材料力学作业习题讲解

合集下载

材料力学作业参考题解(2)PPT学习教案

材料力学作业参考题解(2)PPT学习教案

FN1 F gA1x
混凝土柱各段危险截面分别为柱中截 面和柱 底截面 ,其轴 力分别 为:
FN2 F gA1l1 gA2 (x l1)
FN1max F gA1l1
FN 2max F g( A1l1 A2l2 ) (受压)
由强度条件:
FN max [ ]
A
A1
F [ ] gl1
2.242m
m
第7页/共40页
2-12 图示接头,由两块钢板用四个直径相同 的钢铆 钉连接 而成。 已知载 荷F=80kN, 板宽b=80mm, 板厚δ =10mm,铆 钉直径 d =16mm,许 用切应 力[ τ ]=100MPa,许用挤压应力[σbs]=300MPa,许 用拉应 力[σ]=170MPa 。试校核接头的强度。(提示:设 每个铆 钉受力 相同)
FB
220 4 220 8
M B (F ) 0 FAy
12
220kN
M A(F) 0
FB
220 4 220 8 12
220kN
求杆AC和CD的轴力:
由A点的平衡条件:
FNAC
FAy cos45
2 220 311.13kN
(拉 )
由C点的平衡条件:
FNCD FNAC cos45 220kN
:bs : [ ]:[bs ]:[ ] 90: 240:120 3:8: 4
其中:
Fs F
A dh
bs
Fb Abs
(D2
F d2)/4
d 2 (D2
F /d2
1) / 4
FN A
F d 2
/
4
则有:
d3
d
h
4h 4
3

材料力学典型题解

材料力学典型题解

1轴向拉伸与压缩例1-1 如图所示的等截面直杆,受轴向力F 1=15kN ,F 2=10kN 的作用。

试分别求出杆件1-1、2-2截面的轴力,并画出轴力图。

F 2F 2C 22 22F 111 11B F 1AF RF RF N1F 1F N2F R F N10kN5kN图1-1解:(1)外力分析 先解除约束,画出杆件的受力图。

120,0xR FF F F = -+=∑得:()121510kN 5kN R F F F =-=-=(2)内力分析 外力F R 、F 1、F 2将杆件分为AB 段和BC 段,在AB 段,用1-1截面将杆件截分为两段,取左段为研究对象,右段对截面的作用力用F N1来代替。

假定内力F N1为正,列平衡方程10,0xN R FF F = +=∑得:15kN N R F F =-=-负号表示F N1的方向和假定方向相反,截面受压。

在BC 这一段,用任意2-2截面将杆件分为两段,取左段为研究对象,右段对左段截面的作用力用F N2来代替。

假定轴力F N2为正,有平衡方程2100xN R FF F F = +-=∑得: ()21515kN N R F F F =-+=-+=10kN (3)画轴力图由以上例题可以总结出求截面轴力的简捷方法:杆件任意截面的轴力F N (x )等于截面一侧所有外力的代数和。

即1nN i i F F ==∑,外力背离该截面的时取正,指向该截面时取负。

例1-2 如图所示为正方形截面阶梯杆,受力及尺寸如图所示。

试分析杆上1截面处和2截面处的正应力。

FF2hh12(a )FFF N 11122N hh σ==F F F N 1222244N h h σ==F F(b ) 图1-2解:先求出杆两截面处的轴力F N 1和F N 2,在用截面上的轴力除以相应的截面面积,如图(b )所示,不难求出σ1=F/h 2,σ2=F/(4h 2)。

例1-3 如图所示,斜杆AB 为直径d =20mm 的钢杆,载荷Q =15kN 。

材料力学例题及解题指导

材料力学例题及解题指导

图 2-8 解:设在荷载 G 作用下,横梁移动到 AB位置(图 2-8b),则杆 1 的缩短量为 l1,而杆 2、3 的伸长量为 l2、l3。取横梁 AB 为分离体,如图 2-8c,其上除荷载 G 外,还有轴力 N1、N2、N3 以及 X。由于假设 1 杆缩短,2、3 杆伸长,故应将 N1 设为压力,而 N2、N3 设 为拉力。 (1) 平衡方程
例题及解题指导
图 3.6
例 2-5 图 3-6 所示螺钉承受轴向拉力 F,已知许可切 应力[]和拉伸许可应力[]之间的关系为:[]=0.6[],许 可 挤 压 应 力 [bs] 和 拉 伸 许 可 应 力 [] 之 间 的 关 系 为 : [bs]=2[]。试建立 D,d,t 三者间的合理比值。
解:(1) 螺钉的拉伸强度
时单位杆长的分布力 q=A1,此处 是材料单位体积的重量即容重。将 q 代入上式得到
l A l2 Al l Gl
2EA 2EA 2EA 此处 G=Al 是整个杆的重量。上式表明等直杆自重引起的总伸长等于全部重量集中于 下端时伸长的一半。
解题指导:对于轴力为变数的杆,利用虎克定律计算杆件轴向变
N1 得正号说明原先假设拉力是正确的, 同时也就表明轴力是正的。AB 段内任一截 面的轴力都等于+6kN。 再求 BC 段轴力,在 BC 段任一截面 2-2 处 将杆件截开,仍考察左段(图 2-5c),在截 面上仍设正的轴力 N 2,由 X=0 得
-6+18+N2=0
N2=-12kN
N2 得负号说明原先假设拉力是不对的
解:根据强度条件式(4-6)得出:
10
d 3 16MT 3 16 7.64 106 109mm
[ ]
30
11
再根据刚度条件式(4-9b )得出:

材料力学典型例题与详解(经典题目)

材料力学典型例题与详解(经典题目)
G = [σ ]A(l) − F
所以石柱体积为
V3
=
G ρ
=
[σ ]A(l) − ρ
F
= 1×106 Pa ×1.45 m 2 −1000 ×103 N = 18 m3 25 ×103 N/m3
三种情况下所需石料的体积比值为 24∶19.7∶18,或 1.33∶1.09∶1。 讨论:计算结果表明,采用等强度石柱时最节省材料,这是因为这种设计使得各截面的正应 力均达到许用应力,使材料得到充分利用。 3 滑轮结构如图,AB 杆为钢材,截面为圆形,直径 d = 20 mm ,许用应力 [σ ] = 160 MPa ,BC 杆为木材,截面为方形,边长 a = 60 mm ,许用应力 [σ c ] = 12 MPa 。试计算此结构的许用载
= 1.14 m 2
A
2=
F+ρ [σ ] −
A1 l1 ρ l2
=
1000 ×103 N + 25 ×103 N/m3 ×1.14 m 2 × 5 m 1×106 N/m 2 − 25×103 N/m3 × 5 m
= 1.31 m 2
A
3=
F
+ ρA1l1 + ρA2l2 [σ ] − ρ l3
= 1000 ×103 N + 25 ×103 N/m3 ×1.14 m 2 × 5 m + 25×103 N/m3 ×1.31 m 2 × 5 m = 1.49m 2 1×106 N/m 2 − 25 ×103 N/m3 × 5 m
解:1、计算 1-1 截面轴力:从 1-1 截面将杆截成两段,研究上半段。设截面上轴力为 FN1 ,
为压力(见图 b),则 FN1 应与该杆段所受外力平衡。杆段所受外力为杆段的自重,大

工程力学材料力学部分课后习题详解

工程力学材料力学部分课后习题详解

2-1 求下列结构中指定杆内的应力。

已知(a)图中杆的横截面面积A 1=A 2=1150mm 2; 解:(1)分析整体,作示力图∑=0)(i BF M:CB 041088=××−×A F AF N1F N2(c)40kN A F =(2)取部分分析,示力图见(b )∑=0)(i CF M:02442.22=×+×−×q F F A N2(404402)36.36kN 2.2N F ×−×==3262236.361031.62MPa 115010N F A σ−×===×(3)分析铰E ,示力图见(c )∑=0ix F :0sin 12=−βN N F F1240.65kN N N F F == 3161137.961035.3MPa 115010N F A σ−×===×2-2 求下列各杆内的最大正应力。

(3)图(c)为变截面拉杆,上段AB 的横截面积为40mm 2,下段BC 的横截面积为30mm 2,杆材料的ρg =78kN/m 3。

解:1.作轴力图,BC 段最大轴力在B 处6N 120.530107812.0kN B F −=+×××AB 段最大轴力在A 处6N 12(0.5300.540)107812.0kN A F −=+×+×××3N 2612.010400MPa 30mm3010B B F σ−−×===× 3N 2612.010300MPa 40mm 4010AA F σ−−×===×杆件最大正应力为400MPa ,发生在B 截面。

EDF BF AF CxF N2(b)A120B120F NC2-4 一直径为15mm ,标距为200mm 的合金钢杆,比例极限内进行拉伸试验,当轴向荷载从零缓慢地增加58.4kN 时,杆伸长了0.9mm ,直径缩小了0.022mm ,确定材料的弹性模量E 、泊松比µ。

材料力学作业题解_第5-9章

材料力学作业题解_第5-9章
5.1 把直径 d = 1 mm 的钢丝绕在直径为 2m 的卷筒上, 设 E = 200 GPa 。 试计算该钢丝中产 生的最大弯曲正应力。 解:把钢丝绕到卷筒上后,钢丝内的弯矩 M 与中性层曲率之间的关系是
1
ρ
于是,有
=
M EI EI
M=
代入弯曲正应力公式,得
ρ
σ max =
Mymax Eymax = I ρ
空心圆截面比实心圆截面最大正应力减少了
5.4 矩形截面悬臂梁如图所示,已知 l = 4 m , 确定此梁横截面的尺寸。 解:梁的最大弯矩发生在固定端处,其值为
b 3 = , q = 10 kN/m , [σ ] = 10 MPa 。试 h 5
q A
l
M max =
梁的强度条件
1 2 1 ql = ×10 × 42 =80 (kN ⋅ m) 2 2 M 80 ×106 = = ≤ [σ ] 1 2 W bh 6
m
n
8
m
22
n
13
发生,应加以比较,方可决定割刀内的最大正应力。 n-n 截面
2.5
4
1 WI = × 2.5 × 132 =70.4 (mm3 ) 6
M I = 1× 103 × 8=8 ×103 (N ⋅ mm)
σI =
n-n 截面
M I 8 ×103 = = 114 (MPa ) WI 70.4
− = σ max
C 截面
+ σ max =
10 × 106 ×158 = 26.3 (MPa)<[σ t ]=40 MPa 60.1× 106 10 × 106 × (230 − 158) = 12 (MPa)<[σ c ]=160 MPa 60.1×106

材料力学作业参考题解(1)

材料力学作业参考题解(1)

2F
q=F/a
F + FN :
2F
2-2 图示杆件由两根木杆粘接而成。欲使其在受拉时,粘接面上的正应力为其切应力的 倍, 图示杆件由两根木杆粘接而成。欲使其在受拉时,粘接面上的正应力为其切应力的2倍 试问粘接面的位置应如何确定? 试问粘接面的位置应如何确定?
解:本题实质上是要考察斜截面上的应力。由斜截面应力公式,有: 本题实质上是要考察斜截面上的应力。由斜截面应力公式,
2-4图示实心圆钢杆 和AC在A点作用有铅垂向下的力 图示实心圆钢杆AB和 在 点作用有铅垂向下的力 点作用有铅垂向下的力F=35kN。已知杆 和AC的直径分别 图示实心圆钢杆 。 已知杆AB和 的直径分别 点在铅垂方向的位移。 为d1=12mm和d2=15mm,钢的弹性模量 和 ,钢的弹性模量E=210GPa。试求 点在铅垂方向的位移。 。试求A点在铅垂方向的位移 解:求各杆内力,如图取A点为对象,由平衡条件,有: 求各杆内力,如图取 点为对象,由平衡条件, 点为对象
AAB =
F [σ ] sin θ
ABC =
F cosθ [σ ] sin θ
要求结构的总重量为最小即结构总体积最小,其体积为: 要求结构的总重量为最小即结构总体积最小,其体积为:
V = AAB ⋅ l AB + ABC ⋅ l BC =
令:
F l F cosθ Fl 1 cosθ ⋅ + ⋅l = + [σ ] sin θ cosθ [σ ] sin θ [σ ] sin θ cosθ sin θ
取A1=0.664m2 柱底固定,则柱顶位移值等于柱的伸缩量, 柱底固定,则柱顶位移值等于柱的伸缩量,可用叠加原理计算
2 FNi dx Fl1 ρgl12 ( F + ρgA1l1 )l2 ρgl2 ∆ A = ∆l = ∑ ∆li = ∑ ∫ = + + + li EA EA1 2 E EA2 2E i 1000 × 103 ×12 2.25 × 103 × 9.8 × 12 × 12 = + 9 20 × 10 × 0.576 2 × 20 ×109 (1000 + 2.25 × 9.8 × 0.576 × 12) ×103 × 12 2.25 ×103 × 9.8 × 12 ×12 + + = 2.242mm 20 ×109 × 0.664 2 × 20 × 109

材料力学习题解答(拉伸、压缩与剪切)

材料力学习题解答(拉伸、压缩与剪切)

∑m
C
A
' = 0 NE × 4.5 + N C × 1.5 − P × 3 = 0
(2) 以刚体 BDE 为研究对象
1.5m
NE
E D 0.75m B NB
∑m
D
=0
N E × 1.5 − N B × 0.75 = 0
2
(3) 联立求解
N B = NC
(4) 拉杆内的应力
' NE = NE
∴ N C = 6kN
A B
h
b
解:强度条件为
P ≤ [σ ] A
又因为 A = bh = 1.4b2 , 所以
b≥
P 1100 × 103 = = 116.4mm 1.4 [σ ] 1.4 × ( 58 × 106 ) h = 1.4b ≥ 162.9mm
2.8. 图示夹紧机构需对工件产生一对 20kN的夹紧力,已知水平杆AB及斜杆BC和BD的材料 相同,[σ]=100MPa,α=30o。试求三杆的横截面直径。
D B A1 l1 A2 l2
P
C F l
x
解: (1) 研究 CF,求 BC 和 DF 的受力: NBC P NDF
F l
C
x
∑M
C
=0
− P × x + N DF × l = 0 N DF = x P l
7
∑M
(2) 求 BC 和 DF 杆的变形;
F
=0
P × ( l − x ) − N BC × l = 0 N BC = l−x P l
Δl BC =
N BC l BC l − x Pl1 = × E1 A1 l E1 A1 N DF l DF x Pl2 = × E2 A2 l E2 A2 Δl BC = Δl DF
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 轴向拉伸与压缩1、试求图示各杆1-1和2-2横截面上的轴力,并做轴力图。

(1) (2)2、图示拉杆承受轴向拉力F =10kN ,杆的横截面面积A =100mm 2。

如以α表示斜截面与横截面的夹角,试求当α=10°,30°,45°,60°,90°时各斜截面上的正应力和切应力,并用图表示其方向。

3、一木桩受力如图所示。

柱的横截面为边长200mm 的正方形,材料可认为符合胡克定律,其弹性模量E =10GPa 。

如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力; (3)各段柱的纵向线应变;(4)柱的总变形。

4、(1)试证明受轴向拉伸(压缩)的圆截面杆横截面沿圆周方向的线应变d ε,等于直径方向的线应变d ε。

(2)一根直径为d =10mm 的圆截面杆,在轴向拉力F 作用下,直径减小0.0025mm 。

如材料的弹性摸量E =210GPa ,泊松比ν=0.3,试求轴向拉力F 。

(3)空心圆截面钢杆,外直径D =120mm,内直径d =60mm,材料的泊松比ν=0.3。

当其受轴向拉伸时, 已知纵向线应变ε=0.001,试求其变形后的壁厚δ。

5、图示A和B两点之间原有水平方向的一根直径d=1mm的钢丝,在钢丝的中点C加一竖直荷载F。

已知钢丝产生的线应变为ε=0.0035,其材料的弹性模量E=210GPa,钢丝的自重不计。

试求:(1) 钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律);(2) 钢丝在C点下降的距离∆;(3) 荷载F的值。

6、简易起重设备的计算简图如图所示.一直斜杆AB应用两根63mm×40mm×4mm不等边角钢组[σ=170MPa。

试问在提起重量为P=15kN的重物时,斜杆AB是否满足强度成,钢的许用应力]条件?7、一结构受力如图所示,杆件AB,AD均由两根等边角钢组成。

已知材料的许用应力[σ=170MPa,试选择杆AB,AD的角钢型号。

]E8、一桁架受力如图所示。

各杆都由两个等边角钢组成。

已知材料的许用应力][σ=170MPa ,试选择杆AC 和CD 的角钢型号。

9、简单桁架及其受力如图所示,水平杆BC 的长度l 保持不变,斜杆AB 的长度可随夹角θ的变化而改变。

两杆由同一材料制造,且材料的许用拉应力与许用压应力相等。

要求两杆内的应力同时达到许用应力,且结构总重量为最小时,试求: (1) 两杆的夹角θ值; (2) 两杆横截面面积的比值。

第三章 扭 转1、一传动轴作匀速转动,转速n =200r/min ,轴上转有五个轮子,主动轮II 输入的功率为60kW ,从动轮,I ,III ,IV ,V ,依次输出18kW ,12kW ,22kW ,和8kW 。

试作轴的扭矩图。

2M2、空心钢轴的外径D =100mm ,内径d =50mm 。

已知间距为l =2.7m 的两横截面的相对扭转角=1.8°,材料的切变模量G =80GPa 。

试求:(1)轴内的最大切应力;(2)当轴以n =80r/min 的速度旋转时,轴所传递的功率。

3、实心圆轴的直径d =100mm ,长l =1m ,其两端所受外力偶矩e M =14 kN ·m ,材料的切变模量G =80GPa 。

试求:(1)最大切应力及两端截面间的相对扭转角;(2)图示截面上A , B , C 三点处切应力的数值及方向; (3) C 点处的切应变。

4、图示等直圆杆,已知外力偶矩A M =2.99 kN ·m ,B M =7.20 kN ·m ,C M =4.21 kN ·m ,许用切应力][τ=70Mpa ,许可单位长度扭转角]'[ϕ=1(°)/m ,切变模量G =80GPa 。

试确定该轴的直径d 。

5、阶梯形圆杆, AE 段为空心,外径D =140mm ,内径d =100mm ;BC 段为实心,直径d =100mm 。

外力偶矩A M =18 kN ·m ,B M =31 kN ·m ,C M =14 kN ·m 。

已知: ][τ=80MPa,]'[ϕ=1.2(°)/m , G =80GPa 。

试校核该轴的强度和刚度。

第四章 弯曲应力1、试求图示各梁中指定截面上的剪力和弯矩。

(1) (22、试写出下列各梁的剪力方程和弯矩方程,并作剪力图和弯矩图。

(1) (2)(3) (4)3、试利用荷载集度,剪力和弯矩间的微分关系作下列各梁的剪力图和弯矩图。

(1) (2)(3) (4)4、试作下列具有中间铰的梁的剪力图和弯矩图。

5、矩形截面的悬臂梁受集中力和集中力偶作用,如图所示。

试求截面m -m 和固定端截面n -n 上A , B ,C ,D 四点处的正应力。

6、正方形截面的梁按图a ,b 所示的两种方式放置。

试求:(1)若两种情况下横截面上的弯矩M 相等,比较横截面上的最大正应力;(2)对于h =200mm 的正方形,若如图C 所示切去高度为u =10mm 的尖角,则弯曲截面系数Z W 与未切角时(图b )相比有何变化?(3)为了使弯曲截面系数Z W 最大,则图C 中截面切去的尖角尺寸u 应等于多少?这时的ZW比未切去尖角时增加百分之多少?7、由两根28a 号槽钢组成的简支梁受三个集中力作用,如图所示。

已知该梁材料为Q235钢,其许用弯曲正应力为][σ=170MPa 。

试求梁的许可荷载F 。

8、起重机连同配重等重P =50Kn ,行走于两根工字钢所组成的简支梁上,如图所示。

起重机的起重量F =10kN 。

梁材料的许用弯曲正应力][σ=170Mpa 。

试选择工字钢的号码。

设全部荷载平均分配在两根梁上。

9、一矩形截面简支梁由圆柱形木料锯成。

已知F =5kN ,a =1.5m ,][σ=10MPa 。

试确定弯曲截面系数为最大时矩形截面的高宽比bh,以及梁所需木料的最小直径d 。

10、一正方形截面悬臂木梁的尺寸及所受荷载如图所示。

木料的许用弯曲应力][σ=10MPa 。

现需在梁的截面C 上中性轴处钻一直径为d 的圆孔,试问在保证梁强度的条件下,圆孔的最大直径d (不考虑圆孔处应力集中的影响)可达多大?11、一悬臂梁长为900mm ,在自由端受一集中力F 的作用。

梁由三块50mm ×100mm 的木板胶合而成,如图所示,图中z 轴为中性轴。

胶合缝的许用切应力][σ=0.35MPa 。

试按胶合缝的切应力强度求许可荷载F ,并求在此荷载作用下,梁的最大弯曲正应力。

12、由工字钢制成的简支梁受力如图所示。

已知材料的许用弯曲正应力][σ=170MPa ,许用[ =100MPa。

试选择工字钢号码。

切应力]第五章 梁弯曲时的位移1、试用积分法求图示外伸梁的A θ,B θ及A ω,D ω。

2、试按叠加原理并利用附录IV 求图示外伸梁的A θ,B θ及A ω,D ω。

第六章简单超静定问题1、试作图示等直杆的轴力图。

2、图示刚性梁受均布荷载作用,梁在A端铰支,在B点和C点由两根钢杆BD和CE支承。

[ =170MPa,试已知钢杆BD和CE的横截面面积2A=200mm2和1A=400mm2,钢的许用应力]校核钢杆的强度。

3、图示为一两端固定的钢圆轴,其直径d=60mm,轴在截面C处承受一外力偶矩M=3.8kN·m。

以知钢的切变模量G=80GPa。

试求截面C两侧横截面上的最大切应力和截e面C的扭转角。

4、荷载F 作用在梁AB 及CD 的连接处,试求每根梁在连接处所受的力。

已知其跨长比和刚度比分别为21l l =23和 21EI EI =545、梁AB 因强度和刚度不足,用同一材料和同样截面的短梁,AC 加固,如图所示。

试求: (1)而梁接触处的压力C F ;(2)加固后梁AB 的最大弯矩和B 点的挠度减少的百分数。

第七章 应力状态及强度理论1、试从图示构件中A 点和B 点处取出单元体,并表明单元体各面上的应力。

2、 各单元体上的应力如图所示。

试利用应力圆的几何关系求: (1)指定截面上的应力; (2)主应力的数值;(3)在单元体上绘出主平面的位置及主应力的方向。

(1) (2)3、单元体如图所示。

试利用应力圆的几何关系求: (1)主应力的数值;(2)在单元体上绘出主平面的位置及主应力的方向。

4、D =120mm , d =80mm 的空心圆轴,两端承受一对扭转力偶矩e M ,如图所示。

在轴的中部表面A 点处,测得与其母线成45°方向的线应变为︒45ε=2.6×10-4。

已知材料的弹性E =200GPa ,υ=0.3,试求扭转力偶矩e M 。

5、在受集中力偶矩e M 作用的矩形截面简支梁中,测得中性层上k 点处沿45°方向的线应变为︒45ε。

已知材料的弹性常数E ,υ和梁的横截面及长度尺寸b ,h ,a ,d ,l 。

试求集中力偶矩e M 。

6、用Q235钢制成的实心圆截面杆,受轴力F 及扭转力偶矩e M 共同作用,且e M =Fd 101。

今测得圆杆表面k 点处沿图示方向的线应变︒30ε=14.33×10-5。

已知杆直径d =10mm ,材料的弹性常数E =200GPa ,υ=0.3。

试求荷载F 和e M 。

若其许用应力][σ=160MPa ,试按第四强度理论校核杆的强度。

第八章 组合变形及连接部分的计算1、 受集度为q 的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向对称面间的夹角为α=30°,如图所示,已知该梁材料的弹性模量E =10GPa ;许可挠度[]ω=150l,试校核梁的强度和刚度。

2、试求图示杆内的最大正应力。

力F 与杆的轴线平行。

3、受拉构件形状如图,已知截面尺寸为40mm ×5mm ,承受轴向拉力F =12kN ,现拉杆开有切口,如不计应力集中影响,当材料的][σ=100MPa 时,试确定切口的最大许可深度,并绘出切口截面的应力变化图。

AAA -4、曲拐受力如图所示,其圆杆部分的直径d =50mm 。

试画出表示A 点处应力状态的单元体,并求其主应力及最大切应力。

5、试校核图示拉杆头部的剪切强度和挤压强度。

已知图中D =32mm ,d =20mm 和h =12mm ,杆的许用切应力[]τ=100MPa ,许用挤压应力][bs σ=240MPa 。

第九章 压杆稳定1、如果杆分别由下列材料制成:(1)比例极限P σ=220MPa ,弹性模量E =190GPa 的钢; (2) P σ=490MPa ;E =215GPa ,含镍3.5%的镍钢; (3) P σ=20MPa ,E =11GPa 的松木。

试求可用欧拉公式计算临界力的压杆的最小柔度。

相关文档
最新文档