2019年四川省宜宾市中考数学试卷 解析版
2019年四川省宜宾市中考数学试卷以及解析版

2019年四川省宜宾市中考数学试卷一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上。
1.(3分)2的倒数是( ) A .12B .2-C .12-D .12±2.(3分)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为( ) A .65.210-⨯B .55.210-⨯C .65210-⨯D .55210-⨯3.(3分)如图,四边形ABCD 是边长为5的正方形,E 是DC 上一点,1DE =,将ADE ∆绕着点A 顺时针旋转到与ABF ∆重合,则(EF = )ABC.D.4.(3分)一元二次方程220x x b -+=的两根分别为1x 和2x ,则12x x +为( ) A .2-B .bC .2D .b -5.(3分)已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是( )A .10B .9C .8D .76.(3分)如表记录了两位射击运动员的八次训练成绩:根据以上数据,设甲、乙的平均数分别为x 甲、x 乙,甲、乙的方差分别为2s 甲,2s 乙,则下列结论正确的是( )A .x x =乙甲,22s s <乙甲B .x x =乙甲,22s s >乙甲C .x x >乙甲,22s s <乙甲 D .x x <乙甲,22s s <乙甲7.(3分)如图,EOF ∠的顶点O 是边长为2的等边ABC ∆的重心,EOF ∠的两边与ABC ∆的边交于E ,F ,120EOF ∠=︒,则EOF ∠与ABC ∆的边所围成阴影部分的面积是( )A B C D 8.(3分)已知抛物线21y x =-与y 轴交于点A ,与直线(y kx k =为任意实数)相交于B ,C 两点,则下列结论不正确的是( )A .存在实数k ,使得ABC ∆为等腰三角形B .存在实数k ,使得ABC ∆的内角中有两角分别为30︒和60︒C .任意实数k ,使得ABC ∆都为直角三角形D .存在实数k ,使得ABC ∆为等边三角形二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横上。
四川省宜宾市2019年中考数学试卷【word版】

宜宾市2019年高中阶段学校招生考试数学试卷(考试时间:120分钟, 全卷满分120分)本试卷分选择题和非选择题两部分,考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.考试结束,将本试题卷和答题卡一并交回. 注意事项:1答题前,考生在答题卡上务必将自己的姓名、准考证号填写清楚,并贴好条形码请认真核准条形码上的准考证号、姓名和科目.2在作答选择题时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选潦其他答案标号,在试题卷上作答无效.......... 3在作答非选择题时,请在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有 一项是符合题目要求的,请将正确选项填在答题卡对成题目上. (注意..:在试题卷上作答无效.........) 1. 2的倒数是A. 12B.–12C. ±12 D.22. 下列运算的结果中, 是正数的是A .(–2018)–1B .– (2018)–1C .(–1) (–2018)D .(–2018)÷2018 3.如图,放置的一个机器零件(图1),若其主(正)视图如(图2)所示,则其俯视图4.一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相 同在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率是A .19B .13C .12D . 235.若关于x 的一元二次方程的两根为x 1=1,x 2 =2则这个方程是 A .x 2+3x –2=0 B .x 2–3x+2=0 C .x 2–2x+3=0 D .x 2+3x+2=06.如图,过A 点的一次函数的图象与正比例函数y=2x 的图象相交于 点B ,则这个一次函数的解析式是 A .y=2x+3 B .y= x –3 C .y=2x –3 D .y= –x+37.如图,将n 个边长都为2的正方形按如图所示摆放,点A 1,A 2,x…A n 分别是正方形的中心,则这n 个正方形重叠部分的面积之和是 A.n B.n –1 C.(14)n –1 D. 14n8.已知⊙O 的半径r =3,设圆心O 到一条直线的距离为d ,圆上 到这条直线的距离为2的点的个数为m ,给出下列 ①若d>5,则m=0;②若d=5,则m=1;③若1<d<5,则m=3 ④若d=1,则m=2;⑤若d<1,则m = 4. 其中正确 A .1 B .2 C . 3 D .5二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中 横线上(注意..:在试题卷上作答无效.........) 9.分解因式:x 3– x = .10.分式方程x x –2 – 1x 2 – 4= 1的解是. 11.如图,直线a 、b 被第三条直线c 所截,如果a ∥b,∠1 =70°,那么∠3的度数是 .12.菱形的周长为20cm ,两个相邻的内角的度数之比为l∶2,则较长的对角线长度是cm.13.在平面直角坐标系中,将点A(–1,2)向右平移3个单位长度得到点B ,则点B 关于x 轴的对称点C 的坐标是 .14.如图,在Rt△ABC 中,∠B=90°,AB =3,BC= 4,将△ABC 折叠,使点B 恰好落在斜边AC 上,与点B′重合,AE 为折痕,则E B′= .15.如图,已知AB 为⊙O 的直径,AB=2,AD 和BE 是圆O 的两条切线,A 、B 为切点,过圆上一点C 作⊙O 的切线CF ,分别交AD 、BE 于点AM= .16.规定:sin(–x)= –sin x ,cos(–x)= cos x ,sin(x+y)=sinx·cosy+cosx·siny,据此判断下列等式成立的是 (写出所有正确的序号). ①cos (–60°)= – 12; ② sin75°= 6+24③sin2x=2sinx·cosx; ④sin(x–y)=sinx·cosy–cosx·siny,三、解答题:(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤. 17.(每小题5分,共10分) (注意..:在试题卷上作答无效.........) baCB 'B AF(1)计算:||–2– (–2)0+ ( 13 )–1(2)化简:(3aa–3–aa+3) ·a2–9a18. (本小题6分) (注意..:在试题卷上作答无效.........)如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D AD∥BC.求证:AD = BC.19.(本小题8分) (注意..:在试题卷上作答无效.........)我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有人;(2)请将统计图2补充完整;(3)统计图1中B项目对应的扇形的圆心角是度;(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.20.(本小题8分) (注意..:在试题卷上作答无效.........) 在我市举行的中学生安全知识竞赛中共有20道题,每一题答对得5分,答错或不答都 扣3分.(1)小李考了60分,那么小李答对了多少道题?(2)小王获得二等奖(75~85分),请你算算小王答对了几道题?21.(本小题8分) (注意..:在试题卷上作答无效.........) 在平面直角坐标系中,若点P(x ,y)的坐标x 、y 均为整数,则称点P则称该多边形为格点多边形.格点多边形的面积记为S 内部的格点数记为N ,边界上的格点数记为L 。
2019年四川省宜宾市中考数学试卷附分析答案

个或 4 个小正方体,
则组成这个几何体的小正方体的个数是 7 个或 8 个或 9 个,
组成这个几何体的小正方体的个数最多是 9 个.
故选:B.
6.(3 分)如表记录了两位射击运动员的八次训练成绩:
次数 第 1 次 第 2 次 第 3 次 第 4 次 第 5 次 第 6 次 第 7 次 第 8 次
环数
(2)化简:
(
)
第 3页(共 22页)
18.(6 分)如图,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.
19.(8 分)某校在七、八、九三个年级中进行“一带一路”知识竞赛,分别设有一等奖、 二等奖、三等奖、优秀奖、纪念奖.现对三个年级同学的获奖情况进行了统计,其中获 得纪念奖有 17 人,获得三等奖有 10 人,并制作了如图不完整的统计图. (1)求三个年级获奖总人数; (2)请补全扇形统计图的数据; (3)在获一等奖的同学中,七年级和八年级的人数各占 ,其余为九年级的同学,现从 获一等奖的同学中选 2 名参加市级比赛,通过列表或者树状图的方法,求所选出的 2 人 中既有七年级又有九年级同学的概率.
20.(8 分)甲、乙两辆货车分别从 A、B 两城同时沿高速公路向 C 城运送货物.已知 A、C 两城相距 450 千米,B、C 两城的路程为 440 千米,甲车比乙车的速度快 10 千米/小时, 甲车比乙车早半小时到达 C 城.求两车的速度.
21.(8 分)如图,为了测得某建筑物的高度 AB,在 C 处用高为 1 米的测角仪 CF,测得该 建筑物顶端 A 的仰角为 45°,再向建筑物方向前进 40 米,又测得该建筑物顶端 A 的仰 角为 60°.求该建筑物的高度 AB.(结果保留根号)
24.(12 分)如图,在平面直角坐标系 xOy 中,已知抛物线 y=ax2﹣2x+c 与直线 y=kx+b 都经过 A(0,﹣3)、B(3,0)两点,该抛物线的顶点为 C. (1)求此抛物线和直线 AB 的解析式; (2)设直线 AB 与该抛物线的对称轴交于点 E,在射线 EB 上是否存在一点 M,过 M 作
2019年四川宜宾中考数学试卷及详细答案解析(word版)

2019年四川宜宾中考数学试卷一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上。
1.(3分)2的倒数是( ) A .12B .﹣2C .−12D .±122.(3分)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为( ) A .5.2×10﹣6B .5.2×10﹣5C .52×10﹣6D .52×10﹣53.(3分)如图,四边形ABCD 是边长为5的正方形,E 是DC 上一点,DE =1,将△ADE 绕着点A 顺时针旋转到与△ABF 重合,则EF =( )A .√41B .√42C .5√2D .2√134.(3分)一元二次方程x 2﹣2x +b =0的两根分别为x 1和x 2,则x 1+x 2为( ) A .﹣2B .bC .2D .﹣b5.(3分)已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是( )A .10B .9C .8D .76.(3分)如表记录了两位射击运动员的八次训练成绩:次数 环数 运动员第1次第2次第3次第4次第5次第6次第7次第8次甲 10 7 7 8 8 8 9 7 乙1055899810根据以上数据,设甲、乙的平均数分别为x 甲、x 乙,甲、乙的方差分别为s 甲2,s 乙2,则下列结论正确的是( ) A .x 甲=x 乙,s 甲2<s 乙2 B .x 甲=x 乙,s 甲2>s 乙2 C .x 甲>x 乙,s 甲2<s 乙2D .x 甲<x 乙,s 甲2<s 乙27.(3分)如图,∠EOF 的顶点O 是边长为2的等边△ABC 的重心,∠EOF 的两边与△ABC 的边交于E ,F ,∠EOF =120°,则∠EOF 与△ABC 的边所围成阴影部分的面积是( )A .√32B .2√35C .√33D .√348.(3分)已知抛物线y =x 2﹣1与y 轴交于点A ,与直线y =kx (k 为任意实数)相交于B ,C 两点,则下列结论不正确的是( ) A .存在实数k ,使得△ABC 为等腰三角形B .存在实数k ,使得△ABC 的内角中有两角分别为30°和60° C .任意实数k ,使得△ABC 都为直角三角形D .存在实数k ,使得△ABC 为等边三角形二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横上。
2019年四川省中考数学一模试卷及答案解析

四川省2019年中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列等式正确的是()A.()2=3B.=﹣3C.=3D.(﹣)2=﹣32.若成立,则()A.a≥0,b≥0B.a≥0,b≤0C.ab≥0D.ab≤03.若要得到函数y=(x+1)2+2的图象,只需将函数y=x2的图象()A.先向右平移1个单位长度,再向上平移2个单位长度B.先向左平移1个单位长度,再向上平移2个单位长度C.先向左平移1个单位长度,再向下平移2个单位长度D.先向右平移1个单位长度,再向下平移2个单位长度4.已知⊙O1与⊙O2的半径分别是3cm和5cm,两圆的圆心距为4cm,则两圆的位置关系是()A.相交B.内切C.外离D.内含5.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为()A.15πcm2B.24πcm2C.39πcm2D.48πcm26.若点B(a,0)在以点A(﹣1,0)为圆心,2为半径的圆外,则a的取值范围为()A.﹣3<a<1B.a<﹣3C.a>1D.a<﹣3或a>17.在半径等于5cm的圆内有长为5cm的弦,则此弦所对的圆周角为()A.120°B.30°或120°C.60°D.60°或120°8.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)9.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠BOD10.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结沦:①无论x取何值,y2的值总是正数;②2a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④二.填空题(共10小题,满分30分,每小题3分)11.若分式的值为0,则x=.12.当x时,二次根式有意义.13.某小组5名同学的身高(单位:cm)分别为:147,156,151,159,152,则这组数据的中位数是cm.14.为了估算湖里有多少条鱼,从湖里捕上100条做上标记,然后放回湖里,经过一段时间待标记的鱼全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,我们可以估算湖里有鱼条.15.如图所示,AB是⊙O的直径,CD是⊙O的弦,连接AC,AD,若∠CAB=36°,则∠ADC的度数为.16.已知:如图,AB是⊙O的直径,弦EF⊥AB于点D,如果EF=8,AD=2,则⊙O半径的长是.17.二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①abc<0;②方程ax2+bx+c=0的根为x1=﹣1、x2=3;③当x>1时,y随x值的增大而减小;④当y>0时,﹣1<x<3.其中正确的说法是.A.①;B.①②;C.①②③;D.①②③④18.如图,点E是正方形ABCD的边CD上一点,以A为圆心,AB为半径的弧与BE交于点F,则∠EFD=°.19.如图,将扇形AOC围成一个圆锥的侧面.已知围成的圆锥的高为12,扇形AOC的弧长为10π,则圆锥的侧面积为.20.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D 的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中正确结论是(只需填写序号).三.解答题(共9小题,满分90分)21.计算题(1)|﹣|+(﹣1)2018﹣2cos45°+.(2)÷(a+2)22.解方程:(1)x2﹣3x=4(2)2x(x﹣3)=3﹣x23.先化简,再求值:(x﹣2+)÷,其中x=﹣.24.已知关于x的一元二次方程mx2﹣(m﹣1)x﹣1=0.(1)求证:这个一元二次方程总有两个实数根;(2)若二次函数y=mx2﹣(m﹣1)x﹣1有最大值0,则m的值为;(3)若x1、x2是原方程的两根,且+=2x1x2+1,求m的值.25.小颖为班级联欢会设计了“配紫色”游戏:如图是两个可以自由转动的转盘,每个转盘被分成了面积相等的三个扇形.游戏者同时转动两个转盘,如果一个转盘转出红色,另一个转盘转出了蓝色,那么就配成紫色.(1)请你利用画树状图或者列表的方法计算配成紫色的概率.(2)小红和小亮参加这个游戏,并约定配成紫色小红赢,两个转盘转出同种颜色,小亮赢.这个约定对双方公平吗?请说明理由.26.如图,为了测量电线杆的高度AB,在离电线杆25米的D处,用高1.20米的测角仪CD测得电线杆顶端A的仰角α=22°,求电线杆AB的高.(精确到0.1米)参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040,cot22°=2.4751.27.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD =2,求⊙O的半径及EC的长.28.如图,AB是圆O的直径,点C、D在圆O上,且AD平分∠CAB.过点D作AC的垂线,与AC的延长线相交于E,与AB的延长线相交于点F.求证:EF与圆O相切.29.已知开口向上的抛物线y=ax2+bx+c与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于C点,∠ACB不小于90°.(1)求点C的坐标(用含a的代数式表示);(2)求系数a的取值范围;(3)设抛物线的顶点为D,求△BCD中CD边上的高h的最大值.(4)设E,当∠ACB=90°,在线段AC上是否存在点F,使得直线EF将△ABC的面积平分?若存在,求出点F的坐标;若不存在,说明理由.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据二次根式的性质把各个二次根式化简,判断即可.【解答】解:()2=3,A正确;=3,B错误;==3,C错误;(﹣)2=3,D错误;故选:A.【点评】本题考查的是二次根式的化简,掌握二次根式的性质:=|a|是解题的关键.2.【分析】直接利用二次根式的性质分析得出答案.【解答】解:∵成立,∴a≥0,b≤0.故选:B.【点评】此题主要考查了二次根式的乘除,正确掌握二次根式的性质是解题关键.3.【分析】找出两抛物线的顶点坐标,由a值不变即可找出结论.【解答】解:∵抛物线y=(x+1)2+2的顶点坐标为(﹣1,2),抛物线y=x2的顶点坐标为(0,0),∴将抛物线y=x2先向左平移1个单位长度,再向上平移2个单位长度即可得出抛物线y=(x+1)2+2.故选:B.【点评】本题考查了二次函数图象与几何变换,通过平移顶点找出结论是解题的关键.4.【分析】先求两圆半径的和或差,再与圆心距进行比较,确定两圆位置关系.【解答】解:∵⊙O1和⊙O2的半径分别为5cm和3cm,圆心距O1O2=4cm,∵5﹣3<4<5+3,∴根据圆心距与半径之间的数量关系可知⊙O1与⊙O2相交.故选:A.【点评】本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P.外离:P>R+r;外切:P=R+r;相交:R﹣r<P<R+r;内切:P=R﹣r;内含:P <R﹣r.5.【分析】这个圆锥的全面积为底面积与侧面积的和,底面积为半径为3的圆的面积,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式求测面积.【解答】解:这个圆锥的全面积=•2π•3•5+π•32=24π(cm2).故选:B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.【分析】熟记“设点到圆心的距离为d,则当d=R时,点在圆上;当d>R时,点在圆外;当d<R时,点在圆内”即可解答【解答】解:以A(﹣1,0)为圆心,以2为半径的圆交x轴两点的坐标为(﹣3,0),(1,0),∵点B(a,0)在以A(1,0)为圆心,以2为半径的圆外,∴a<﹣3或a>1.故选:D.【点评】本题考查了对点与圆的位置关系的判断的知识点,解答本题的关键是理解点B在以A(1,0)为圆心,以2为半径的圆内的含义,本题比较简单.7.【分析】根据题意画出相应的图形,连接OA,OB,在优弧AB上任取一点E,连接AE,BE,在劣弧AB上任取一点F,连接AF,BF,过O作OD⊥AB,根据垂径定理得到D为AB的中点,由AB的长得出AD的长,再由OA=OB,OD与AB垂直,根据三线合一得到OD为角平分线,在直角三角形AOD中,利用锐角三角函数定义及AD与OA的长,求出∠AOD的度数,可得出∠AOB 的度数,利用同弧所对的圆心角等于所对圆周角的2倍,可得出∠AEB的度数,再利用圆内接四边形的对角互补可得出∠AFB的度数,综上,得到此弦所对的圆周角的度数.【解答】解:根据题意画出相应的图形为:连接OA,OB,在优弧AB上任取一点E,连接AE,BE,在劣弧AB上任取一点F,连接AF,BF,过O作OD⊥AB,则D为AB的中点,∵AB=5cm,∴AD=BD=cm,又OA=OB=5,OD⊥AB,∴OD平分∠AOB,即∠AOD=∠BOD=∠AOB,∴在直角三角形AOD中,sin∠AOD===,∴∠AOD=60°,∴∠AOB=120°,又圆心角∠AOB与圆周角∠AEB所对的弧都为,∴∠AEB=∠AOB=60°,∵四边形AEBF为圆O的内接四边形,∴∠AFB+∠AEB=180°,∴∠AFB=180°﹣∠AEB=120°,则此弦所对的圆周角为60°或120°.故选:D.【点评】此题考查了圆周角定理,垂径定理,等腰三角形的性质,锐角三角函数定义,以及圆内接四边形的性质,是一道综合性较强的题.本题有两解,学生做题时注意不要漏解.8.【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.【解答】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点评】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.9.【分析】根据垂径定理得出=,=,根据以上结论判断即可.【解答】解:A、根据垂径定理不能推出AC=AB,故A选项错误;B、∵直径CD⊥弦AB,∴=,∵对的圆周角是∠C,对的圆心角是∠BOD,∴∠BOD=2∠C,故B选项正确;C、不能推出∠C=∠B,故C选项错误;D、不能推出∠A=∠BOD,故D选项错误;故选:B.【点评】本题考查了垂径定理的应用,关键是根据学生的推理能力和辨析能力来分析.10.【分析】利用二次函数的性质得到y2的最小值为1,则可对①进行判断;把A点坐标代入y1=a (x+2)2﹣3中求出a,则可对②进行判断;分别计算x=0时两函数的对应值,再计算y2﹣y1的值,则可对③进行判断;利用抛物线的对称性计算出AB和AC,则可对④进行判断.【解答】解:∵y2=(x﹣3)2+1,∴y2的最小值为1,所以①正确;把A(1,3)代入y1=a(x+2)2﹣3得a(1+2)2﹣3=3,∴3a=2,所以②错误;当x=0时,y1=(x+2)2﹣3=﹣,y2=(x﹣3)2+1=,∴y2﹣y1=+=,所以③错误;抛物线y1=a(x+2)2﹣3的对称轴为直线x=﹣2,抛物线y2=(x﹣3)2+1的对称轴为直线x=3,∴AB=2×3=6,AC=2×2=4,∴2AB=3AC,所以④正确.故选:D.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).也考查了二次函数的性质.二.填空题(共10小题,满分30分,每小题3分)11.【分析】分式为零时:分子等于零且分母不等于零.【解答】解:依题意得:|x|﹣4=0且4﹣x≠0.解得x=﹣4.故答案是:﹣4.【点评】本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.12.【分析】根据二次根式的被开方数为非负数即可得出x的范围.【解答】解:由题意得:2x﹣3≥0,解得:x≥.故答案为:≥.【点评】本题考查二次根式有意义的条件,比较简单,注意掌握二次根式的被开方数为非负数这个知识点.13.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:由于此数据按照从小到大的顺序排列为147,151,152,156,159,最中间的数是152,所以这组数据的中位数是152cm,故答案为:152.【点评】考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.14.【分析】第二次捕得200条所占总体的比例=标记的鱼25条所占有标记的总数的比例,据此直接解答.【解答】解:设湖里有鱼x条,则,解可得x=800.故答案为:800.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.15.【分析】连接BC,推出Rt△ABC,求出∠B的度数,即可得出结论.【解答】解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=36°,∴∠B=54°,∴∠ADC=54°故答案为:54°.【点评】本题主要考查了圆周角的有关定理,作出辅助线,构建直角三角形,是解本题的关键.16.【分析】连接OE,由题意得:OE=OA=R,ED=DF=4,再解Rt△ODE即可求得半径的值.【解答】解:连接OE,如下图所示,则:OE=OA=R,∵AB是⊙O的直径,弦EF⊥AB,∴ED=DF=4,∵OD=OA﹣AD,∴OD=R﹣2,在Rt△ODE中,由勾股定理可得:OE2=OD2+ED2,∴R2=(R﹣2)2+42,∴R=5.故答案为:5.【点评】本题考查了垂径定理和解直角三角形的运用.17.【分析】根据抛物线的开口方向确定a的取值范围;根据对称轴的位置确定b的取值范围;根据抛物线与y轴的交点确定c的取值范围;根据图象与x轴的交点坐标确定方程ax2+bx+c=0的根,也可以确定当y>0时x的取值范围;根据抛物线的开口方向和对称轴我的抛物线的增减性.【解答】解:∵抛物线的开口方向向下,∴a<0,∵对称轴在y轴的右边,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,故①正确;根据图象知道抛物线与x轴的交点的横坐标分别为x=﹣1或x=3,∴方程ax2+bx+c=0的根为x1=﹣1、x2=3,故②正确;根据图象知道当x>1时,y随x值的增大而减小,故③正确;根据图象知道当y>0时,﹣1<x<3,故④正确.故选D.【点评】此题主要考查了抛物线的系数与图象的关系,其中二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.18.【分析】由四边形ABCD为正方形及半径相等得到AB=AF=AD,∠ABD=∠ADB=45°,利用等边对等角得到两对角相等,由四边形ABFD的内角和为360度,得到四个角之和为270,利用等量代换得到∠ABF+∠ADF=135°,进而确定出∠1+∠2=45°,由∠EFD为三角形DEF的外角,利用外角性质即可求出∠EFD的度数.【解答】解:∵正方形ABCD,AF,AB,AD为圆A半径,∴AB=AF=AD,∠ABD=∠ADB=45°,∴∠ABF=∠AFB,∠AFD=∠ADF,∵四边形ABFD内角和为360°,∠BAD=90°,∴∠ABF+∠AFB+∠AFD+∠ADF=270°,∴∠ABF+∠ADF=135°,∵∠ABD=∠ADB=45°,即∠ABD+∠ADB=90°,∴∠1+∠2=135°﹣90°=45°,∵∠EFD为△DEF的外角,∴∠EFD=∠1+∠2=45°.故答案为:45【点评】此题考查了切线的性质,四边形的内角和,等腰三角形的性质,以及正方形的性质,熟练掌握性质是解本题的关键.19.【分析】求出圆锥的底面半径,根据勾股定理求出圆锥的母线长,根据扇形面积公式计算即可.【解答】解:∵扇形AOC的弧长为10π,∴圆锥的底面半径为:=5,∴圆锥的母线长为:=13,则圆锥的侧面积为:×10π×13=65π,故答案为:65π.【点评】本题考查的是圆锥的计算,掌握弧长公式、扇形面积公式、圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长是解题的关键.20.【分析】由于与不一定相等,根据圆周角定理可知①错误;连接OD,利用切线的性质,可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,可知②正确;先由垂径定理得到A为的中点,再由C为的中点,得到=,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,由等角的余角相等可得出∠PCQ =∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,可知③正确;【解答】解:∵在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,∴=≠,∴∠BAD≠∠ABC,故①错误;连接OD,则OD⊥GD,∠OAD=∠ODA,∵∠ODA+∠GDP=90°,∠EPA+∠EAP=∠EAP+∠GPD=90°,∴∠GPD=∠GDP;∴GP=GD,故②正确;∵弦CF⊥AB于点E,∴A为的中点,即=,又∵C为的中点,∴=,∴=,∴∠CAP=∠ACP,∴AP=CP.∵AB为圆O的直径,∴∠ACQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,故③正确;故答案为:②③.【点评】此题是圆的综合题,其中涉及到切线的性质,圆周角定理,垂径定理,圆心角、弧、弦的关系定理,相似三角形的判定与性质,以及三角形的外接圆与圆心,平行线的判定,熟练掌握性质及定理是解决本题的关键.三.解答题(共9小题,满分90分)21.【分析】(1)先计算绝对值、乘方、代入三角函数值和算术平方根,再计算乘法,最后计算加减即可得;(2)先计算括号内分式的减法、将被除式因式分解,再将除法转化为乘法,继而约分即可得.【解答】解:(1)原式=+1﹣2×+4=+1﹣+4=5;(2)原式=÷(﹣)=÷=•==.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则及实数的混合运算顺序和运算法则.22.【分析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)先变形得到2x(x﹣3)+x﹣3=0,然后利用因式分解法解方程.【解答】解:(1)x2﹣3x﹣4=0,(x﹣4)(x+1)=0,x﹣4=0或x+1=0,所以x1=4,x2=﹣1;(2)2x(x﹣3)+x﹣3=0,(x﹣3)(2x+1)=0,x﹣3=0或2x+1=0,所以x1=3,x2=﹣.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).23.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.24.【分析】(1)先计算判别式得到△=(m+1)2,根据非负数的性质即可得到△≥0,于是利用判别式的意义即可得到结论;(2)根据二次函数的性质得m<0且=0,然后解方程即可;(3)先根据根与系数的关系得到x1+x2=,x1x2=﹣,再把+=2x1x2+1变形得到=2x1x2+1,则=2•(﹣)+1,然后解关于m的方程即可.【解答】(1)证明:m≠0,△=(m﹣1)2﹣4m×(﹣1)=(m+1)2,∵(m+1)2≥0,即△≥0,∴这个一元二次方程总有两个实数根;(2)解:∵二次函数y=mx2﹣(m﹣1)x﹣1有最大值0,∴m<0且=0,∴m=﹣1;故答案为﹣1.(3)解:x1+x2=,x1x2=﹣,∵+=2x1x2+1,∴=2x1x2+1,∴=2•(﹣)+1,整理得m2+m﹣1=0,∴m=或m=.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式和二次函数的性质.25.【分析】(1)用表格列出所有等可能结果,再根据概率公式计算可得;(2)分别计算出小红、小亮获胜的概率,比较大小即可得出结论.【解答】解:(1)如下表所示:红蓝1蓝2红(红,红)(红,蓝1)(红,蓝2)黄(黄,红)(黄,蓝1)(黄,蓝2)蓝(蓝,红)(蓝,蓝1)(蓝,蓝2)由表可知,共有9种等可能结果,其中配成紫色的有3种结果,所以P(能配成紫色)=;(2)∵P(小红赢)=,P(小亮赢)=∴P(小红赢)=P(小亮赢),因此,这个游戏对双方是公平的.【点评】本题考查的是游戏公平性的判断.实际考查概率的计算与游戏公平性的理解,要求学生根据题意,结合实际情况,计算并比较游戏者的胜利的概率,进而得到结论.用到的知识点为:概率=所求情况数与总情况数之比.26.【分析】根据CE和α的正切值可以求得AE的长度,根据AB=AE+EB即可求得AB的长度,即可解题.【解答】解:在中Rt△ACE,∴AE=CE•tanα,=BD•tanα,=25×tan22°,≈10.10米,∴AB=AE+EB=AE+CD≈10.10+1.20≈11.3(米).答:电线杆的高度约为11.3米.【点评】本题考查了三角函数在直角三角形中的运用,本题中正确计算AE的值是解题的关键.27.【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,在Rt△OAC中利用勾股定理求出r 的值,连接BE,由AE是直径,根据圆周角定理得到∠ABE=90°,利用OC是△ABE的中位线得到BE=2OC=6,然后在Rt△CBE中利用勾股定理可计算出CE.【解答】解:∵OD⊥弦AB,AB=8,∴AC===4,设⊙O的半径OA=r,∴OC=OD﹣CD=r﹣2,在Rt△OAC中,r2=(r﹣2)2+42,解得:r=5,连结BE,如图,∵OD=5,CD=2,∴OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE=.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧,也考查了勾股定理、圆周角定理,作出恰当的辅助线是解答此题的关键.28.【分析】连接OD,作出辅助线,只要证明OD⊥EF即可,根据题目中的条件可知,∠FOD与∠FAD的关系,由AD平分∠CAB,可知∠EAF与∠FAD之间的关系,又因为AE⊥EF,从而可以推出OD垂直EF,本题得以解决.【解答】证明:连接OD,如右图所示,∵∠FOD=2∠BAD,AD平分∠CAB,∴∠EAF=2∠BAD,∴∠EAF=∠FOD,∵AE⊥EF,∴∠AEF=90°,∴∠EAF+∠EFA=90°,∴∠DFO+∠DOF=90°,∴∠ODF=90°,∴OD⊥EF,即EF与圆O相切.【点评】本题考查切线的判定,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.29.【分析】(1)由抛物线y=ax2+bx+c过点A(﹣3,0),B(1,0),得出c与a的关系,即可得出C点坐标;(2)利用已知得出△AOC∽△COB,进而求出OC的长度,即可得出a的取值范围;(3)作DG⊥y轴于点G,延长DC交x轴于点H,得出抛物线的对称轴为x=﹣1,进而求出△DCG ∽△HCO,得出OH=3,过B作BM⊥DH,垂足为M,即BM=h,根据h=HB sin∠OHC求出0°<∠OHC≤30°,得到0<sin∠OHC≤,即可求出答案;(4)连接CE,过点N作NP∥CD交y轴于P,连接EF,根据三角形的面积公式求出S=S△CAEF,根据NP∥CE,求出,设过N、P两点的一次函数是y=kx+b,代入N、P 四边形EFCB的左边得到方程组,求出直线NP的解析式,同理求出A、C两点的直线的解析式,组成方程组求出即可.【解答】解:(1)∵抛物线y=ax2+bx+c过点A(﹣3,0),B(1,0),∴消去b,得c=﹣3a.∴点C的坐标为(0,﹣3a),答:点C的坐标为(0,﹣3a).(2)当∠ACB=90°时,∠AOC=∠BOC=90°,∠OBC+∠BCO=90°,∠ACO+∠BCO=90°,∴∠ACO=∠OBC,∴△AOC∽△COB,,即OC2=AO•OB,∵AO=3,OB=1,∴OC=,∵∠ACB不小于90°,∴OC≤,即﹣c≤,由(1)得3a≤,∴a≤,又∵a>0,∴a的取值范围为0<a≤,答:系数a的取值范围是0<a≤.(3)作DG⊥y轴于点G,延长DC交x轴于点H,如图.∵抛物线y=ax2+bx+c交x轴于A(﹣3,0),B(1,0).∴抛物线的对称轴为x=﹣1.即﹣=﹣1,所以b=2a.又由(1)有c=﹣3a.∴抛物线方程为y=ax2+2ax﹣3a,D点坐标为(﹣1,﹣4a).于是CO=3a,GC=a,DG=1.∵DG∥OH,∴△DCG∽△HCO,∴,即,得OH=3,表明直线DC过定点H(3,0).过B作BM⊥DH,垂足为M,即BM=h,∴h=HB sin∠OHC=2sin∠OHC.∵0<CO≤,∴0°<∠OHC≤30°,0<sin∠OHC≤.∴0<h≤1,即h的最大值为1,答:△BCD中CD边上的高h的最大值是1.(4)由(1)、(2)可知,当∠ACB=90°时,,,设AB的中点为N,连接CN,则N(﹣1,0),CN将△ABC的面积平分,连接CE,过点N作NP∥CE交y轴于P,显然点P在OC的延长线上,从而NP必与AC相交,设其交点为F,连接EF,因为NP∥CE,所以S△CEF =S△CEN,由已知可得NO=1,,而NP∥CE,∴,得,设过N、P两点的一次函数是y=kx+b,则,解得:,即,①同理可得过A、C两点的一次函数为,②解由①②组成的方程组得,,故在线段AC上存在点满足要求.答:当∠ACB=90°,在线段AC上存在点F,使得直线EF将△ABC的面积平分,点F的坐标是(﹣,﹣).【点评】本题主要考查对用待定系数法求二次函数、一次函数的解析式,三角形的面积,解二元一次方程,相似三角形的性质和判定,二次函数图象上点的坐标特征等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.。
2019年绵阳市中考数学试题(解析版)

2019年绵阳市中考数学试题(解析版)一、选择题:本大题共12个小题,每小题3分,共36分.每个小题只有一个选项符合题目要求.1.若=2,则a的值为()A.﹣4B.4C.﹣2D.2.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A.0.2×10﹣3B.0.2×10﹣4C.2×10﹣3D.2×10﹣43.对如图的对称性表述,正确的是()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形4.下列几何体中,主视图是三角形的是()A.B.C.D.5.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)6.已知x是整数,当|x﹣|取最小值时,x的值是()A.5B.6C.7D.87.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A.极差是6B.众数是7C.中位数是5D.方差是88.已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A.ab2B.a+b2C.a2b3D.a2+b39.红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种10.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ﹣cosθ)2=()A.B.C.D.11.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc<0;②2a﹣c>0;③a+2b+4c>0;④+<﹣4,正确的个数是()A.1B.2C.3D.412.如图,在四边形ABCD中,AB∥DC,∠ADC=90°,AB=5,CD=AD=3,点E是线段CD的三等分点,且靠近点C,∠FEG的两边与线段AB分别交于点F、G,连接AC 分别交EF、EG于点H、K.若BG=,∠FEG=45°,则HK=()A.B.C.D.二、填空题:本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上.13.因式分解:m2n+2mn2+n3=.14.如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=.15.单项式x﹣|a﹣1|y与2x y是同类项,则a b=.16.一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行60km所用时间相同,则江水的流速为km/h.17.在△ABC中,若∠B=45°,AB=10,AC=5,则△ABC的面积是.18.如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2.将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′=.三、解答题:本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤19.(16分)(1)计算:2+|(﹣)﹣1|﹣2tan30°﹣(π﹣2019)0;(2)先化简,再求值:(﹣)÷,其中a=,b=2﹣.20.(11分)胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.21.(11分)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?22.(11分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0且m ≠3)的图象在第一象限交于点A、B,且该一次函数的图象与y轴正半轴交于点C,过A、B分别作y轴的垂线,垂足分别为E、D.已知A(4,1),CE=4CD.(1)求m的值和反比例函数的解析式;(2)若点M为一次函数图象上的动点,求OM长度的最小值.23.(11分)如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.24.(12分)在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+P A的最小值.25.(14分)如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O 出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF翻折,得到△EFH.(1)求证:△DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的面积为S,求S关于时间t的关系式.2019年绵阳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.每个小题只有一个选项符合题目要求.1.若=2,则a的值为()A.﹣4B.4C.﹣2D.【解答】解:若=2,则a=4,故选:B.2.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A.0.2×10﹣3B.0.2×10﹣4C.2×10﹣3D.2×10﹣4【解答】解:将数0.0002用科学记数法表示为2×10﹣4,故选:D.3.对如图的对称性表述,正确的是()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形【解答】解:如图所示:是中心对称图形.故选:B.4.下列几何体中,主视图是三角形的是()A.B.C.D.【解答】解:A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.5.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)【解答】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴=30°,∠F AE=60°,∵A(4,0),∴OA=4,∴=2,∴,EF===,∴OF=AO﹣AF=4﹣1=3,∴.故选:D.6.已知x是整数,当|x﹣|取最小值时,x的值是()A.5B.6C.7D.8【解答】解:∵,∴5<,且与最接近的整数是5,∴当|x﹣|取最小值时,x的值是5,故选:A.7.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A.极差是6B.众数是7C.中位数是5D.方差是8【解答】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,9.A.极差=11﹣3=8,结论错误,故A不符合题意;B.众数为5,7,11,3,9,结论错误,故B不符合题意;C.这5个数按从小到大的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C 不符合题意;D.平均数是(5+7+11+3+9)÷5=7,方差S2=[(5﹣7)2+(7﹣7)2+(11﹣7)2+(3﹣7)2+(9﹣7)2]=8.结论正确,故D符合题意;故选:D.8.已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A.ab2B.a+b2C.a2b3D.a2+b3【解答】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.9.红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种【解答】解:设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.10.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ﹣cosθ)2=()A.B.C.D.【解答】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为5,小正方形的边长为5,∴5cosθ﹣5sinθ=5,∴cosθ﹣sinθ=,∴(sinθ﹣cosθ)2=.故选:A.11.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc<0;②2a﹣c>0;③a+2b+4c>0;④+<﹣4,正确的个数是()A.1B.2C.3D.4【解答】解:①∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵图象与x轴交于两点(x1,0),(2,0),其中0<x1<1,∴<﹣<,∴1<﹣<,当﹣<时,b>﹣3a,∵当x=2时,y=4a+2b+c=0,∴b=﹣2a﹣c,∴﹣2a﹣c>﹣3a,∴2a﹣c>0,故②正确;③当x=时,y的值为a+b+c,给a+b+c乘以4,即可化为a+2b+4c,∵抛物线的对称轴在1<﹣<,∴x=关于对称轴对称点的横坐标在和之间,由图象可知在和2之间y为负值,2和之间y为正值,∴a+2b+4c与0的关系不能确定,故③错误;④∵﹣,∴2a+b<0,∴(2a+b)2>0,4a2+b2+4ab>0,4a2+b2>﹣4ab,∵a>0,b<0,∴ab<0,∴,即,故④正确.故选:C.12.如图,在四边形ABCD中,AB∥DC,∠ADC=90°,AB=5,CD=AD=3,点E是线段CD的三等分点,且靠近点C,∠FEG的两边与线段AB分别交于点F、G,连接AC 分别交EF、EG于点H、K.若BG=,∠FEG=45°,则HK=()A.B.C.D.【解答】解:∵∠ADC=90°,CD=AD=3,∴AC=3,∵AB=5,BG=,∴AG=,∵AB∥DC,∴△CEK∽△AGK,∴==,∴==,∴==,∵CK+AK=3,∴CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,∴EM=AD=3,AM=DE=2,∴MG=,∴EG==,∵=,∴EK=,∵∠HEK=∠KCE=45°,∠EHK=∠CHE,∴△HEK∽△HCE,∴==,∴设HE=3x,HK=x,∵△HEK∽△HCE,∴=,∴=,解得:x=,∴HK=,故选:B.二、填空题:本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上.13.因式分解:m2n+2mn2+n3=n(m+n)2.【解答】解:m2n+2mn2+n3=n(m2+2mn+n2)=n(m+n)2.故答案为:n(m+n)2.14.如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=90°.【解答】解:∵AB∥CD,∴∠ABD+∠CDB=180°,∵BE是∠ABD的平分线,∴∠1=∠ABD,∵BE是∠BDC的平分线,∴∠2=∠CDB,∴∠1+∠2=90°,故答案为:90°.15.单项式x﹣|a﹣1|y与2x y是同类项,则a b=1.【解答】解:由题意知﹣|a﹣1|=≥0,∴a=1,b=1,则a b=(1)1=1,故答案为:1.16.一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行60km所用时间相同,则江水的流速为10km/h.【解答】解:设江水的流速为xkm/h,根据题意可得:=,解得:x=10,经检验得:x=10是原方程的根,答:江水的流速为10km/h.故答案为:10.17.在△ABC中,若∠B=45°,AB=10,AC=5,则△ABC的面积是75或25.【解答】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ABD中,AD=AB•sin B=10,BD=AB•cos B=10;在Rt△ACD中,AD=10,AC=5,∴CD==5,∴BC=BD+CD=15或BC=BD﹣CD=5,∴S△ABC=BC•AD=75或25.故答案为:75或25.18.如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2.将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′=.【解答】解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2,∴AB=BC=2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=BE′=,在Rt△BCH中,CH==,∴CE′=+,故答案为:.三、解答题:本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤19.(16分)(1)计算:2+|(﹣)﹣1|﹣2tan30°﹣(π﹣2019)0;(2)先化简,再求值:(﹣)÷,其中a=,b=2﹣.【解答】解:(1)2+|(﹣)﹣1|﹣2tan30°﹣(π﹣2019)0=+2﹣2×﹣1=+2﹣﹣1=1;(2)原式=×﹣×=﹣﹣=﹣=﹣,当a=,b=2﹣时,原式=﹣=﹣.20.(11分)胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.【解答】解:(1)80~90的频数为36×50%=18,则80~85的频数为18﹣11=7,95~100的频数为36﹣(4+18+9)=5,补全图形如下:扇形统计图中扇形D对应的圆心角度数为360°×=50°;(2)画树状图为:共有20种等可能的结果数,其中抽取的学生恰好是一名男生和一名女生的结果数为12,所以抽取的学生恰好是一名男生和一名女生的概率为=.21.(11分)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?【解答】解:设甲、乙两种客房每间现有定价分别是x元、y元,根据题意,得:,解得,答:甲、乙两种客房每间现有定价分别是300元、200元;(2)设每天的定价增加了a个20元,则有2a个房间空闲,根据题意有:m=(20﹣2a)(200+20a﹣80)=﹣40a2+160a+2400=﹣40(a﹣2)2+2560,∵﹣40<0,∴当a=2时,m取得最大值,最大值为2560,此时房间的定价为200+2×20=240元.答:当每间房间定价为240元时,乙种风格客房每天的利润w最大,最大利润是2560元.22.(11分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0且m ≠3)的图象在第一象限交于点A、B,且该一次函数的图象与y轴正半轴交于点C,过A、B分别作y轴的垂线,垂足分别为E、D.已知A(4,1),CE=4CD.(1)求m的值和反比例函数的解析式;(2)若点M为一次函数图象上的动点,求OM长度的最小值.【解答】解:(1)将点A(4,1)代入y=,得,m2﹣3m=4,解得,m1=4,m2=﹣1,∴m的值为4或﹣1;反比例函数解析式为:y=;(2)∵BD⊥y轴,AE⊥y轴,∴∠CDB=∠CEA=90°,∴△CDB∽△CEA,∴,∵CE=4CD,∴AE=4BD,∵A(4,1),∴AE=4,∴BD=1,∴x B=1,∴y B==4,∴B(1,4),将A(4,1),B(1,4)代入y=kx+b,得,,解得,k=﹣1,b=5,∴y AB=﹣x+5,设直线AB与x轴交点为F,当x=0时,y=5;当y=0时x=5,∴C(0,5),F(5,0),则OC=OF=5,∴△OCF为等腰直角三角形,∴CF=OC=5,则当OM垂直CF于M时,由垂线段最知可知,OM有最小值,即OM=CF=.23.(11分)如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.【解答】证明:(1)∵C是的中点,∴,∵AB是⊙O的直径,且CF⊥AB,∴,∴,∴CD=BF,在△BFG和△CDG中,∵,∴△BFG≌△CDG(AAS);(2)解法一:如图,连接OF,设⊙O的半径为r,Rt△ADB中,BD2=AB2﹣AD2,即BD2=(2r)2﹣22,Rt△OEF中,OF2=OE2+EF2,即EF2=r2﹣(r﹣2)2,∵,∴,∴BD=CF,∴BD2=CF2=(2EF)2=4EF2,即(2r)2﹣22=4[r2﹣(r﹣2)2],解得:r=1(舍)或3,∴BF2=EF2+BE2=32﹣(3﹣2)2+22=12,∴BF=2;解法二:如图,过C作CH⊥AD于H,连接AC、BC,∵,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴,∴BC2=AB•BE=6×2=12,∴BF=BC=2.解法三:如图,连接OC,交BD于H,∵C是的中点,∴OC⊥BD,∴DH=BH,∵OA=OB,∴OH=AD=1,∵OC=OB,∠COE=∠BOH,∠OHB=∠OEC=90°,∴△COE≌△BOH(AAS),∴OH=OE=1,∴CE=EF==2,∴BF===2.24.(12分)在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+P A的最小值.【解答】解:(1)将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y=a(x﹣1)2﹣2,∵OA=1,∴点A的坐标为(﹣1,0),代入抛物线的解析式得,4a﹣2=0,∴,∴抛物线的解析式为y=,即y=.令y=0,解得x1=﹣1,x2=3,∴B(3,0),∴AB=OA+OB=4,∵△ABD的面积为5,∴=5,∴y D=,代入抛物线解析式得,,解得x1=﹣2,x2=4,∴D(4,),设直线AD的解析式为y=kx+b,∴,解得:,∴直线AD的解析式为y=.(2)过点E作EM∥y轴交AD于M,如图,设E(a,),则M(a,),∴=,∴S△ACE=S△AME﹣S△CME===,=,∴当a=时,△ACE的面积有最大值,最大值是,此时E点坐标为().(3)作E关于x轴的对称点F,连接EF交x轴于点G,过点F作FH⊥AE于点H,交x轴于点P,∵E(),OA=1,∴AG=1+=,EG=,∴,∵∠AGE=∠AHP=90°∴sin,∴,∵E、F关于x轴对称,∴PE=PF,∴PE+AP=FP+HP=FH,此时FH最小,∵EF=,∠AEG=∠HEF,∴=,∴.∴PE+P A的最小值是3.25.(14分)如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O 出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF翻折,得到△EFH.(1)求证:△DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的面积为S,求S关于时间t的关系式.【解答】(1)证明:∵四边形ABCD是正方形,∴∠DAC=∠CAB=45°,∴∠FDE=∠CAB,∠DFE=∠DAC,∴∠FDE=∠DFE=45°,∴∠DEF=90°,∴△DEF是等腰直角三角形;(2)设OE=t,连接OD,∴∠DOE=∠DAF=90°,∵∠OED=∠DF A,∴△DOE∽△DAF,∴,∴t,又∵∠AEF=∠ADG,∠EAF=∠DAG,∴△AEF∽△ADG,∴,∴,又∵AE=OA+OE=2+t,∴,∴EG=AE﹣AG=,当点H恰好落在线段BC上∠DFH=∠DFE+∠HFE=45°+45°=90°,∴△ADF∽△BFH,∴,∵AF∥CD,∴,∴,∴,解得:t1=,t2=(舍去),∴EG=EH=;(3)过点F作FK⊥AC于点K,由(2)得EG=,∵DE=EF,∠DEF=90°,∴∠DEO=∠EFK,∴△DOE≌△EKF(AAS),∴FK=OE=t,∴S=.。
专题2.1 方程(第01期)-2019年中考数学试题分项版解析汇编(解析版)

房间有个,小房间有个A. B. C. D.【来源】广东省深圳市2019年中考数学试题【分析】大房间有个,小房间有个,根据等量关系:大小共【详解】大房间有个,小房间有个,由题意得:,A.【点睛】本题考查了二元一次方程组的应用,弄清题意,找出等量关系列出方程组是解此类问题的关键.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐49座客车x辆,37座客车y辆,根据题意可列出方程组()A. B. C. D.【来源】浙江省温州市2019年中考数学试卷【答案】A.方程组的解是(A. B. C. D.【来源】天津市2019年中考数学试题详解:,①,原方程组的解为.故选点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键..夏季来临,某超市试销、两种型号的风扇,两周内共销售元,型风扇每台元,型风扇每台元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【来源】山东省泰安市2019年中考数学试题【答案】C点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键..已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()B. 2C. -4D. 4【来源】江苏省盐城市2019年中考数学试题【答案】B.已知关于的一元二次方程有两个不相等的实数根,若,则的值=,=,结合,即可求出点睛:本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:(1)根据二-、两根之积等于.旅游收入约为.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为( )2 B. 1 C. 2 D. 0【来源】四川省宜宾市2019年中考数学试题【答案】D【解析】分析:根据根与系数的关系可得出x1x2=0,此题得解.详解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,=0..点睛:本题考查了根与系数的关系,牢记两根之积等于是解题的关键.学科#网.关于的一元二次方程的根的情况是()有两不相等实数根 B. 有两相等实数根无实数根 D. 不能确定【来源】湖南省娄底市2019年中考数学试题【详解】,.关于的一元二次方程有两个实数根,则的取值范围是(A. B. C. D.【点评】考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根..欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是()A. 的长B. 的长C. 的长D. 的长【来源】2019年浙江省舟山市中考数学试题.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【来源】安徽省2019年中考数学试题【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程.【详解】x(x+1)+ax=0,+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,a1=a2=-1,A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;.一元二次方程根的情况是(+>﹣,故有两个正A. B.C. D.【来源】山东省淄博市2019年中考数学试题【答案】C点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键..分式方程的解是()A. B. C. D.详解:,去分母,方程两边同时乘以.分式方程的解为(A. B. C.【来源】山东省德州市2019年中考数学试题【答案】D点睛:本题考查了分式方程的解,始终注意分母不为0这个条件..若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为()A. B. C. 1 D. 2【来源】【全国省级联考】2019年重庆市中考数学试卷(A卷)【答案】C【解析】【分析】先求出不等式的解集,根据只有四个整数解确定出a的取值范围,解分式方程后根据解【详解】解不等式,得,由于不等式组只有四个整数解,即只有∴,∴;解分式方程,得,【点睛】本题考查含有参数的不等式和含有参数的分式方程的应用,熟练掌握不等式组的解法、分式方程的解法以及解分式方程需要注意的事项是解题的关键.二、填空题.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.【来源】山东省滨州市2019年中考数学试题【答案】【解析】分析:利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.详解:∵关于x、y的二元一次方程组的解是,∴将解代入方程组m=﹣1,的二元一次方程组整理为:解得:点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显..中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:问牛、羊每头各值金多少?设牛、羊每头各值金两、两,依题意,可列出方程为【答案】【点睛】本题考查了二元一次方程组的应用,弄清题意,找出等量关系列出方程组是关键..对于实数a,b,定义运算“◆”:a◆b=,例如4◆3,因为4>3.所以4◆3==5.若x,y满足方程组,则x◆y=_____________.【来源】山东省德州市2019年中考数学试题【答案】60【解析】分析:根据二元一次方程组的解法以及新定义运算法则即可求出答案.详解:由题意可知:,解得:.x<y,∴原式=5×12=60.千克粗粮,千克粗粮,千克粗粮;乙种粗粮每袋装有千克粗粮,千克粗粮,粗粮甲、乙两种袋装粗粮每袋成本价分别为袋中三种粗粮的成本价之和已知粗粮每千克成本价为()【来源】【全国省级联考】2019年重庆市中考数学试卷(【答案】甲乙311212由题意可得甲的成本价为:=45(元),的成本为:3×6=18(元),B、C的成本之和为:45-18=27(元),根据乙的组成则可得乙的成本价为:6+27×2=60(元),设甲销售袋,乙销售袋使总利润率为24%,则有45a+60b)×24%=(58.5-45)a+(72-60)b,故答案为:.【点评】本题考查了方程的应用,难度较大,根据题意求出甲、乙两种包装的成本价是解题的关键【答案】2015______________.【来源】湖北省黄冈市2019年中考数学试题【答案】16【解析】分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.详解:解方程x2-10x+21=0得x1=3、x2=7,<第三边的边长<9,∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为:16.点睛:本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和..一元二次方程的两根为, ,则的值为____________ .【来源】江西省2019年中等学校招生考试数学试题【答案】2.若是方程的一个根,则的值为故答案为:2019点睛:本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题.关于的方程有两个不相等的实数根,那么的取值范围是__________.【来源】江苏省扬州市2019年中考数学试题【答案】且【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>0且m≠0,求出m的取值范围即可.详解:∵一元二次方程mx2-2x+3=0有两个不相等的实数根,0且m≠0,4-12m>0且m≠0,<且m≠0,故答案为:m<且m≠0.点睛:本题考查了一元二次方程.设、是一元二次方程的两个根,且,则__________,__________,点睛:本题考查了根与系数的关系:若、是一元二次方程ax2+bx+c=0(a≠0)的两根时,=-,=.28.若是一元二次方程的两个实数根,则=__________.【来源】山东省德州市2019年中考数学试题【答案】-3【解析】分析:根据根与系数的关系即可求出答案.详解:由根与系数的关系可知:x1+x2=﹣1,x1x2=﹣2,x1+x2+x1x2=﹣3故答案为:﹣3.点睛:本题考查了根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型..为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.【来源】江苏省宿迁市2019年中考数学试卷.当____________解分式方程会出现增根.年中考数学试题时,3-5=-m,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值..甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少,若设甲每小时检测个,则根据题意,可列出方程:__________.【来源】2019年浙江省舟山市中考数学试题【答案】【解析】【分析】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据甲检测300个比乙检测200个所用的时间少,列出方程即可.【解答】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据题意.故答案为:【点评】考查分式方程的应用,解题的关键是找出题目中的等量关系【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键..解方程组:【来源】江苏省宿迁市2019年中考数学试卷【答案】原方程组的解为【解析】【分析】利用代入法进行求解即可得.【详解】,由①得:x=-2y ③将③代入②得:3(-2y)+4y=6,y=-3,y=-3代入③得:x=6,∴原方程组的解为.【点睛】本题考查了解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键)设购置蓝色地砖x块,则购置红色地砖(12000-x)块,所需的总费用为y元,由题意可得:x≥(12000-x),x≥4000,点睛:此题主要考查了一次函数的应用以及二元一次方程组的应用,正确得出函数关系式是解题关键..在端午节来临之际,某商店订购了A型和B型两种粽子.A型粽子28元/千克,B型粽子24元/千克型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千【来源】湖北省黄冈市2019年中考数学试题【答案】A型粽子40千克,B型粽子60千克.【解析】分析】订购了A型粽子x千克,B型粽子y千克.根据B型粽子的数量比A型粽子的2倍少千克,购进两种粽子共用了2560元列出方程组,求解即可.详解:设订购了A型粽子x千克,B型粽子y千克,根据题意,得,解得.答:订购了A型粽子40千克,B型粽子60千克.点睛:本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合方施工任务.该工程队有两种型号的挖掘机台型和台型挖掘机同时施工一小时挖土台型和台型挖掘机同时施工一小时挖土立方米.每台型挖掘机一小时的施工费用为每台型挖掘机一小时的施工费用为分别求每台型, 型挖掘机一小时挖土多少立方米若不同数量的型和型挖掘机共)每台型挖掘机一小时挖土每台型挖据机一小时挖土型挖据机台,型挖掘机型挖掘机台,型挖掘机型挖掘机台,型挖掘机型挖掘机设型挖掘机有台,总费用为元,则型挖据机有台.根据题意,得,因为,解得,又因为,解得,所以.共有三种调配方案.:当时, ,即型挖据机7台,型挖掘机5台;:当时, ,即型挖掘机8台,型挖掘机4台;:当时, ,即型挖掘机9台,型挖掘机3台.,由一次函数的性质可知,随的减小而减小,当时,,此时型挖掘机, 型挖掘机【点评】考查二元一次方程组的应用,解题的关键是找出题目中的等量关系,列方程.学科#网.用消元法解方程组时,两位同学的解法如下:)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”.)请选择一种你喜欢的方法,完成解答.【来源】2019年浙江省舟山市中考数学试题【答案】(1)解法一中的计算有误;(2)原方程组的解是.【解析】【分析】根据加减消元法和代入消元法进行判断即可.【解答】(1)解法一中的计算有误(标记略).)用消元法解方程组时,两位同学的解法如下:②,得,解得,把代入①,得,解得,所以原方程组的解是.【点评】考查加减消元法和代入消元法解二元一次方程组,熟练掌握两种方法是解题的关键.用消元法解方程组时解法二由②,得,得. 把①代入③,得.“”.点睛:本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法..一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.)若降价3元,则平均每天销售数量为________件;)当每件商品降价多少元时,该商店每天销售利润为1200元?【来源】江苏省盐城市2019年中考数学试题【答案】(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.【解析】分析:(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价3元,则平均每天可多售出2×3=6件,即平均每天销售数量为20+6=26件;)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可..已知关于的一元二次方程.)试证明:无论取何值此方程总有两个实数根;)若原方程的两根,满足,求的值,由此即可证出:无论p取何值此方程总有两个实数根;)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.详解:(1)证明:原方程可变形为x2-5x+6-p2-p=0.(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥0,p取何值此方程总有两个实数根;)∵原方程的两根为x1、x2,=5,x1x2=6-p2-p.22+x22-x1x2=3p2+1,+x2)2-3x1x2=3p2+1,(6-p2-p)=3p2+1,25-18+3p2+3p=3p2+1,3p=-6,.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有两个实.若关于的一元二次方程有两个不相等的实数根,求的取值范围【答案】.某地年为做好,投入资金万元用于异地安置,并规划投入资金逐年增加,年在年的基础上增加投入资金万元)从年到年,该地投入异地安置资金的年平均增长率为多少?)在年异地安置的具体实施中,该地计划投入资金不低于万元用于优先搬迁租房奖励,规定前户(含第户)每户每天奖励元,户以后每户每天奖励元,按租房天计算,求年该地至少有多少户享受到优先搬迁租房奖励.【来源】贵州省安顺市2019年中考数学试题【答案】(1)从年到年,该地投入异地安置资金的年平均增长率为;(2)年该地至少有户享受到优先搬迁租房奖励.【解析】分析:(1)设年平均增长率为x,根据:2015年投入资金给×(1+增长率)2=2017年投入资金,列出方程求解可得;)设今年该地有a户享受到优先搬迁租房奖励,根据:前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万,列不等式求解可得.详解:(1)设该地投入异地安置资金的年平均增长率为,根据题意得,解得:或(舍),答:从年到年,该地投入异地安置资金的年平均增长率为;)设年该地有户享受到优先搬迁租房奖励,根据题意得,∵,∴,,解得:.答:年该地至少有户享受到优先搬迁租房奖励计算:.解方程:.),.点睛:此题主要考查了实数的运算和一元二次方程的解法,关键是熟练掌握特殊角的三角函数、二次根式的化简、零次幂、负整数指数幂以及一元二次方程的求根公式.学科#网.为积极响应新旧动能转换.提高公司经济效益.某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时550台.假定该设备的年销售量y(单位:台)和销售单价(单位:万元)成一次函数关系.求年销售量与销售单价的函数关系式;根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润.则该设备的销);(2)设此设备的销售单价为x万元/台,则每台设备的利润为(x﹣30)万元,销售数量为x+1000)台,根据题意得:30)(﹣10x+1000)=10000,整理,得:x2﹣130x+4000=0,x1=50,x2=80.∵此设备的销售单价不得高于70万元,∴x=50.答:该设备的销售单价应是50万元/台.点睛:本题考查了待定系数法求一次函数解析式以及一元二次方程的应用,解题的关键是:(1)根据点的坐标,利用待定系数法求出函数关系式;(2)找准等量关系,正确列出一元二次方程..在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.原计划是今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化和里程数至少是多少千米?)由题意得:年:道路硬化经费为:13万/千米,里程为:30km道路拓宽经费为:26万/千米,里程为:15km6月起:道路硬化经费为:13(1+a%)万/千米,里程数:40(1+5a%)km,道路拓宽经费为:26(1+5a%)万/千米,里程数:10(1+8a%)km,又∵政府投入费用为:780(1+10a%)万元,∴列方程:13(1+a%)×40(1+5a%)+26(1+5a%)×10(1+8a%)=780(1+10a%),a%=t,方程可整理为:13(1+t)×40(1+5t)+26(1+5t)×10(1+8t)=780(1+10t),520(1+t)(1+5t)+260(1+5t)(1+8t)=780(1+10t),化简得:,2(1+t)(1+5t)+(1+5t)(1+8t)=3 (1+10t),10-t=0,∴,∴综上所述: a = 10,)计算:.)解方程:.),.【点评】本题主要考查了实数的综合运算能力以及解一元二次方程,是各地中考题中常见的计算题型.解决实数的综合运算题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算..解方程:﹣=0【来源】江苏省连云港市2019年中考数学试题【答案】x=2【解析】分析:根据等式的性质去分母,可得整式方程,然后解这个整式方程,最后检验可得答案.详解:方程两边同乘以x(x-1),去分母得,x-1)=0,x=-2,经检验:x=-2是原分式方程的解.)设第一批饮料进货单价为元,根据等量关系第二批饮料的数量是第一批的)设销售单价为元,根据两批全部售完后,获利不少于【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关学科#网.我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.【来源】四川省宜宾市2019年中考数学试题【答案】每月实际生产智能手机30万部.【解析】分析:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据工作根据题意得:,.京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长,是我国最繁忙的铁路干线之一倍,客车比货车少用,那么货车的速度是多少?(精确到)货车的速度是千米点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键..刘阿姨到超市购买大米,第一次按原价购买,用了元.几天后,遇上这种大米折出售,她用元又买了一些,两次一共购买了kg.这种大米的原价是多少?【来源】江苏省南京市2019年中考数学试卷【答案】这种大米的原价为每千克元.【解析】分析:设这种大米的原价是x元,打8折后是0.8x元,根据两次一共购买了kg,列出算式,求,最后要检验.设这种大米的原价为每千克元,根据题意,得.解这个方程,得.经检验,是所列方程的解答:这种大米的原价为每千克元详解:(1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:,解得:.经检验,是原方程的解.所以,甲种图书售价为每本元,答:甲种图书售价每本28元,乙种图书售价每本20元.)设甲种图书进货本,总利润元,则.又∵,解得:.∵随的增大而增大,∴当最大时最大,。
2019年四川省绵阳市中考数学试卷(解析版)

2019年四川省绵阳市中考数学试卷(解析版)一、选择题:本大题共12个小题,每小题3分,共36分.每个小题只有一个选项符合题目要求.1.(3分)若2,则a的值为()A.-4 B.4 C.-2 D.【解答】解:若2,则a=4,故选:B.2.(3分)据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A.0.2×10-3B.0.2×10-4C.2×10-3D.2×10-4【解答】解:将数0.0002用科学记数法表示为2×10-4,故选:D.3.(3分)对如图的对称性表述,正确的是()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形【解答】解:如图所示:是中心对称图形.故选:B.4.(3分)下列几何体中,主视图是三角形的是()A.B.C.D.【解答】解:A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.5.(3分)如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,) B.(,2) C.(,3) D.(3,)【解答】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴30°,∠F AE=60°,∵A(4,0),∴OA=4,∴2,∴,EF,∴OF=AO-AF=4-1=3,∴.故选:D.6.(3分)已知x是整数,当|x|取最小值时,x的值是()A.5 B.6 C.7 D.8【解答】解:∵,∴5,且与最接近的整数是5,∴当|x|取最小值时,x的值是5,故选:A.7.(3分)帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A.极差是6 B.众数是7 C.中位数是5 D.方差是8【解答】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,9.A.极差=11-3=8,结论错误,故A不符合题意;B.众数为5,7,11,3,9,结论错误,故B不符合题意;C.这5个数按从小到大的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C 不符合题意;D.平均数是(5+7+11+3+9)÷5=7,方差S2[(5-7)2+(7-7)2+(11-7)2+(3-7)2+(9-7)2]=8.结论正确,故D符合题意;故选:D.8.(3分)已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A.ab2B.a+b2C.a2b3D.a2+b3【解答】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.9.(3分)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种【解答】解:设该店购进甲种商品x件,则购进乙种商品(50-x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.10.(3分)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ-cosθ)2=()A.B.C.D.【解答】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为5,小正方形的边长为5,∴5cosθ-5sinθ=5,∴cosθ-sinθ,∴(sinθ-cosθ)2.11.(3分)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc<0;②2a-c>0;③a+2b+4c>0;④4,正确的个数是()A.1 B.2 C.3 D.4【解答】解:①∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵图象与x轴交于两点(x1,0),(2,0),其中0<x1<1,∴,∴1,当时,b>-3a,∵当x=2时,y=4a+2b+c=0,∴b=-2ac,∴-2ac>-3a,∴2a-c>0,故②正确;③∵,∴2a+b>0,∵c>0,4c>0,∴a+2b+4c>0,④∵,∴2a+b>0,∴(2a+b)2>0,4a2+b2+4ab>0,4a2+b2>-4ab,∵a>0,b<0,∴ab<0,dengx∴,即,故④正确.故选:D.12.(3分)如图,在四边形ABCD中,AB∥DC,∠ADC=90°,AB=5,CD=AD=3,点E 是线段CD的三等分点,且靠近点C,∠FEG的两边与线段AB分别交于点F、G,连接AC分别交EF、EG于点H、K.若BG,∠FEG=45°,则HK=()A.B.C.D.【解答】解:∵∠ADC=90°,CD=AD=3,∴AC=3,∵AB=5,BG,∴AG,∵AB∥DC,∴△CEK∽△AGK,∴,∴,∴,∵CK+AK=3,过E作EM⊥AB于M,则四边形ADEM是矩形,∴EM=AD=3,AM=DE=2,∴MG,∴EG,∵,∴EK,∵∠HEK=∠KCE=45°,∠EHK=∠CHE,∴△HEK∽△HCE,∴,∴设HE=3x,HKx,∵△HEK∽△HCE,∴,∴,解得:x,∴HK,故选:B.二、填空题:本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上.13.(3分)因式分解:m2n+2mn2+n3=n(m+n)2.【解答】解:m2n+2mn2+n3=n(m2+2mn+n2)=n(m+n)2.故答案为:n(m+n)2.14.(3分)如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=【解答】解:∵AB∥CD,∴∠ABD+∠CDB=180°,∵BE是∠ABD的平分线,∴∠1∠ABD,∵BE是∠BDC的平分线,∴∠2∠CDB,∴∠1+∠2=90°,故答案为:90°.15.(3分)单项式x-|a-1|y与2xy是同类项,则a b=1.【解答】解:由题意知-|a-1|0,∴a=1,b=1,则a b=(1)1=1,故答案为:1.16.(3分)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行60km所用时间相同,则江水的流速为10km/h.【解答】解:设江水的流速为x km/h,根据题意可得:,解得:x=10,经检验得:x=10是原方程的根,答:江水的流速为10km/h.故答案为:10.17.(3分)在△ABC中,若∠B=45°,AB=10,AC=5,则△ABC的面积是75或25.【解答】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ABD中,AD=AB•sin B=10,BD=AB•cos B=10;在Rt△ACD中,AD=10,AC=5,∴BC=BD+CD=15或BC=BD-CD=5,∴S△ABC BC•AD=75或25.故答案为:75或25.18.(3分)如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2.将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′=.【解答】解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2,∴AB=BC=2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′HBE′,在Rt△BCH中,CH,∴CE′,故答案为:.三、解答题:本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤19.(16分)(1)计算:2|()-1|-2tan30°-(π-2019)0;(2)先化简,再求值:(,其中a,b=2.【解答】解:(1)2|()-1|-2tan30°-(π-2019)02-211=1;(2)原式,当a,b=2时,原式.20.(11分)胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.【解答】解:(1)80~90的频数为36×50%=18,则80~85的频数为18-11=7,95~100的频数为36-(4+18+9)=5,补全图形如下:扇形统计图中扇形D对应的圆心角度数为360°50°;(2)画树状图为:共有20种等可能的结果数,其中抽取的学生恰好是一名男生和一名女生的结果数为12,所以抽取的学生恰好是一名男生和一名女生的概率为.21.(11分)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?【解答】解:设甲、乙两种客房每间现有定价分别是x元、y元,根据题意,得:,解得,答:甲、乙两种客房每间现有定价分别是300元、200元;(2)设当每间房间定价为x元,m=x(20)-80×20,∴当x=200时,m取得最大值,此时m=2400,答:当每间房间定价为200元时,乙种风格客房每天的利润m最大,最大利润是2400元.22.(11分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y(m≠0且m≠3)的图象在第一象限交于点A、B,且该一次函数的图象与y轴正半轴交于点C,过A、B分别作y轴的垂线,垂足分别为E、D.已知A(4,1),CE=4C D.(1)求m的值和反比例函数的解析式;(2)若点M为一次函数图象上的动点,求OM长度的最小值.【解答】解:(1)将点A(4,1)代入y,得,m2-3m=4,解得,m1=4,m2=-1,∴m的值为4或-1;反比例函数解析式为:y;(2)∵BD⊥y轴,AE⊥y轴,∴∠CDB=∠CEA=90°,∴△CDB∽△CEA,∴,∵CE=4CD,∴AE=4BD,∵A(4,1),∴AE=4,∴BD=1,∴x B=1,∴y B4,∴B(1,4),将A(4,1),B(1,4)代入y=kx+b,得,,解得,k=-1,b=5,∴y AB=-x+5,设直线AB与x轴交点为F,当x=0时,y=5;当y=0时x=5,∴C(0,5),F(5,0),则OC=OF=5,∴△OCF为等腰直角三角形,∴CFOC=5,则当OM垂直CF于M时,由垂线段最知可知,OM有最小值,即OMCF.23.(11分)如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.【解答】证明:(1)∵C是的中点,∴,∵AB是⊙O的直径,且CF⊥AB,∴,∴,∴CD=BF,在△BFG和△CDG中,∵,∴△BFG≌△CDG(AAS);(2)如图,过C作CH⊥AD于H,连接AC、BC,∵,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴,∴BC2=AB•BE=6×2=12,∴BF=BC=2.24.(12分)在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PEP A的最小值.【解答】解:(1)将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y=a(x-1)2-2,∵OA=1,∴点A的坐标为(-1,0),代入抛物线的解析式得,4a-2=0,∴,∴抛物线的解析式为y,即y.令y=0,解得x1=-1,x2=3,∴B(3,0),∴AB=OA+OB=4,∵△ABD的面积为5,∴5,∴y D,代入抛物线解析式得,,解得x1=-2,x2=4,∴D(4,),设直线AD的解析式为y=kx+b,∴,解得:,∴直线AD的解析式为y.(2)过点E作EM∥y轴交AD于M,如图,设E(a,),则M(a,),∴,∴S△ACE=S△AME-S△CME,,∴当a时,△ACE的面积有最大值,最大值是,此时E点坐标为().(3)作E关于x轴的对称点F,连接EF交x轴于点G,过点F作FH⊥AE于点H,交轴于点P,∵E(),OA=1,∴AG=1,EG,∴,∵∠AGE=∠AHP=90°∴sin,∴,∵E、F关于x轴对称,∴PE=PF,∴PEAP=FP+HP=FH,此时FH最小,∵EF,∠AEG=∠HEF,∴,∴.∴PEP A的最小值是3.25.(14分)如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE 的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF翻折,得到△EFH.(1)求证:△DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的面积为S,求S关于时间t的关系式.【解答】(1)证明:∵四边形ABCD是正方形,∴∠DAC=∠CAB=45°,∴∠FDE=∠CAB,∠DFE=∠DAC,∴∠FDE=∠DFE=45°,∴∠DEF=90°,∴△DEF是等腰直角三角形;(2)设OE=t,连接OD,∴∠DOE=∠DAF=90°,∵∠OED=∠DF A,∴△DOE∽△DAF,∴,∴t,又∵∠AEF=∠ADG,∠EAF=∠DAG,∴△AEF∽△ADG,∴,∴,又∵AE=OA+OE=2t,∴,∴EG=AE-AG,当点H恰好落在线段BC上∠DFH=∠DFE+∠HFE=45°+45°=90°,∴△ADF∽△BFH,∴,∵AF∥CD,∴,∴,∴,解得:t1,t2(舍去),∴EG=EH;(3)过点F作FK⊥AC于点K,由(2)得EG,∵DE=EF,∠DEF=90°,∴∠DEO=∠EFK,∴△DOE≌△EKF(AAS),∴FK=OE=t,∴S.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年四川省宜宾市中考数学试卷一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上。
1.(3分)2的倒数是()A .B.﹣2C .D .2.(3分)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为()A.5.2×10﹣6B.5.2×10﹣5C.52×10﹣6D.52×10﹣5 3.(3分)如图,四边形ABCD是边长为5的正方形,E是DC上一点,DE=1,将△ADE 绕着点A顺时针旋转到与△ABF重合,则EF=()A .B .C.5D.24.(3分)一元二次方程x2﹣2x+b=0的两根分别为x1和x2,则x1+x2为()A.﹣2B.b C.2D.﹣b5.(3分)已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是()A.10B.9C.8D.76.(3分)如表记录了两位射击运动员的八次训练成绩:第1次第2次第3次第4次第5次第6次第7次第8次次数环数运动员甲107788897乙1055899810根据以上数据,设甲、乙的平均数分别为、,甲、乙的方差分别为s甲2,s乙2,则下列结论正确的是()A.=,s甲2<s乙2B.=,s甲2>s乙2C.>,s甲2<s乙2D.<,s甲2<s乙27.(3分)如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF的两边与△ABC 的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是()A.B.C.D.8.(3分)已知抛物线y=x2﹣1与y轴交于点A,与直线y=kx(k为任意实数)相交于B,C两点,则下列结论不正确的是()A.存在实数k,使得△ABC为等腰三角形B.存在实数k,使得△ABC的内角中有两角分别为30°和60°C.任意实数k,使得△ABC都为直角三角形D.存在实数k,使得△ABC为等边三角形二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横上。
9.(3分)分解因式:b2+c2+2bc﹣a2=.10.(3分)如图,六边形ABCDEF的内角都相等,AD∥BC,则∠DAB=°.11.(3分)将抛物线y=2x2的图象,向左平移1个单位,再向下平移2个单位,所得图象的解析式为.12.(3分)如图,已知直角△ABC中,CD是斜边AB上的高,AC=4,BC=3,则AD=.13.(3分)某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x,根据题意可列方程是.14.(3分)若关于x的不等式组有且只有两个整数解,则m的取值范围是.15.(3分)如图,⊙O的两条相交弦AC、BD,∠ACB=∠CDB=60°,AC=2,则⊙O 的面积是.16.(3分)如图,△ABC和△CDE都是等边三角形,且点A、C、E在同一直线上,AD与BE、BC分别交于点F、M,BE与CD交于点N.下列结论正确的是(写出所有正确结论的序号).①AM=BN;②△ABF≌△DNF;③∠FMC+∠FNC=180°;④=三、解答题:(本大题共8小题,共72分)解答应写出文字说明、证明过程或演算步骤。
17.(10分)(1)计算:(2019﹣)0﹣2﹣1+|﹣1|+sin245°(2)化简:÷(+)18.(6分)如图,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.19.(8分)某校在七、八、九三个年级中进行“一带一路”知识竞赛,分别设有一等奖、二等奖、三等奖、优秀奖、纪念奖.现对三个年级同学的获奖情况进行了统计,其中获得纪念奖有17人,获得三等奖有10人,并制作了如图不完整的统计图.(1)求三个年级获奖总人数;(2)请补全扇形统计图的数据;(3)在获一等奖的同学中,七年级和八年级的人数各占,其余为九年级的同学,现从获一等奖的同学中选2名参加市级比赛,通过列表或者树状图的方法,求所选出的2人中既有七年级又有九年级同学的概率.20.(8分)甲、乙两辆货车分别从A、B两城同时沿高速公路向C城运送货物.已知A、C 两城相距450千米,B、C两城的路程为440千米,甲车比乙车的速度快10千米/小时,甲车比乙车早半小时到达C城.求两车的速度.21.(8分)如图,为了测得某建筑物的高度AB,在C处用高为1米的测角仪CF,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A的仰角为60°.求该建筑物的高度AB.(结果保留根号)22.(10分)如图,已知反比例函数y=(k>0)的图象和一次函数y=﹣x+b的图象都过点P(1,m),过点P作y轴的垂线,垂足为A,O为坐标原点,△OAP的面积为1.(1)求反比例函数和一次函数的解析式;(2)设反比例函数图象与一次函数图象的另一交点为M,过M作x轴的垂线,垂足为B,求五边形OAPMB的面积.23.(10分)如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O 的弦,连结BD,∠BAD=∠ABD=30°,连结DO并延长交⊙O于点E,连结BE交⊙O 于点M.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径OD的长;(3)求线段BM的长.24.(12分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2x+c与直线y=kx+b 都经过A(0,﹣3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当△P AB面积最大时,求点P的坐标,并求△P AB面积的最大值.2019年四川省宜宾市中考数学试卷参考答案与试题解析一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上。
1.(3分)2的倒数是()A.B.﹣2C.D.【分析】根据倒数的定义,可以求得题目中数字的倒数,本题得以解决.【解答】解:2的倒数是,故选:A.【点评】本题考查倒数,解答本题的关键是明确倒数的定义.2.(3分)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为()A.5.2×10﹣6B.5.2×10﹣5C.52×10﹣6D.52×10﹣5【分析】由科学记数法可知0.000052=5.2×10﹣5;【解答】解:0.000052=5.2×10﹣5;故选:B.【点评】本题考查科学记数法;熟练掌握科学记数法a×10n中a与n的意义是解题的关键.3.(3分)如图,四边形ABCD是边长为5的正方形,E是DC上一点,DE=1,将△ADE 绕着点A顺时针旋转到与△ABF重合,则EF=()A.B.C.5D.2【分析】根据旋转变换的性质求出FC、CE,根据勾股定理计算即可.【解答】解:由旋转变换的性质可知,△ADE≌△ABF,∴正方形ABCD的面积=四边形AECF的面积=25,∴BC=5,BF=DE=1,∴FC=6,CE=4,∴EF===2.故选:D.【点评】本题考查的是旋转变换的性质、勾股定理的应用,掌握性质的概念、旋转变换的性质是解题的关键.4.(3分)一元二次方程x2﹣2x+b=0的两根分别为x1和x2,则x1+x2为()A.﹣2B.b C.2D.﹣b【分析】根据“一元二次方程x2﹣2x+b=0的两根分别为x1和x2”,结合根与系数的关系,即可得到答案.【解答】解:根据题意得:x1+x2=﹣=2,故选:C.【点评】本题考查了根与系数的关系,正确掌握一元二次方程根与系数的关系是解题的关键.5.(3分)已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是()A.10B.9C.8D.7【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:从俯视图可得最底层有5个小正方体,由主视图可得上面一层是2个,3个或4个小正方体,则组成这个几何体的小正方体的个数是7个或8个或9个,组成这个几何体的小正方体的个数最多是9个.故选:B.【点评】本题考查三视图的知识及从不同方向观察物体的能力,解题中用到了观察法.确定该几何体有几列以及每列方块的个数是解题关键.6.(3分)如表记录了两位射击运动员的八次训练成绩:第1次第2次第3次第4次第5次第6次第7次第8次次数环数运动员甲107788897乙1055899810根据以上数据,设甲、乙的平均数分别为、,甲、乙的方差分别为s甲2,s乙2,则下列结论正确的是()A .=,s甲2<s乙2B .=,s甲2>s乙2C .>,s甲2<s乙2D .<,s甲2<s乙2【分析】分别计算平均数和方差后比较即可得到答案.【解答】解:(1)=(10+7+7+8+8+8+9+7)=8;=(10+5+5+8+9+9+8+10)=8;s甲2=[(10﹣8)2+(7﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(7﹣8)2]=1;s乙2=[(10﹣8)2+(5﹣8)2+(5﹣8)2+(8﹣8)2+(9﹣8)2+(9﹣8)2+(8﹣8)2+(10﹣8)2]=,∴=,s甲2<s乙2,故选:A.【点评】本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.(3分)如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF的两边与△ABC 的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是()A.B.C.D.【分析】连接OB、OC,过点O作ON⊥BC,垂足为N,由点O是等边三角形ABC的内心可以得到∠OBC=∠OCB=30°,结合条件BC=2即可求出△OBC的面积,由∠EOF =∠BOC,从而得到∠EOB=∠FOC,进而可以证到△EOB≌△FOC,因而阴影部分面积等于△OBC的面积.【解答】解:连接OB、OC,过点O作ON⊥BC,垂足为N,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O为△ABC的内心∴∠OBC=∠OBA=∠ABC,∠OCB=∠ACB.∴∠OBA=∠OBC=∠OCB=30°.∴OB=OC.∠BOC=120°,∵ON⊥BC,BC=2,∴BN=NC=1,∴ON=tan∠OBC•BN=×1=,∴S△OBC=BC•ON=.∵∠EOF=∠AOB=120°,∴∠EOF﹣∠BOF=∠AOB﹣∠BOF,即∠EOB=∠FOC.在△EOB和△FOC中,,∴△EOB≌△FOC(ASA).∴S阴影=S△OBC=故选:C.【点评】此题考查了等边三角形的性质、等腰三角形的性质、三角函数的定义、全等三角形的判定与性质、三角形的内心、三角形的内角和定理,有一定的综合性,作出辅助线构建全等三角形是解题的关键.8.(3分)已知抛物线y=x2﹣1与y轴交于点A,与直线y=kx(k为任意实数)相交于B,C两点,则下列结论不正确的是()A.存在实数k,使得△ABC为等腰三角形B.存在实数k,使得△ABC的内角中有两角分别为30°和60°C.任意实数k,使得△ABC都为直角三角形D.存在实数k,使得△ABC为等边三角形【分析】通过画图可解答.【解答】解:A、如图1,可以得△ABC为等腰三角形,正确;B、如图3,∠ACB=30°,∠ABC=60°,可以得△ABC的内角中有两角分别为30°和60°,正确;C、如图2和3,∠BAC=90°,可以得△ABC为直角三角形,正确;D、不存在实数k,使得△ABC为等边三角形,不正确;本题选择结论不正确的,故选:D.【点评】本题考查了二次函数和正比例函数图象,等边三角形和判定,直角三角形的判定,正确画图是关键.二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横上。