的,两项比赛都没获奖的有多少人?5.四(1)班有40个学生,其中有25人参加数学小组,23人参加航模水组,有19人两个小组都参加了,那么,有多少人两个小组都没有参加?6.在一次数学测验中,所有同学都答了第1、2两题,其中答对第1题的有35人,答对第2题的有28人,这两题都答对的有20人,没有人两题都答错。

小学奥数教程:容斥原理之数论问题_全国通用(含答案)

小学奥数教程:容斥原理之数论问题_全国通用(含答案)

1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数). 二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:教学目标知识要点1.先包含——A B + 重叠部分A B 计算了2次,多加了1次; 2.再排除——A B A B +- 把多加了1次的重叠部分A B 减去.图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.7-7-4 容斥原理之数论问题在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.【例 1】 在1~100的全部自然数中,不是3的倍数也不是5的倍数的数有多少个? A B【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 如图,用长方形表示1~100的全部自然数,A 圆表示1~100中3的倍数,B 圆表示1~100中5的倍数,长方形内两圆外的部分表示既不是3的倍数也不是5的倍数的数.由1003331÷=可知,1~100中3的倍数有33个;由100520÷=可知,1~100中5的倍数有20个;由10035610÷⨯=()可知,1~100既是3的倍数又是5的倍数的数有6个.由包含排除法,3或5的倍数有:3320647+-=(个).从而不是3的倍数也不是5的倍数的数有1004753-=(个).【答案】53【巩固】 在自然数1100~中,能被3或5中任一个整除的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 1003331÷=,100520÷=,10035610÷⨯=().根据包含排除法,能被3或5中任一个整除的数有3320647+-=(个).【答案】47【巩固】 在前100个自然数中,能被2或3整除的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 如图所示,A 圆内是前100个自然数中所有能被2整除的数,B 圆内是前100个自然数中所有能被3整除的数,C 为前100个自然数中既能被2整除也能被3整除的数.前100个自然数中能被2整除的数有:100250÷=(个).由1003331÷=知,前100个自然数中能被3整除的数有:33个.由10023164÷⨯=()知,前100个自然数中既能被2整除也能被3整除的数有16个.所以A 中有50个数,B 中有33个数,C 中有16个数.因为A ,B 都包含C ,根据包含排除法得到,能被2或3整除的数有:50331667+-=(个).【答案】67【例 2】 在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 1~1000之间,5的倍数有10005⎡⎤⎢⎥⎣⎦=200个,7的倍数有10007⎡⎤⎢⎥⎣⎦=142个,因为既是5的倍数,又是7的倍数的数一定是35的倍数,所以这样的数有100035⎡⎤⎢⎥⎣⎦=28个. 所以既不能被5除尽,又不能被7除尽的数有1000-200-142+-28=686个.【答案】686【巩固】 求在1至100的自然数中能被3或7整除的数的个数.【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 记 A :1~100中3的倍数,1003331÷=,有33个;B :1~100中7的倍数,1007142÷=,有14个;A B :1~100中3和7的公倍数,即21的倍数,10021416÷=,有4个.依据公式,1~100中3的倍数或7的倍数共有3314443+-=个,则能被3或7整除的数的个数为43个.【答案】43例题精讲【例 3】 以105为分母的最简真分数共有多少个?它们的和为多少?【考点】容斥原理之数论问题 【难度】4星 【题型】解答【解析】 以105为分母的最简真分数的分子与105互质,105=3×5×7,所以也是求1到105不是3、5、7倍数的数有多少个,3的倍数有35个,5的倍数有21个,7的倍数有15个,15的倍数有7个,21的倍数有5个,35的倍数有3个,105的倍数有1个,所以105以内与105互质的数有105-35-21-15+7+5+3-1=48个,显然如果n 与105互质,那么(105-n )与n 互质,所以以105为分母的48个最简真分数可两个两个凑成1,所以它们的和为24.【答案】48个,和24【巩固】 分母是385的最简真分数有多少个?并求这些真分数的和.【考点】容斥原理之数论问题 【难度】4星 【题型】解答【解析】 385=5×7×11,不超过385的正整数中被5整除的数有77个;被7整除的数有55个;被11整除的数有35个;被77整除的数有5个;被35整除的数有11个;被55整除的数有7个;被385整除的数有1个;最简真分数的分子可以有385-77-55-35+5+11+7-1=240.对于某个分数a/385如果是最简真分数的话,那么(385-a )/385也是最简真分数,所以最简真分数可以每两个凑成整数1,所以这些真分数的和为120.【答案】240个,120个【例 4】 在1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有 个.【考点】容斥原理之数论问题 【难度】3星 【题型】填空【关键词】西城实验【解析】 1到2008这2008个自然数中,3和5的倍数有200813315⎡⎤=⎢⎥⎣⎦个,3和7的倍数有20089521⎡⎤=⎢⎥⎣⎦个,5和7的倍数有20085735⎡⎤=⎢⎥⎣⎦个,3、5和7的倍数有200819105⎡⎤=⎢⎥⎣⎦个.所以,恰好是3、5、7中两个数的倍数的共有1331995195719228-+-+-=个.【答案】228个【例 5】 求1到100内有____个数不能被2、3、7中的任何一个整除。

小学奥数容斥原理教案

小学奥数容斥原理教案

小学奥数容斥原理教课设计【篇一:四年级奥数讲义:容斥原理 (1)】四年级数学讲义奥数:容斥原理 (1)教课目的: 1、理解容斥原理,会绘图剖析此中关系,正确的找出答案。

2、培育学生的逻辑思想和数学思虑能力。

3、培育学生优异的书写习惯。

一、教课连接二、教课内容〔一〕知识介绍容斥问题波及到一个重要原理——包括与清除原理,也叫容斥原理。

即当两个计数局部有重复包括时,为了不重复计数,应从它们的和中清除重复局部。

容斥原理:对 n 个事物,假如采纳不一样的分类标准,按性质 a 分类与性质 b 分类〔如图〕,那么拥有性质 a 或性质 b 的事物的个数=na +nb -nab 。

〔二〕例题精讲 nanb例 1、一个班有 48 人,班主任在班会上问:“谁做完语文作业?请举手!〞有 37 人举手。

又问:“谁做完数学作业?请举手!〞有 42 人举手。

最后问:“谁语文、数学作业都没有做完?〞没有人举手。

求这个班语文、数学作业都达成的人数。

【思路导航】达成语文作业的有 37 人,达成数学作业的有 42 人,一共有 37+42=79 人,多于全班人数。

这是由于语文、数学作业都达成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。

所以,这个班语文、数作业都达成的有: 79-48=31 人。

例 2、某班有 36 个同学在一项测试中,答对第一题的有 25 人,答对第二题的有 23 人,两题都答对的有 15 人。

问多少个同学两题都答得不对?【剖析与解答】答对第一题的有 25 人,两题都答对的有 15 人,能够求出只答对第一题的有 25-15=10 人。

又答对第二题的有23 人,用只答对第一题的人数,加上答对第二题的人数就获得起码有一题答对的人数: 10+23=33 人。

所以,两题都答得不对的有 36-33=3 人。

例 3、某班有 56 人,参加语文比赛的有 28 人,参加数学比赛的有27 人,假如两科都没有参加的有 25 人,那么同时参加语文、数学两科比赛的有多少人?【剖析与解答】要求两科比赛同时参加的人数,应先求出起码参加一科比赛的人数: 56-25=31 人,再求两科比赛同时参加的人数:28+27-31=24 人。

小学奥数教案——容斥问题

小学奥数教案——容斥问题

教案容斥问题一本讲学习目标理解并掌握容斥问题。

二重点难点考点分析容斥问题涉及到一个重要原理——包含和排除原理。

也叫容斥原理。

即当两个计数部分有重复包含时,为了不重复的计数,应从它们的和中排除重复部分。

三概念解析容斥原理:对几个事物,如果采用两种不同的分类标准,按性质1和性质2分类,那么具有性质1或性质2的事物个数等于性质1加上性质2减去它们的共同性质。

四例题讲解一班有48人,班主任在班会上问:“谁做完了语文作业?请举手”有37人举手,又问:“谁做完了数学作业?请举手”有42人举手,最后问:“谁语文、数学作业都没做完?请举手”结果没有人举手.求这个班语文、数学作业都做完的人数是多少个?四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订阅《小学生优秀作文》的有45人,每人至少订阅一种读物,订阅《数学大世界》的有多少人?某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的人有23人,两题都答对的有15人。

问多少个同学两题都答的不对?某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么参加语文、数学两科竞赛的有多少人?在1到100的全部自然数中,既不是5的倍数,也不是6的倍数的数有多少个?光明小学举办学生书法展览。

学校的橱窗里展出了每个年级学生的书法作品,其中有24幅不是五年级的,有22幅不是六年级的,五、六年级参展的书法作品一共有10幅,其他年级参展的书法作品共有多少幅?学校文艺组每人至少会演奏一种乐器,已知会拉手提琴的有24人,会弹电子琴的有17人,其中两样都会的有8人。

这个文艺组一共有多少人?一个班有55名学生,订阅《小学生数学报》的有32人,订阅《中国少年报》的有29人,两种都订阅的有25人.两种报纸都没有订阅的有多少人?一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人。

奥数四年级--容斥问题(一)

奥数四年级--容斥问题(一)
一种都没订的55-7-5-4=39人。
经 例2、有62名学生,其中会弹钢琴的有11人,会吹竖笛的有56人,
典 两样都不会的有4人,两样都会的有多少人?
题 依题意,画圈框图。
总人数62人
型 依图可知,会弹钢琴+会竖笛
=11+56=67人, 67 > 总人数62人
会弹钢琴的 会两样 会吹竖笛
有11人
?人
既不是5的倍数,也不是7的倍数??。
(3)求既是5的倍数又是7的倍数的数量: 1000÷35 = 28...20
总1--1000的自然数
(4)根据容斥原理: 是5或7的倍数的数有: 200+142-28=314
(5)既不是5,也不是7的倍数的: 1000-314=686
5的倍数 有200
5和7的 公倍数
容斥问题(一)
容斥问题就是包含与排除原理。当两个计数 部分有重复包含时,为了不重复计数,应从他们 的和中排除重复部分。
这一讲我们先介绍容斥原理1: 对n个事物,如果采用两种不同的分类标准:按性 质a分类与性质b分类,那么具有性质a或性质b的 事物的总数= Na+Nb-Nab
Na Nab Nb
画圈圈图: 分析包含和排除关系,是解决这类问题的捷径 !
48名
练 9、有一根36cm长的绳子,从一端开始每隔3 习 厘米做一个记号,每隔4厘米也做一个记号,
然后把标有记号的地方剪断。绳子共被剪成 了多少段?
18段
练 10、科技节那天,学校的科技室里展出了每 习 个年级学生的科技作品,其中有114件不是
一年级的,有96件不是二年级的,一、二年 级参展的作品共32件。其他年级参展的作品 共有多少件?
分析搞清数量关系,是解决数学问题的不二法门。

四年级下册奥数第35讲 容斥问题

四年级下册奥数第35讲   容斥问题

第35周容斥问题专题简析:容斥问题涉及一个重要原理一一包含与排除原理,也叫容斥原理。

当两个计数部分有重复包含时,为了不重复地计数,应从它们的和中排除重复部分。

容斥原理:对n个事物,如果采用两种不同的分类标准,按性质a分类与性质b分类(如右图所示),那么具有性质a或性质b的事物的个数是N a 十Nb- Nab。

例1:一个班有48人,班主任在班会上问“谁做完语文作业了?请举手!”有37人举手。

又问:“谁做完数学作业了?请举手!”有42人举手。

最后问“谁语文、数学作业都没有做完?“没有人举手。

求这个班语文、数学作业都完成的人数。

练习一:1、五年级有122 名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。

其中语文成绩优秀的有65 人,数学成绩优秀的有87 人。

语文、数学成绩都优秀的有多少人?2、四(1)班有54 人,订阅<小学生优秀作文》和(数学大世界)两种读物的有13 人,订《小学生优秀作文》的有45 人,每人至少订种读物。

订《数学大世界》》的有多少人?3、学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人。

这个文艺组一共有多少人?例2:城中小学选出10名学生参加区作文和数学比赛,结果每人都获奖。

其中有3人两项比赛都获奖,作文比赛获奖的有5 人,求数学比赛获奖的有多少人?练习:1、一个班有55 名学生,他们分别订阅了《小学生数学报》和《中国少年报》。

其中订阅《小学生数学报》的有32 人,两种报纸都订阅的有15 人,求订阅《中国少年报》的有多少人?2、四(1)班有40 个学生,有19 人参加了数学和科技两个兴趣小组。

其中有11人两个小组都没参加,有25人参加数学小组,求有多少人参加了科技小组?3、在四年级96 个学生中调查会下中国象棋和围棋的人数。

调查结果显示:有78人会下中国象棋,有24 人两样都会,还有12人两样都不会。

求会下围棋的有多少人?例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?练习:1、一个旅行社有36 人,其中会英语的有24 人,会法语的有18 人,两样都不会的有4 人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教案
容斥问题
一本讲学习目标
理解并掌握容斥问题。

二重点难点考点分析
容斥问题涉及到一个重要原理——包含和排除原理。

也叫容斥原理。

即当两个计数部分有重复包含时,为了不重复的计数,应从它们的和中排除重复部分。

三概念解析
容斥原理:对几个事物,如果采用两种不同的分类标准,按性质1和性质2分类,那么具有性质1或性质2的事物个数等于性质1加上性质2减去它们的共同性质。


四例题讲解
一班有48人,班主任在班会上问:“谁做完了语文作业请举手”有37人举手,又问:“谁做完了数学作业请举手”有42人举手,最后问:“谁语文、数学作业都没做完请举手”结果没有人举手。

求这个班语文、数学作业都做完的人数是多少个
四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订阅《小学生优秀作文》的有45人,每人至少订阅一种读物,订阅《数学大世界》的有多少人

某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的人有23人,两题都答对的有15人。

问多少个同学两题都答的不对
某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么参加语文、数学两科竞赛的有多少人
`
在1到100的全部自然数中,既不是5的倍数,也不是6的倍数的数有多少个
光明小学举办学生书法展览。

学校的橱窗里展出了每个年级学生的书法作品,其中有24幅不是五年级的,有22幅不是六年级的,五、六年级参展的书法作品一共有10幅,其他年级参展的书法作品共有多少幅
'
学校文艺组每人至少会演奏一种乐器,已知会拉手提琴的有24人,会弹电子琴的有17人,其中两样都会的有8人。

这个文艺组一共有多少人
一个班有55名学生,订阅《小学生数学报》的有32人,订阅《中国少年报》的有29人,两种都订阅的有25人。

两种报纸都没有订阅的有多少人

一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人。

问这个俱乐部里两种棋都会下的有多少人
100个人参加测试,要求回答五道试题,并且规定凡答对3题或3题以上的为测试合格。

测试结果是:答对第一题的有81人,答对第二题的有91人,答对第三题的有85人,答对第四题的79人,答对第五题的有74人,那么至少有多少人合格。

#
五课堂练习
在1到130的全部自然数中,既不是6的倍数,也不是5的倍数的数有多少个
"
实验小学举办学生书法展,学校的橱窗里展出了每个年级学生的书法作品,其中有28幅不是五年级的,有24幅不是六年级的,五、六年级参展的书法作品共有20幅。

一、二年级参展的作品总数比三、四年级参展的作品总数少4幅。

一、二年级参展的书法作品共有多少幅

六课后作业
六(一)儿童节那天,学校的画廊里展出了每个年级学生的图画作品,其中有25幅不是三年级的,有19幅不是四年级的,三、四年级参展的图画共有8幅,其他年级参展的画共有多少幅
五年级有22名学生参加语文、数学考试,每个至少有一门功课取得优秀成绩,其中语文成绩优秀的有65人,数学成绩优秀的有87人。

语文、数学都优秀的有多少人
七励志或学科小故事——阿契塔
阿契塔(Archytas)希腊数学家。

公元前约420年生于意大利塔伦通(现塔兰托);公元前约350年卒。

阿契塔是毕达哥拉斯学派的成员,居住在塔伦通,那里是当时保留到最后的一个纺织毕达哥拉斯学派的活动中心。

阿契塔象公元前四世纪的许多希腊学者那样,致力于说服希腊各城邦联合起来反对日效力增长的外来势力。

可是,同所有其他希腊学者一样,他也失败了。

希腊人坚持彼此之间的自相残杀,直到被马其顿所征服。

阿契塔的洒趣在于希腊的三大问题之一——立方倍积,即给定一个立方体,仅用圆规和直尺作另一个立方体,使这个立方体的体积是给定的立方体的两倍。

后来发现,在所指定的条件下,这个问题是不可解,但是在经过一番努力之后,阿契塔发现了与比例中项(即在两个外项之间插入的一些线或数值)有关的一些定理,他使用比立方倍积问题所给条件的严格要求要自由一引起的工具,通过精巧的三维构体这个问题。

他是试图把纯粹的技艺应用于力学的第一个希腊数学家,当时他按照自己的方式创立了关于声音和音理论。

他仿照算术级数(1,2,3,4……)和几何级数(1,2,4,8,……),提出了调和级数(1,,,,……)的概念,他主张音调取决于空气的振动速度。

他是正确的,但是他完全没有波动的概念。

他相信音调高的声音在空气、物体中传播的速度比音调低的声音快,这当然是错误的。

据信他还是滑轮的发明者。

相关文档
最新文档