光纤的研究现状及发展趋势讲义.pptx

合集下载

光纤技术进展及其发展趋势

光纤技术进展及其发展趋势

光纤技术进展及其发展趋势0 前言自从1966年高锟博士提出了光纤通信新设想以来,光纤通信获得了飞速发展:光纤通信业务从最初的简单电话语音业务发展到复杂的数据传输业务;光纤通信技术从数据传输技术发展到图像视频传输技术;光纤通信系统从单波长通信系统发展到密集波分复用通信系统;光纤通信技术彻底改变了人类的生活方式,创造了一个全新的信息社会和高效融通的国际园地。

1989年建成的第一条横跨太平洋海底光缆通信系统拉开了海底光缆通信系统的建设序幕,促进了全球通信网的建设与飞速发展,迅速拉近了人类的空间距离,地球也从此变成了宇宙中一个较小的“地球村”。

1 单模光纤种类与发展进程光纤是光纤通信的基础与核心传输媒质,光纤技术继续与呈指数趋势增长的系统容量需求同步发展。

按照ITU-T标准,单模光纤从最初的G.652光纤发展到今天的G.657光纤,表1展示了单模光纤的种类与标准发展进程。

表1中的单模光纤,G.653、G.654、G.656 3类光纤在当前通信网络中基本不使用,G.655单模光纤有少量使用。

G.652 D单模光纤是当前光纤通信网络的主流光纤,而G.657单模光纤的应用需求呈现不断增长的趋势,下面就这2种光纤进行重点阐述。

1.1 G.652单模光纤的发展1984年,原CCITT发布了G.652标准的第一版。

20多年来,G.652光纤一直是全球光纤市场的主流产品,甚至被称为标准单模光纤或者常规单模光纤。

即使是这种老牌产品,近几年来也有了很大发展,其技术发展的主要趋势是拓展工作波长范围,针对MAN、FTTx开发适用的新型光纤,如低水峰光纤、单-多模复合光纤、高传输功率单模光纤、超低损耗单模光纤等。

1.1.1 低水峰光纤的发展1998年,美国朗讯(OFS)公司首先推出了低水峰光纤。

继OFS之后,国内外又有多家公司推出了同类产品。

低水峰光纤已经成为今后光纤发展的热点之一。

2000年,该光纤被纳入ITU-T G.652标准,即G.652 C;在2003年版本中,增加了G.652 D。

光纤通信的发展现状和未来_图文(精)

光纤通信的发展现状和未来_图文(精)

科技!论坛中国科技信息2006年第4期CHINASCIENCEANDTECHNOLOGYINFORMATIONFeb.2006光纤通信的发展现状和未来王磊裴丽北京交通大学光波所100044摘要:光纤通信自问世以来,给整个通信领域带来了一场革命,它使高速率、大容量的通信成为可能。

目前它已成为一种不可替代的、最主要的信息传输技术。

这篇文章简要介绍了光纤通信的特性和现阶段国内外应用光纤通信的基本-睛况,比较详细地总结了目前光纤通信主要技术——光波分复用技术、光孤子通信技术和光纤接八技术的基本原理、优势、发展状况和国内外近期所能达到的技术水平,最后论述了未来光纤通信将是朝着光纤到户、全光网络的方向发展,最终会提供更多更好的信息服务。

关链词:波分复用;光弧子通信;光纤到户1。

光纤通信概况方案,它在我国多个运营商的网络中得到应实现了20Gbit/S、105kin的传输。

近年来1966年,美籍华人高锟博士(C.K.用;以10Gbit/s为基础的DWDM系统已逐渐时域上的亮孤子、正色散区的暗孤子、空域上后Kao)和霍克哈姆(C.A.Hockham)发表成为核心网的主流。

DWDM系统除了波长数开的三维光弧子等,由于它们完全由非线性彭论文,预见了低损耗的光纤能够应用于通信,和传输容量不断增加外,光传输距离也从应决定,不需要任何静态介质波导而备受国映敲开了光纤通信的大门。

从此光纤在通信中的600km左右大幅度扩展到2000km以上。

1.外研究人员的重视f“。

应用引起了人们的重视,很快在1970年8月,28n)it/s(128X10Gbit/s)的DwDM系统已达到众多实验结果表明,光弧子通信具有远韪美国康宁公司首次研制成功损耗为20dB/km的无中继传输80O0kIll;实验室最高记录已达离光传输能力,可用于海底光缆通信等,而目光纤,光纤通信的时代由此开始了。

与传统的40Gbit/s无电再生传输10000km[3‟4,“。

光纤通信技术的发展现状与趋势

光纤通信技术的发展现状与趋势

光纤通信技术的发展现状与趋势第一章光纤通信技术的概述光纤通信技术是一种基于光纤传输的高速通信技术。

与传统的铜线传输技术相比,光纤通信技术能够提供更高的带宽和更远的距离,因此在现代通信领域中得到广泛应用。

在光纤通信中,信息通过光纤的传输来进行,光纤是一种特殊的玻璃材料,能够将光信号传输到很远的距离,并且没有信号衰减或失真的问题。

第二章光纤通信技术的历史发展光纤通信技术起始于20世纪60年代,当时主要是在军事和科学实验室中使用。

到了20世纪70年代,光纤通信技术开始广泛应用于工业领域。

20世纪80年代,光纤通信技术得到进一步的发展和改进,逐渐进入到商业市场中。

随着互联网的兴起,光纤通信技术也得到了更广泛的应用。

目前,光纤通信技术已成为现代化传输和通信系统的基础。

第三章光纤通信技术的现状目前全球光纤通信技术市场正处于高速发展阶段。

近年来,随着数字化和数据计算的普及,全球对带宽的需求不断增加,这为光纤通信技术带来了更大的发展机遇。

根据市场研究公司的数据,到2025年,全球光纤通信市场的规模将达到1600亿美元。

在中国,光纤通信技术也得到了快速发展。

目前中国已经成为全球光纤通信技术消费最大的市场之一,随着4G和5G网络的普及以及云计算技术的应用,光纤通信技术在中国的应用范围将会进一步扩大。

第四章光纤通信技术的趋势随着技术的不断进步和新技术的不断涌现,光纤通信技术也将不断发展和改进。

以下是一些光纤通信技术的趋势:1. 高带宽: 随着对数据带宽需求的不断增加,对光纤通信技术的带宽要求也将越来越高。

为了满足这一需求,新型的高速光纤通信技术也应运而生。

2. 低成本: 现在的光纤通信技术还比较昂贵,在新技术的推动下,光纤通信成本也将不断下降,以满足更广泛的用户需求。

3. 网络安全: 随着网络攻击和信息泄漏的风险不断增加,光纤通信技术的网络安全问题也越来越受到关注。

未来的光纤通信技术将更加注重网络安全和信息保护。

4. 量子通信: 量子通信技术是一种全新的通信技术,将通过光纤传输信号。

光纤通信技术的进展与发展趋势

光纤通信技术的进展与发展趋势

光纤通信技术的进展与发展趋势第一章:概述光纤通信技术是指利用光纤作为传输介质进行信息传输的技术,它在快速传输大量数据、远距离传输、高保真传输等方面具有独特优势。

本章将介绍光纤通信技术的基本原理和发展历程。

第二章:光纤通信技术的基本原理2.1 光纤的结构和工作原理2.2 光传输的特点和限制2.3 光纤通信系统的组成和原理第三章:光纤通信技术的发展历程3.1 光纤通信技术的起源3.2 光纤通信技术的发展阶段3.3 光纤通信技术的重大突破第四章:光纤通信技术的进展4.1 光纤材料的进一步改进4.2 光纤传输技术的提升4.3 光纤通信设备的升级第五章:光纤通信技术的发展趋势5.1 光纤通信技术与5G的融合5.2 光纤通信技术在云计算和大数据中的应用5.3 光纤通信技术的超级带宽发展5.4 光纤通信技术的可靠性提升第六章:光纤通信技术的应用领域6.1 电信领域6.2 互联网领域6.3 军事领域6.4 工业领域第七章:光纤通信技术的挑战和问题7.1 带宽需求不断提高7.2 光纤通信技术的成本问题7.3 光纤通信技术的安全隐患第八章:光纤通信技术的前景展望8.1 光纤通信技术的市场前景8.2 光纤通信技术的创新与应用前景8.3 光纤通信技术在未来发展中的关键技术结语:光纤通信技术的进展与发展趋势是一个高度专业的议题,本文从基本原理、发展历程、技术进展、发展趋势、应用领域、挑战和前景展望等多个方面进行了论述。

光纤通信技术的不断创新和应用拓展将为未来的信息社会带来巨大推动力,同时也面临着诸多挑战和问题需要解决。

在未来的发展中,我们迫切需要加强研究和创新,推动光纤通信技术的进一步发展。

光纤通信技术现状及未来趋势

光纤通信技术现状及未来趋势
光纤通信技术现状 及未来趋势
目录
• 光纤通信技术概述 • 光纤通信技术的基础原理 • 光纤通信技术的应用场景 • 光纤通信技术的挑战和解决方案 • 光纤通信技术的未来趋势
01
CATALOGUE
光纤通信技术概述
光纤通信技术的定义和特点
定义
光纤通信技术是一种以光波为载 体,利用光导纤维传输信息以达 到通信目的的技术。
远程监控
对工业设备进行远程监控和管理 ,提高设备运行可靠性。
军事通信网络
战略通信
保障军事战略指挥和作战行动的通信需求。
战术通信
支持战场环境下的实时信息传输。
卫星通信
通过卫星实现全球范围内的军事通信保障。
04
CATALOGUE
光纤通信技术的挑战和解决方案
技术瓶颈
传输速度
01
目前光纤通信系统的传输速度已经接近极限,进一步提升的难
术的可靠性和效率。
更绿色和可持续的光纤通信技术
未来光纤通信技术将向着更绿色和可持续的方向发展 。随着人们对环境保护和能源消耗的日益关注,光纤 通信技术需要采取更加环保和节能的技术方案,以减 少对环境的影响和降低能源消耗。
新型的光纤材料和制造工艺,如低能耗的光纤材料和 制造工艺等,将不断涌现,以实现更加环保和节能的 光纤通信技术。同时,可再生能源和清洁能源也将被 应用于光纤通信技术的能源供应中,降低光纤通信技 术的碳排放和能源消耗。
发射端包括光源和调制器,用 于产生调制后的光信号。
接收端包括光电检测器和解调 器,用于将接收到的光信号还
原为原始信息。
光纤传输介质是实现光信号传 输的关键部分,包括单模光纤
和多模光纤等类型。
03
CATALOGUE

光网络现状及发展趋势PPT课件

光网络现状及发展趋势PPT课件
高QOS 保障、良好的统计复用能力、全面的OAM管理、 端到端的可视化、网络的灵活扩展以及可靠性等优点能 让传统的IP业务得到充分的保障,实现运营商对业务的 精细化运作,制定有差别的服务。
PTN既能为整个电信网络向IP化、宽带化演进提供支持, 又可以有效降低全网IP化、宽带化的建设和运维成本。
为什么要引入分组传送技术
在电信业务IP化趋势推动下,传输网承载业务从以 TDM为主向以IP为主转变,面向TDM业务设计的SDH 传输网技术已不能很好地支撑数据IP业务的传送需求, 主要体现在: 基于固定的VC容器作为传送单位,粒度大、种类少, 适配分组业务的效率低,难以动态共享; 基于电路连接传送业务,配置复杂,实现数据业务 所要求的全互联成本昂贵并难以维护; 业务种类简单,难以满足新型动态数据业务的要求。
光纤到户(FTTH)网络结构
Service Node
Internet
Leased Line
Frame/Cell Relay
OLT
Telephone
Interactive Video
Operating System
SNI (VB5)
Passive Optical Splitters
ONT FTTH
ONT FTTB
PTN技术发展现状
OAM G.8113.1在国际标准化中取得重大进展 基本完成G.8114向G.8113.1的设备升级
运维管理:运维效率与SDH持平 业务部署板块化 业务割接智能化 网络加减点向导化 版本升级远程批量化
时间同步:光纤不对称补偿,提高工程进度90%以上
FTTH的技术现状
光纤化进一步向用户延伸 ,表现形式主要有FTTH、 FTTN+DSL、FTTB+LAN等

光纤通信发展概述PPT(共-54张)

光纤通信发展概述PPT(共-54张)
1973 年,美国贝尔(Bell)实验室的光纤损耗降低到2.5dB/km。1974 年降低到1.1dB/km。 1976 年,日本电报电话(NTT)公司将光纤损耗降低到0.47 dB/km(波长1.2μm)。 在以后的 10 年中,波长为1.55 μm的光纤损耗: 1979 年是0.20 dB/km,1984年是0.157 dB/km,1986 年是0.154 dB/km, 接近了光纤最低损耗的理论极限。
Business
WDM
25.6 Tb/s (3.2 bits/Hz)
Single Mode Fiber
DFB Laser
Optical Amplifier
AWG
TDM
WDM
PSK Multi-Level
Coherent OFDM
第一波, 1996-2001年 密集波分复用技术大发展。传输距离虽不长,一条光纤中的复用波长却越来越多,以2001年日本NEC公司的10.92Tbps系统,复用273个波长, 波长间隔0.4ns, 每波长 40Gb/s,使用S, C, L三个波段为高峰。 第二波,2002年-2005年 超长距离光纤技术大发展。在波长不多的系统中试验各种延长中继段和系统总长度的技术。以美国Tyco公司的11,000~ 13,100km太平洋海底光缆系统为代表。使用掺铒光纤放大器(EDFA)、喇曼放大器(RFA)及其结合,利用光DPSK和光QPSK来提高带宽效率。
在大气光通信受阻之后,人们将研究的重点转入到地面光波通信的实验,先后出现过反射波导和透镜波导等地面通信的实验。
早期的光通信
由于没有找到稳定可靠和低损耗的传输介质, 对光通信的研究曾一度走入了低潮。
早期的光通信
早期的光通信 光纤通信主要部件的发展 光纤通信系统的发展 国内外光纤通信发展现状和趋势

光纤通信技术的研究现状与发展趋势

光纤通信技术的研究现状与发展趋势

光纤通信技术的研究现状与发展趋势随着信息时代的到来,通信技术的发展已成为国家战略和经济发展的重要支撑。

在众多通信技术中,光纤通信技术以其巨大的通信带宽和高速可靠的传输速度,成为目前最为先进的通信技术之一,广泛应用于通信网络、数据中心、高清视频传输等领域。

一、光纤传输技术的发展历程光纤通信技术起源于20世纪60年代初期,当时科学家们开始尝试利用光信号传输信息。

1970年代,光纤通信得到进一步发展,其通信速度更是达到了每秒数百兆位的水平,再到80年代,光纤通信技术已经成为商用网络的通信标准。

而在90年代末期,光纤通信技术则被大规模使用于互联网、手机网络和有线电视领域,8兆,34兆,155兆三种速率牢牢占据了主流地位。

而时至今日,光纤传输技术已经发展到了每秒T范围,甚至更高的级别,将传输速度推向了前所未有的高度。

二、光纤通信技术的技术优势相比于传统的有线传输技术,光纤通信技术得到了极大的发展和新突破。

光纤传输技术具有传输速度快、带宽大、抗电磁干扰、可靠性高、保密性好等优势,主要包括以下几个方面:1、高速率:光纤传输技术可以在非常短的时间内通过巨大的带宽进行数据传输,这一优势为整个数字社会的前进提供了重要的支撑。

2、稳定可靠:光纤传输技术能够实现长距离的传输,而不受距离影响;同时,它还不会受电磁干扰和同轴电缆的交叉干扰。

3、生命长,性价比高:光纤传输技术的寿命长达数十年,这相比于其他传输技术具备极大的优势;同时它需要更少的维护和更少的能源,更加节省地球上的宝贵资源。

三、光纤传输技术发展趋势在当今数字时代,信息的产生、传输、存储和计算的速度都在不断加快。

因此,如何提高通信传输速度和数据传输的效率成为新时期光纤通信技术的关键问题。

从技术角度,光纤传输技术未来的发展趋势主要有以下几个方面:1、以太网技术的升级:随着视频、云计算、物联网革命的不断推进,以太网技术也必须不断升级。

例如结合40GBASE-SR4带宽的高速光纤通信技术,将是未来数据中心十分优秀的选择;2、光子编码技术的推广:随着量子信息技术的发展,依托光子编码技术的数据传输方式正在变得越来越重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

衰耗(dB/km
16
G.652A、G.652B、G.652C主要技术指标(4)
光缆参数
G.652A
光缆链路 PMD 特性
光缆段数 M,
概率 Q,%
PMD 系数链路设计最大值 PMDQ,ps/√km
2020/9/17
G.652B
20 0.01 0.5
G.652C
20 0.01 0.5
17
三个子类光纤的差异
波长(nm) 标称值范围(μm)
容差 标值值(μm) 容差(μm)
最大值 最大值
原标准 1310 8.6-9.5 ±10% 125.0
±2 1 2.0%
2020/9/17
新标准 1310 8.6-9.5 ±0.7μm 125.0
±1 0.8 2.0%
9
■G.652光纤分成了三个子类
为适应于不同的传输系统,新标准将 G.652光纤分成以下三个子类: G.652A
2020/9/17
3
单模光纤发展方向
◆在G.652基础上: 降低1383nm水峰,使S波段用于传输; ◆在G.655基础上: 能得到不同色散、色散斜率及有效面
积组合,满足不同的传输系统。
2020/9/17
4
G.652光纤标准的演进及未耒走向
■标准内容划分更加准确, ■光纤几何参数的容差变小, ■G.652光纤分成了三个子类, ■对光纤光缆的PMD作了明确规定, ■新增了DGD的要求, ■非线性系数的研究, ■对扩展波段光纤的研究。
光纤的研究现状及发展趋势
2020/9/17
1
光通信技术发展:满足大容量、 长距离、高速率要求。
光器件技术与光纤技术的研究和发展: ◇ EDFA的发明:
◇ DWDM的出现:
◇ 高速激光器的出现:
上述技术的应用导致光纤中高密度光能量, 诱发非线性效应,影响传输质量。
◇光纤技术的新突破。
2020/9/17
≤1260
筛选应力,Gpa
≥0.69
≥0.69
≥0.69
2020/9/17
13
G.652A、G.652B、G.652C主要技术指标(2)
光纤参数
G.652A
G.652B
G.652C
宏弯衰减,dB(37.5mm ≤0.5(1550nm) ≤0.5(1550nm) ≤0.5(1550nm)
半径,100 圈)
G.652B
G.652C 其应用范围是:
2020/9/17
10
三个子类光纤的应用范围
◇G.652A 主要用于 G.957接口标准的SDH传 输系统和G.691带光放大单通道的STM16SDH传输系统;
◇G.652B主要用于 G.957接口标准的SDH传 输系统和G.691带光放大单通道SDH传输系 统及 G.692带光放大STM-64SDH的WDM传输 系统;
0.35
****
0.35
16XX*nm(XX≤25nm)衰减系数 最大值,dB/km
0.4
0.4
2020/9/17
15
典型的朗讯G.652C光纤衰耗曲线
1.4 1.2
1 0.8 0.6 0.4 0.2
0
2020/9/17
1000 1040 1080 1120 1160 1200 1240 1280 1320 1360 1390 1430 1470 1510 1550 1590
2
ITU-T有关光纤方面的标准
◇ G.650 单模光纤相关参数的定义和试验方法; ◇ G.651 50/125μm多模渐变型折射率光纤光缆
特性; ◇ G.652 单模光纤光缆特性; ◇ G.653 色散位移单模光纤光缆特性; ◇ G.654 截止波长位移型单模光纤光缆特性; ◇ G.655 非零色散位移单模光纤光缆特性。
不规定
待定**
待定**
14
G.652A、G.652B、G.652C主要技术指标(3)
光缆参数
G.652A G.652B G.652C
1310nm 衰减系数最大值,dB/km 0.5
0.4
0.4
yyyynm***(1383-1480nm)衰减 系数最大值,dB/km
1550nm 衰减系数最大值,dB/km 0.4
四波混频,影响传输质量。
(该慨念正处于研究之中)
2020/9/17
7
■光纤几何参数的容差变小
传输系统的需求: ◇光纤接头对光纤MFD容差和纤芯 同心度偏差的依赖; ◇ PMD指标依赖于纤芯不园度。
客观的可能性: ◇光纤制造技术的提高。
2020/9/17
8
G.652光纤几何属性参数
MFD
包层直径
芯同度偏差 包层不园度
≤0.5(16XX*nm) ≤0.5(16XX*nm)
最小零色散波长λ min,nm
最大零色散波长λ max,nm
零色散波长最大斜率
1300 1324 0.093
1300 1324 0.093
1300 1324 0.093
Smax,ps/nm2.km
未成缆光纤 PMD 系数 最大值,ps/√km
2020/9/17
2020/9/17
11
三个子类光纤的应用范围
◇G.652C(波长段扩展的非色散位移单模 光纤,又称为低水峰光纤)除了与 G.652B光纤的适用范围相同之外,这类 光纤允许G.957接口标准的传输系统使 用在1360nm~1530nm之间的扩展波段。
2020/9/17
12
G.652A、G.652B、G.652C主要技术指标(1)
2020/9/17
5
■标准内容划分更加准确
原标准的目录内容:
“光纤特性”、
“工厂长度指标”、
“基本光缆段指标”。
修改后标准的目录内容:
“光纤属性”、
“光缆属性”、
“链路属性”。
2020/9/17
6
光纤属性中提出的新概念
“色散的纵向均匀性”
∵光纤在某一波长上的局部色散值降 到一个很小值,且这一波长又接近 WDM系统中的工作波长,此时将诱发
G.652B与G.652A的不同之处:
(1)、提出了L波段16XXnm处的衰减指标;
(2)、因为传输速提高到STM-64,所以对光缆的 PMD指标提出要求。
G.652C与G.652A、G.652B的不同之处:
(1)、除L波段16XXnm处的衰减指标外,对 1383nm-1480nm波段中的某一波长处的哀减将作 要求。
光纤参数
G.652A
G.652B
G.652C
模场直径,μm 1310nm 包层直径,μ8.6~9.5)±
0.7
0.7
0.7
125±1
125±1
125±1
芯同心度误差,μm
≤0.8
≤0.8
≤0.8
包层不圆度,%
≤2
≤2
≤2
光缆截止波长,nm
≤1260
≤1260
相关文档
最新文档