高考数学复习:重要知识点梳理
高考数学知识点总结(全而精-一轮复习必备)

高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=,则C s A= {0})A A ⊆A ⊆φB A ⊆A B ⊆C A C B B A ⊆⊆⊆,那么,+N③空集的补集是全集.④若集合A=集合B,则C B A=,C A B =C S(C A B)=D(注:C A B =).3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.[注]:①对方程组解的集合应是点集.例:解的集合{(2,1)}.②点集与数集的交集是. (例:A ={(x,y)| y =x+1} B={y|y =x2+1} 则A∩B =)4. ①n个元素的子集有2n个. ②n个元素的真子集有2n-1个. ③n个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题.例:①若应是真命题.,则a+b = 5,成立,所以此命题为真.②.1或y = 2.,故是的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若.4.集合运算:交、并、补.5.主要性质和运算律(1)包含关系:(2)等价关系:(3)集合的运算律:交换律:结合律:分配律:.∅∅∅}⎩⎨⎧=-=+1323yxyxφ∅⇔⇔325≠≠≠+baba或,则且1≠x3≠y1≠∴yx且3≠+yx21≠≠yx且255xxx或,⇒{|,}{|}{,}A B x x A x BA B x x A x BA x U x A⇔∈∈⇔∈∈⇔∈∉U交:且并:或补:且C,,,,,;,;,.UA A A A U A UA B B C A C A B A A B B A B A A B B⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇CUA B A B A A B B A B U⊆⇔=⇔=⇔=C.;ABBAABBA==)()();()(CBACBACBACBA==)()()();()()(CABACBACABACBA==0-1律:等幂律:求补律:A∩C U A=φA∪C U A=U C U U=φ C Uφ=U反演律:C U(A∩B)= (C U A)∪(C U B) C U(A∪B)= (C U A)∩(C U B)6.有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定 card(φ) =0.基本公式:(3) card( U A)= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(x-x1)(x-x2)…(x-x m)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.(自右向左正负相间)则不等式的解可以根据各区间的符号确定.特例①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+box>0(a>0)解的讨论.>∆0=∆0<∆二次函数cbxaxy++=2(0>a)的图象,,,A A A U A A U A UΦ=ΦΦ===.,AAAAAA==(1)()()()()(2)()()()()()()()()card A B card A card B card A Bcard A B C card A card B card Ccard A B card B C card C Acard A B C=+-=++---+x)0)((002211><>++++--aaxaxaxa nnnn原命题若p 则q否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax {}21x x x x << ∅∅2.分式不等式的解法(1)标准化:移项通分化为>0(或<0); ≥0(或≤0)的形式,(2)转化为整式不等式(组)3.含绝对值不等式的解法(1)公式法:,与型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
高考数学的重点知识点整理

高考数学的重点知识点整理高考数学重点知识点归纳1.满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),称为二元一次不等式(组)的一个解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集。
2.二元一次不等式(组)的每一个解(x,y)作为点的坐标对应平面上的一个点,二元一次不等式(组)的解集对应平面直角坐标系中的一个半平面(平面区域)。
3.直线l:Ax+By+C=0(A、B不全为零)把坐标平面划分成两部分,其中一部分(半个平面)对应二元一次不等式Ax+By+C0(或≥0),另一部分对应二元一次不等式Ax+By+C0(或≤0)。
4.已知平面区域,用不等式(组)表示它,其方法是:在所有直线外任取一点(如本题的原点(0,0)),将其坐标代入Ax+By+C,判断正负就可以确定相应不等式。
5.一个二元一次不等式表示的平面区域是相应直线划分开的半个平面,一般用特殊点代入二元一次不等式检验就可以判定,当直线不过原点时常选原点检验,当直线过原点时,常选(1,0)或(0,1)代入检验,二元一次不等式组表示的平面区域是它的各个不等式所表示的平面区域的公共部分,注意边界是实线还是虚线的含义。
“线定界,点定域”。
6.满足二元一次不等式(组)的整数x和y的取值构成的有序数对(x,y),称为这个二元一次不等式(组)的一个解。
所有整数解对应的点称为整点(也叫格点),它们都在这个二元一次不等式(组)表示的平面区域内。
7.画二元一次不等式Ax+By+C≥0所表示的平面区域时,应把边界画成实线,画二元一次不等式Ax+By+C0所表示的平面区域时,应把边界画成虚线。
8.若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的同侧,则Ax0+By0+C 与Ax1+Byl+C符号相同;若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的两侧,则Ax0+By0+C与Ax1+Byl+C符号相反。
高考数学考点大全总结概括

高考数学考点大全总结概括高考数学必考知识点一一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。
二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。
四、三角函数(46课时,17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
五、平面向量(12课时,8个)1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。
六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。
高三数学重点知识归纳

高三数学重点知识归纳高三数学重点知识归纳考点一:集合与简易逻辑集合部分一般以选择题出现,属容易题。
重点考查集合间关系的理解和认识。
近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。
在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。
简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。
导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量一般是2道小题,1道综合解答题。
小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。
大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。
向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.考点四:数列与不等式不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。
对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.高三怎么学数学最有效树立信心,减少无用重复题量。
高考必背最完整的高中数学知识点

高考必背最完整的高中数学知识点一、代数1. 一次函数的性质:直线的斜率、截距和方程形式。
2. 二次函数的性质:顶点坐标、对称轴、开口方向和方程形式。
3. 幂函数与指数函数的性质。
4. 对数函数的性质:底数为正数时的定义、性质与常见公式。
5. 三角函数的基本概念:正弦函数、余弦函数和正切函数的周期、定义域、值域和图像。
6. 数列的概念及常见数列的通项公式和求和公式。
二、几何1. 平面几何基本概念:点、直线、平行和垂直关系。
2. 三角形的性质:角的度量、三角形类型和重要定理(如余弦定理和正弦定理)。
3. 圆的性质:圆周角、弧长和面积公式。
4. 球和立体几何的基本概念:体积、表面积和投影等。
三、概率与统计1. 概率的基本概念:事件、样本空间、概率以及概率的性质与计算。
2. 随机变量的概念及其分布函数和密度函数。
3. 统计的基本概念:总体、样本、参数和统计量。
4. 样本调查与统计分析的方法和步骤。
四、解析几何1. 向量的基本概念:向量的表示、向量的运算、向量的模和方向角。
2. 平面的方程:一般式、点法式、两点式和法向量式等。
3. 空间几何基本概念:点、直线、平面的关系与位置。
4. 空间直角坐标系:空间直角坐标系的建立与距离公式。
五、数学思维1. 基本解题方法和思维:分类讨论、递推法、数学归纳法等。
2. 数学证明的基本方法:直接证明、间接证明、反证法等。
3. 数学建模的基本流程和方法。
4. 数学问题的模型转化与解决策略。
以上是高考必背的最完整的高中数学知识点。
希望同学们在备考过程中认真复这些知识,做好各种题型的练,提高自己的数学水平,取得好成绩!加油!。
普高高考数学必考知识点归纳总结

普高高考数学必考知识点归纳总结数学作为普通高中高考的一门必考科目,是考生们备战高考的重点之一。
在数学学科中,有一些必考知识点是考生们不能忽视的,掌握好这些知识点能够为考生们取得理想的成绩奠定坚实的基础。
本文将对普高高考数学必考知识点进行归纳总结,帮助考生们理清思路、系统复习。
一、函数与方程1. 函数的概念与性质函数的定义、定义域与值域、奇偶性、周期性、单调性、最值等。
2. 一元二次函数函数表达式、图像与性质、零点与因式分解、二次函数的最值等。
3. 常用函数的图像与性质指数函数、对数函数、幂函数、反比例函数等。
4. 一次函数与二次函数的联立方程方程组的解、解的个数与形式等。
二、几何与空间1. 直线与曲线直线的性质、方程、与曲线的交点等。
2. 圆与圆的位置关系直径、弦、切线等。
3. 向量向量的概念、运算、平行与垂直、数量积与向量积等。
4. 空间几何体点、线、面与体的性质、体的表面积与体积等。
三、概率论与统计1. 随机事件与概率事件的概念、事件的运算、频率与概率的关系等。
2. 排列组合与二项式定理排列与组合的计算、二项式定理的应用等。
3. 统计与误差分析统计量的计算、误差类型与分析等。
四、解析几何1. 平面解析几何点、直线与曲线的方程、距离公式等。
2. 空间解析几何点、直线与平面的方程、距离公式等。
五、导数与微分1. 函数导数的计算与应用导数的定义、基本导数、导数的四则运算、函数的极值与最值等。
2. 微分的计算与应用微分的定义、微分中值定理、函数的近似计算等。
六、数列与数学归纳法1. 数列的概念与性质数列的定义、公式、递推关系等。
2. 等差数列与等比数列等差数列的性质、通项公式、前n项和公式等,等比数列的性质、通项公式、前n项和公式等。
七、立体几何1. 空间中的直线与平面直线与平面的交点、平行与垂直等。
2. 空间中的立体球、柱、锥、棱柱、棱锥等的表面积与体积等。
这些高考数学必考知识点涵盖了数学学科的主要内容,考生们可以根据这个总结进行复习,并结合相关的习题进行训练,提高解题能力和应试水平。
高考数学必考知识点归纳

高考数学必考知识点归纳一、集合与函数1.集合o表示法:列举法、描述法、图示法(韦恩图)。
o运算:交集、并集、补集(相对于全集)。
2.函数o概念:输入与输出之间的对应关系。
o表示法:解析法、列表法、图像法。
o单调性:增函数、减函数。
o奇偶性:奇函数、偶函数、非奇非偶函数。
二、数列1.定义与表示o数列的定义:按一定顺序排列的一列数。
o表示法:通项公式、递推公式。
2.等差数列o定义、通项公式、前n项和公式。
o性质:中项性质、等差中项。
3.等比数列o定义、通项公式、前n项和公式(注意公比不为1的情况)。
o性质:中项性质、等比中项。
4.数列求和o倒序相加法、错位相减法、分组求和法、裂项相消法等。
5.数列的极限o数列极限的概念、性质及简单计算。
三、三角函数1.基本概念o角度与弧度制、三角函数定义(正弦、余弦、正切)。
2.诱导公式o角度加减变换公式。
3.同角关系式o基本恒等式、平方关系、商数关系。
4.性质o周期性、奇偶性、单调性、有界性。
5.图像与性质o各三角函数图像特征、相位变换、振幅变换。
6.三角恒等变换o和差化积、积化和差、倍角公式、半角公式。
7.解三角形o正弦定理、余弦定理、面积公式、海伦公式。
四、向量1.基本概念o向量的模、方向、坐标表示。
2.运算o加法、减法、数乘、数量积(点积)、向量积(叉积)。
o模长与夹角的关系、平行与垂直的条件。
五、解析几何1.直线o方程:点斜式、斜截式、两点式、截距式、一般式。
o斜率:定义、公式、倾斜角。
o位置关系:平行、垂直的条件。
2.圆o方程:标准方程、一般方程。
o性质:圆心、半径、切线、弦的性质(如相交弦定理)。
3.圆锥曲线o椭圆、双曲线、抛物线的定义、标准方程、性质。
六、立体几何1.空间位置关系o直线与平面、平面与平面的平行、垂直关系。
2.几何体o柱体、锥体、球体等的结构特征及表面积、体积公式。
3.三视图o正视图、侧视图、俯视图及其绘制方法。
七、不等式1.性质o基本性质、传递性、可加性、可乘性(正数时)。
高三数学必考知识点和分数

高三数学必考知识点和分数高三学生在备考期间,数学作为一门重要学科,必须要掌握的知识点众多。
本文将为大家梳理高三数学必考的知识点和分数,并为大家提供一些备考建议。
一、函数与方程1. 一次函数一次函数是高三数学必考的基础知识点,需要掌握函数的定义、图像的性质以及相关的计算方法。
2. 二次函数二次函数也是高考数学中的重要内容,需要熟练掌握顶点坐标的求解、图像的性质以及与一次函数的比较等。
3. 指数函数与对数函数指数函数与对数函数在高考数学中占有较大比重,需要理解其性质、图像和运算法则,以及解相关的方程与不等式等。
4. 幂函数与反比例函数幂函数与反比例函数也是高考数学中的重要内容,需要了解其图像和性质,并能够运用它们解决实际问题。
5. 三角函数三角函数是高考数学中比较复杂的知识点,需要熟悉基本公式、图像的性质以及运算法则,能够解决相关的方程和不等式等。
二、几何与向量1. 平面几何平面几何是高考数学中的重要内容,需要熟练掌握各种几何性质、判定方法和运算法则,能够解决相关的几何问题。
2. 空间几何空间几何是高考数学中的难点,需要掌握空间图形的投影方法、向量的性质和空间坐标系等。
3. 三视图与旋转体三视图与旋转体也是高考数学中的重要内容,需要熟悉投影的方法、旋转体的性质和相关的计算方法。
4. 向量与平面向量与平面是高考数学中的难点,需要了解向量的性质、平面的方程和相交关系等。
三、概率与统计1. 随机事件与概率随机事件与概率是高考数学中的重要内容,需要熟悉随机事件的定义和性质,掌握概率的计算方法并能够解决相关的问题。
2. 排列组合与选择问题排列组合与选择问题需要熟练掌握各种计数方法、概率与统计的运用,并能够解决相关的问题,如排队问题、选课问题等。
3. 统计与抽样统计与抽样是高考数学中的重点内容,需要了解样本数据的统计特征、统计图表的分析和抽样方法等。
四、推理与证明1. 数学归纳法数学归纳法是高考数学中的重要证明方法,需要熟悉归纳法的基本思路和步骤,并能够灵活运用于解决相关的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学复习:重要知识点梳理经过几轮的复习后,广大考生在备战高考数学时,还有哪些知识点、重要章节、重要技能没有掌握呢?为大家梳理高考数学复习的重点内容,以及高考考查的重要解题能力,供同学们参考复习。
首先,复习中要突出九大重点章节,即函数、数列、三角函数、平面向量、不等式、圆锥曲线方程、立体几何、概率与统计、导数等。
其次,高考解题,考生必须具备18种技能。
这18种技能分别是:1.函数图像的变换技能。
2.函数单调性、奇偶性的判断技能。
3.图表的阅读技能。
4.数列求和技能。
5.代数式的配凑技能。
6.三角式的恒等变形技能。
7.平面向量的运算技能。
8.空间图形和平面图形(特别是空间角和距离)的处理技能。
9.直线与圆锥曲线的位置关系问题的探究技能。
10.概率运算技能。
11.可导函数的单调性、极值,以及单峰函数的最大值最小值的判断技能。
12.不等关系的放缩技能。
13.合情推理技能。
14.数据处理与信息处理技能。
15.心算与估算技能。
16.列举正例、反例的技能。
17.研究设计技能。
18.分类与整合技能。
单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话
空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的
成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。
这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。
第三,在高考中贯彻的数学思想需要同学们时刻牢记。
平时在复习中要注意题目中蕴涵的数学思想,主要包括:函数与方程的思想、数形结合的思想、分类与整合的思想、化归与转化的思想、有限与无限的思想、偶然与必然的思想。
语文课本中的文章都是精选的比较优秀的文章,还有不少名
家名篇。
如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。
现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。
结果教师费劲,学生头疼。
分析完之后,学生收效甚微,没过几天便忘的一干二净。
造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。
常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强
语感,增强语言的感受力。
久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作
中自觉不自觉地加以运用、创造和发展。
第四,注意培养五大能力、两种意识。
这五大能力分别为:空间想像能力、抽
象概括能力、推理论证能力、运算能力、数据处理能力。
两大意识为应用意识和创新意识。
这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录并且阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。
如此下去,除假期外,一年便可以积累40多则材料。
如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?第五,要注意六个知识板块的重点复习。
分别是:1.数列与函数、不等式。
2.平面向量与三角函数。
3.解析几何与平面几何、平面向量。
4.空间图形与平面图形。
5.概率统计与计量原理。
6.函数、导数、方程与不等式。