数控刀具涂层的分类

合集下载

涂层刀具材料特点及刀具的应用

涂层刀具材料特点及刀具的应用

涂层刀具材料特点及刀具的应用对刀具进行涂层处理是提高刀具性能的重要途径之一。

涂层刀具的出现,使刀具切削性能有了重大突破。

涂层刀具是在韧性较好刀体上,涂覆一层或多层耐磨性好的难熔化合物,它将刀具基体与硬质涂层相结合,从而使刀具性能大大提高。

新型数控机床所用切削刀具中有80%左右使用涂层刀具。

涂层刀具将是今后数控加工领域中*重要的刀具品种。

⑴ 涂层刀具的种类根据涂层方法不同,涂层刀具可分为化学气相沉积(CVD)涂层刀具和物理气相沉积(PVD)涂层刀具。

涂层硬质合金刀具一般采用化学气相沉积法,沉积温度在1000℃左右。

涂层高速钢刀具一般采用物理气相沉积法,沉积温度在500℃左右;根据涂层刀具基体材料的不同,涂层刀具可分为硬质合金涂层刀具、高速钢涂层刀具、以及在陶瓷和超硬材料(石和立方氮化硼)上的涂层刀具等。

根据涂层材料的性质,涂层刀具又可分为两大类,即“硬”涂层刀具和‘软”涂层刀具。

“硬”涂层刀具追求的主要目标是高的硬度和耐磨性,其主要优点是硬度高、耐磨性能好,典型的是TiC 和TiN涂层。

⑵ 涂层刀具的特点① 力学和切削性能好:涂层刀具将基体材料和涂层材料的优良性能结合起来,既保持了基体良好的韧性和较高的强度,又具有涂层的高硬度、高耐磨性和低摩擦系数。

因此,涂层刀具的切削速度比未涂层刀具可提高2倍以上,并允许有较高的进给量。

涂层刀具的寿命也得到提高。

② 通用性强:涂层刀具通用性广,加工范围显著扩大,一种涂层刀具可以代替数种非涂层刀具使用。

③ 涂层厚度:随涂层厚度的增加刀具寿命也会增加,但当涂层厚度达到饱和,刀具寿命不再明显增加。

涂层太厚时,易引起剥离;涂层太薄时,则耐磨性能差。

④ 重磨性:涂层刀片重磨性差、涂层设备复杂、工艺要求高、涂层时间长。

⑤ 涂层材料:不同涂层材料的刀具,切削性能不一样。

如:低速切削时,TiC涂层占有优势;高速切削时,TiN 较合适。

⑶ 涂层刀具的应用涂层刀具在数控加工领域有巨大潜力,将是今后数控加工领域中*重要的刀具品种。

刀具涂层技术介绍

刀具涂层技术介绍

刀具涂层技术介绍刀具涂层技术是一种在刀具表面涂覆一层特殊材料的技术,旨在提高刀具的硬度、耐磨性、热稳定性和化学稳定性等性能。

刀具涂层技术的发展与高速切削、高效加工和先进制造技术的进步密切相关。

本文将对刀具涂层技术的原理、种类以及应用进行介绍。

1.碳化物涂层:如碳化钛(TiC)、碳化钽(TaC)等。

这些涂层具有极高的硬度和耐磨性,适用于高速切削和重载切削。

2.氮化物涂层:如氮化钨(WN)、氮化钛(TiN)、氮化铝(AlN)等。

这些涂层具有较高的硬度和化学稳定性,广泛应用于切削、修磨和打孔等工艺。

3.金属涂层:如钛合金(TiAlN)、氧化锆(ZrO2)等。

这些涂层具有较高的热稳定性和抗氧化性能,适用于高温切削和挤压。

4.金刚石涂层:金刚石涂层具有超高硬度和低摩擦系数,能够有效提高刀具的寿命和切削质量。

但由于金刚石涂层的制备技术复杂和成本较高,目前还处于实验阶段。

1.金属切削:刀具涂层技术在金属切削领域得到广泛应用,可以提高切削效率和工件表面质量。

例如,在高速铣削中,采用碳化钛涂层的刀具可以显著提高切削速度和切削质量。

2.木材加工:刀具涂层技术在木材加工领域也有一定的应用。

通过涂覆特殊涂层,可以延长刀具的使用寿命,并提高加工效率。

例如,在木材切削中,采用氮化钛涂层的刀具可有效降低磨损和摩擦。

3.非金属材料加工:刀具涂层技术在陶瓷、塑料、复合材料等非金属材料加工领域也得到了广泛应用。

通过涂层技术,可以改善切削表面的光洁度,并提高工件的精度和质量。

4.汽车零部件加工:在汽车零部件加工领域,刀具涂层技术可以有效提高零部件的加工精度和耐用性,适用于发动机气门、曲轴、轴承等零部件的加工。

刀具涂层技术的发展为现代制造业带来了巨大的效益。

随着材料科学、纳米技术和涂层技术的进一步发展,刀具涂层技术的性能和应用范围将会不断扩大。

预计未来刀具涂层技术将更加智能化和环保化,能够实现刀具表面的自动修复和自动调节。

这将进一步提高切削效率和加工质量,推动现代制造业的发展。

刀具选择正确的涂层

刀具选择正确的涂层

刀具选择正确的涂层涂层也有助于提高刀具的切削性能。

目前的涂层技术包括:(1)氮化钛(TiN)涂层:这是一种通用型PVD和CVD涂层,可以提高刀具的硬度和氧化温度。

(2)碳氮化钛(TiCN)涂层:通过在TiN中添加碳元素,提高了涂层的硬度和表面光洁度。

(3)氮铝钛(TiAlN)和氮钛铝(AlTiN)涂层:氧化铝(Al2O3)层与这些涂层的复合应用可以提高高温切削加工的刀具寿命。

氧化铝涂层尤其适合干式切削和近干切削。

AlTiN涂层的铝含量较高,与钛含量较高的TiAlN涂层相比,具有更高的表面硬度。

AlTiN涂层通常用于高速切削加工。

(4)氮化铬(CrN)涂层:这种涂层具有较好的抗粘结性能,是对抗积屑瘤的**解决方案。

(5)石涂层:石涂层可以显着提高加工非铁族材料刀具的切削性能,非常适合加工石墨、金属基复合材料、高硅铝合金和其他高磨蚀性材料。

但石涂层不适合加工钢件,因为它与钢的化学反应会破坏涂层与基体的粘附性能。

近年来,PVD涂层刀具的有所扩大,其价格也与CVD涂层刀具不相上下。

CVD涂层的厚度通常为5-15μm,而PVD涂层的厚度约为2-6μm。

在涂覆到刀具基体上时,CVD涂层会产生不受欢迎的拉应力;而PVD涂层则有助于对基体形成有益的压应力。

较厚的CVD涂层通常会显着降低刀具切削刃的强度。

因此,CVD涂层不能用于要求切削刃非常锋利的刀具。

在涂层工艺中采用新的合金元素可以改善涂层的粘附性和涂层性能。

例如,伊斯卡公司的3PSumoTec处理技术能提高PVD和CVD 两类涂层的韧性、光滑程度和抗崩刃性能。

同样,该工艺还能消除PVD涂层时在涂层表面产生的有害液滴,从而使涂层表面更光滑,使刀片在加工时切削温度更低、寿命更长、形成更理想的切屑流,以及能采用更高的切削速度。

复合涂层具有很好的耐磨性和抗崩刃性,非常适合用于高速切削铸铁的各种刀片牌号,其预期的切削速度可达到650-1200sfm以上(取决于工件材料的类型和加工条件)。

刀具涂层种类

刀具涂层种类

刀具涂层种类在制造业中,刀具涂层起到了极其重要的作用。

它们不仅可以提高刀具的耐磨性和耐蚀性,还可以提高切削效率和生产效率。

随着科技的进步,越来越多种类的刀具涂层问世。

以下将介绍一些常见的刀具涂层种类,帮助您选择适合的涂层。

1. 钛氮合金涂层:钛氮合金涂层具有很高的硬度和耐磨性,能够增加刀具的寿命。

它在加工高温合金和不锈钢时表现出色,限制了切削温度的上升,进而减少了刀具磨损。

2. 金刚石涂层:金刚石涂层是目前最硬的材料之一,可以极大地提高刀具的硬度和耐磨性。

它在加工复杂的材料、高硬度材料和玻璃等脆性材料时显示出卓越的性能。

3. 碳化物涂层:碳化物涂层具有良好的耐磨性和耐热性能,可以有效减少刀具与工件之间的摩擦,提高切削速度和表面质量。

碳化物涂层广泛应用于高速切削和干切削。

4. 氧化物涂层:氧化物涂层具有良好的耐热性和化学稳定性,能够抵御高温腐蚀和氧化。

它广泛应用于切削高硬度材料和高温合金。

5. 氮化物涂层:氮化物涂层具有高硬度和高熔点,可以增加刀具的使用寿命和切削效率。

它广泛应用于加工钛合金、高温合金和不锈钢等材料。

除了上述常见的涂层种类,还有许多其他创新的涂层技术不断涌现。

例如,纳米涂层技术可以在刀具表面形成纳米级的涂层,进一步提高刀具的切削性能和寿命。

此外,多层涂层和渗氮等技术也被广泛应用。

在选择刀具涂层时,需要根据具体的加工材料和加工要求来进行选择。

例如,加工高硬度材料时,可以选择金刚石涂层;加工高温合金时,可以选择氮化物或钛氮合金涂层。

此外,还需要考虑加工环境、切削速度和表面要求等因素。

综上所述,刀具涂层是提高切削效率和降低生产成本的关键技术之一。

在选择刀具涂层时,应根据具体情况进行合理选择,并及时了解新的涂层技术。

通过选择合适的刀具涂层,可以实现更高效、更稳定的加工过程,提高产品质量和生产效率。

刀具涂层技术

刀具涂层技术

刀具涂层技术一、概述刀具涂层技术是一种将刀具表面涂上一层特殊材料的技术,目的是提高切削性能、延长使用寿命和降低生产成本。

随着制造业的发展,刀具涂层技术已经成为了现代制造业中不可或缺的重要技术之一。

二、刀具涂层的分类根据不同的涂层材料和工艺,刀具涂层可以分为以下几类:1.物理气相沉积(PVD):是利用真空蒸发、离子镀等方法,在刀具表面形成一层硬质化合物薄膜。

常用的PVD涂层有TiN、TiCN、AlTiN等。

2.化学气相沉积(CVD):是利用化学反应在高温下将气态物质沉积在刀具表面形成一层质量优良的陶瓷薄膜。

常用的CVD涂层有TiC、TiCN、Al2O3等。

3.离子注入(IBAD):是将金属离子注入到刀具表面形成一定深度的硬化区域,增强其耐磨性和抗热性能。

三、刀具涂层的优势1.提高切削速度:由于涂层具有高硬度、低摩擦系数和良好的耐热性能,使得刀具可以承受更高的切削速度,从而提高生产效率。

2.延长使用寿命:涂层可以有效地保护刀具表面不被磨损和氧化,延长其使用寿命。

3.降低生产成本:由于涂层可以延长刀具的使用寿命,减少了更换刀具的次数,降低了生产成本。

4.提高加工质量:由于涂层可以减少表面粗糙度和毛刺,提高加工质量。

四、选择合适的涂层在选择合适的涂层时,需要考虑以下几个因素:1.加工材料:不同材料需要不同类型的涂层。

例如,钢材需要TiN或TiCN等PVD涂层;铸铁需要Al2O3等CVD涂层。

2.加工条件:不同加工条件需要不同类型的涂层。

例如,高速加工需要AlTiN等PVD涂层;重负荷加工需要TiC等CVD涂层。

3.加工要求:不同的加工要求需要不同类型的涂层。

例如,高精度加工需要Al2O3等CVD涂层;高温加工需要ZrN等PVD涂层。

五、刀具涂层的应用刀具涂层技术已经广泛应用于各种行业,如机械制造、汽车制造、航空航天、医疗器械等。

其中,高速钢刀具、硬质合金刀具和陶瓷刀具是最常见的应用对象。

六、总结刀具涂层技术作为现代制造业中不可或缺的重要技术之一,已经成为了提高生产效率、降低生产成本和提高产品质量的重要手段。

CNC机床加工中的加工刀具涂层与切削性能优化

CNC机床加工中的加工刀具涂层与切削性能优化

CNC机床加工中的加工刀具涂层与切削性能优化随着制造业的发展,CNC(Computer Numerical Control)机床成为现代加工领域的重要设备之一。

在CNC机床的加工过程中,加工刀具涂层起着至关重要的作用。

本文将探讨加工刀具涂层在CNC机床加工中的应用,以及如何通过优化涂层选择与切削性能提升来提高加工效果。

一、加工刀具涂层的意义与分类加工刀具涂层是一层应用于刀具表面的外覆层,其作用是提高刀具的硬度、抗磨损性和耐腐蚀性。

根据涂层材料的不同,可以将加工刀具涂层分类为以下几种:1. 陶瓷涂层:陶瓷涂层通常由碳化硅、氮化硅等材料组成。

陶瓷涂层具有较高的硬度和耐磨损性,适用于高速加工和高硬度材料的切削。

2. DLC(Diamond-Like Carbon)涂层:DLC涂层具有类似钻石的碳结构,其具有独特的硬度、润滑和低摩擦性质。

DLC涂层适用于高速切削和干切削条件下的加工。

3. PVD(Physical Vapor Deposition)涂层:PVD涂层包括氮化钛、氮化铝等材料,具有较高的韧性和热稳定性。

PVD涂层适用于不同材料的加工,能够提高刀具的使用寿命和切削性能。

二、加工刀具涂层的优势与挑战加工刀具涂层的应用在CNC机床加工中具有诸多优势,但也面临一些挑战。

1. 优势:(1)提高切削性能:加工刀具涂层可以大幅提高刀具的硬度,从而提高切削速度和效率。

(2)延长使用寿命:涂层可以降低刀具的摩擦系数和磨损率,延长刀具的寿命。

(3)改善加工表面质量:涂层能够减少刀具与工件之间的热变形和切削力,提高加工表面的光洁度和精度。

2. 挑战:(1)涂层质量控制:涂层的均匀性和附着力是影响其性能的关键因素,需要进行严格的质量控制。

(2)选择适合的涂层材料:不同加工刀具和材料对涂层材料的要求不同,需要根据具体情况选择合适的涂层材料。

三、加工刀具涂层与切削性能优化为了优化切削性能,应根据具体加工要求和材料特点选择合适的加工刀具涂层,并通过以下方法进行切削性能的优化。

涂层方法分类

涂层方法分类

涂层方法分类根据涂层方法不同涂层刀具分为化学气相沉积(CVD)涂层和物理气相沉积(PVD)涂层,钨钢刀具等硬质合金涂层一般使用化学气相沉积法,沉积温度在1000℃左右。

高速钢刀具涂层一般选用物理气相沉积法,沉积温度在500℃左右。

一、刀具材料分类刀具监控系统根据刀具基体材料的不同可分为硬质合金(俗称钨钢)刀具、高速钢(俗称白钢)刀具、陶瓷刀具以及石刀具(立方氮化硼)等涂层刀具。

二、涂层特性分类根据涂层材料性质分类涂层又可以分为“软”涂层和“硬”涂层,“硬”涂层刀具主要优点是硬度高,耐磨性好,典型代表有TiC和TiN涂层。

“软”涂层主要优点为摩擦系数低,降低切削力和切削温度。

三、纳米涂层纳米涂层主要特点是实现了多种涂层材料的不同组合(如金属/陶瓷、陶瓷/陶瓷、金属/金属),合理的纳米涂层搭配使刀具更适合高速切削。

四、涂层刀具特点1、力学及切削性能好,涂层刀具将涂层材料和基体材料优良性能结合起来,保持了基体材料良好韧性和较高强度,也具有涂层材料的高硬度、高耐磨度和低摩擦系数。

因此涂层刀具切削速度是未涂层刀具可提高2倍以上,并允许有较高的进给量,另外使用寿命也得到提高。

2、通用性广,加工范围得到扩大,涂层刀具可代替多数非涂层刀具进行切削加工使用。

3、涂层厚度:随着涂层厚度增加刀具寿命也会增加,当厚度达到饱和刀具寿命不再明显增加,过厚的涂层时容易引起剥离,而涂层太薄时耐磨性能较差,涂层根据刀具的使用对象适中就好。

4、涂层时长:根据涂层设备的复杂性、工艺要求以及刀具达到的效果合理控制涂层时长。

5、涂层材料选用:根据刀具的使用对象合理选用合适的涂层材料。

五、涂层刀具的应用涂层刀具在数控加工中应用广泛,将是以后加工领域的主要品种。

涂层技术已应用在东莞神兵精密工具所生产的铣刀中,神兵精工生产的涂层铣刀有涂层T型刀、涂层燕尾刀、涂层深沟刀、石涂层石墨刀、涂层倒角刀、涂层钻头、涂层铰刀、涂层锯片、非标成型铣刀定制和涂层五金配件等多种需要涂层的刀具产品中。

刀具涂层材料

刀具涂层材料

刀具涂层料子目前市场上主流的涂层料子包含:·氮化钛(TiN)—通常采纳PVD涂层,具有高硬度、抗氧化温度高的特点。

·氮碳化钛(TiCN)—添加碳有助于提高涂层的硬度和涂层表面自润滑性。

·氮化铝钛(TiAlN 或 AlTiN)—包含一层氧化铝,在切削温度高的应用中可延长刀具寿命,特别适用于准干切削/干切削。

相对于TiAlN 涂层,由于铝/钛比例的不同,AlTiN涂层表面硬度更高。

此涂层方案特别适合于高速加工应用。

·氮化铬(CrN)—具有高硬度、耐磨性高的优点,是抗积屑瘤的**解决方案。

·石(PCD)—具有*好的非铁合金料子加工性能,尤其是加工石墨、金属基复合料子、高硅铝合金和其它研磨料子。

不适合加工钢,由于化学反应会破坏涂层与基体的结合。

通过对近几年的涂料料子进展,市场需求的增上进行分析,我们看到,PVD涂层刀具比CVD涂层刀具更受到青睐。

CVD涂层的厚度一般在5—15微米之间变更,而PVD涂层厚度一般在2—6微米之间。

当CVD涂层涂覆在基体上表面时,CVD涂层会产生拉应力,而PVD涂层则相反产生压应力。

这两种因素分别对切削刃产生显著影响,特别是在断续切削或连续加工过程中的刀具性能。

在涂层工艺中添加新的合金元素不但有利于提高涂层的结合力,而且还能够改善涂层的特性。

该工艺体现为在CVD涂层后,对刀片冷却过程特别的工艺掌控,有效削减了刀片涂层表面微裂纹。

同样,这一工艺可去除PVD涂层工艺中在表面留下的不良液滴。

因此,无论是CVD涂层还是PVD涂层,*终均可以获得更光滑的涂层表面,这样刀片切削热更低,寿命更长,排屑更流畅,可实现的切削速度也就越快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数控刀具涂层的分类
传统刀具涂层技术主要可分为两大类,但由于市场需求的变化及涂层技术本身的特性,物理涂层技术的发展受到了更大的关注。

PVD技术在得到飞跃性发展的同时,其应用市场也得到了广泛的拓展。

与最初发展相比,不仅涂层成分种类繁多,近几年来在涂层结构上更是有了突破性的发展,并已为市场所接受。

随着PVD技术在市场中愈来愈广泛的应用,认识了解各类涂层的特性及适用领域愈加显得重要。

因此本文拟对当前PVD涂层进行分类,并分析各类薄膜所适用领域,目的是让使用者对各类涂层有一个较系统的了解,更加合理地使用涂层刀具。

从PVD技术的发展和应用角度,笔者认为PVD涂层可按2种方法进行分类。

1. 按涂层成分分类
按涂层成分对涂层进行分类简洁、明了,基于对材料性能的认识,使用者容易了解涂层的功能,易为市场所接受,因此目前各涂层企业更多的是以不同的涂层成分向用户介绍、推荐其技术及产品。

按成分对涂层区分通常可分为两大类,即硬涂层和软涂层。

硬涂层以TiN、TiCN、TiAlN等为代表,包括了单层薄膜和复合薄膜,随着市场需求的变化及涂层技术的发展,新的涂层成分不断被开发出来,到目前为止所应用的硬涂层成分已有几十种之多;软涂层顾名思义薄膜的硬度相对较低,通常为1000HV左右。

软涂层目前种类并不多,以MoS2、碳基薄膜为主,在切削加工领域内,其目的是通过在硬涂层表面覆盖一层这种薄膜,试图增加涂层表面的润滑性,改善被加工工件表面质量,以满足某些应用领域的需要。

2. 按涂层结构分类
尽管按成分进行涂层分类具有良好的市场基础,但从PVD技术的发展来看,涂层的内部结构的变化已越来越多地影响着涂层刀具的应用效果。

相同的涂层成分、不同的结构形式,可以导致涂层刀具使用效果的截然不同。

因此认识了解目前PVD涂层薄膜的结构形式,对于该项技术的实际应用有着十分重要的意义。

就目前PVD技术的发展状况,涂层薄膜结构大体可分类如下:
a. 单一层涂层
涂层由某一种化合物或固溶体薄膜构成,理论上讲在薄膜的纵向生长方向上涂层成分是恒定的,这种结构的涂层可称之为普通涂层。

如果联系到PVD的发展历程,实际上在过去相当长的时期内一直采用这种技术,其中包含众所周知TiN、TiCN、TiAlN 等。

随着应用市场要求的不断提高,人们也愈加认识到这种涂层的局限性,无论是显微硬度、高温性能、薄膜韧性等都难于大幅度提高,但这种涂层在市场中仍占有一定比例。

b. 复合涂层
c. 由多种不同功能(特性)薄膜组成的结构可以称之为复合涂层结构膜,其典型涂层为目前的硬涂层+ 软涂层,每层薄膜各具不同的特征,从而使涂层更具良好的综合性能。

d. 梯度涂层
涂层成分沿薄膜纵向生长方向逐步发生变化,这种变化可以是化合物各元素比例的变化,如TiAl-CN中Ti、Al含量的变化,也可以由一种化合物逐渐过渡到另一种化合物,如由CrN 逐渐过渡到CBC。

可以预见这种结构能有效降低因成分突变而造成的内部微观应力的增加。

e. 多层涂层
多层涂层由多种性能各异的薄膜叠加而成,每层膜化学组分基本恒定。

目前在实际应用中多由2种不同薄膜组成,由于所采用的工艺存在差异,不同企业的多层涂层刀具,其各膜层的尺寸也不近相同,通常由十几层薄膜组成,每层薄膜尺寸大于几十纳米,最具代表性的有AlN+TiN、TiAlN+TiN涂层等。

与单层涂层相比,多层涂层可有效地改善涂层组织状况,抑制粗大晶粒组织的生长。

f. 纳米多层涂层
这种结构的涂层与多层涂层类似,只是各层薄膜的尺寸为纳米数量级,又可称为超显微结构。

理论研究证实在纳米调制周期内(几纳米至几十纳米),与传统的单层膜或普通多层膜相比,此类薄膜具有超硬度、超模量效应,其显微硬度超过40GPa 是可以预期的,并且在相当高的温度下,薄膜仍可保留非常高的硬度。

因此这类膜具有良好的市场应用前景,其典型代表为AlN+TiN、AlN+TiN+CrN 涂层等。

g. 纳米复合结构涂层
纳米复合结构涂层。

以(nc-Ti1-xAlxN)(/ -Si3N4)纳米复合相结构薄膜为例,在强等离子体作用下,纳米TiAlN 晶体被镶嵌在非晶态的Si3N4体内(见图5),当TiAlN晶体尺寸小于10nm 时,位错增殖源难于启动,而非晶态相又可阻止晶体位错的迁移,即使在较高的应力下,位错也不能穿越非晶态晶界。

这种结构薄膜的硬度可以达到50GPa 以上,并可保持相当优异的韧性,且当温度达到900℃~1100℃时,其显微硬度仍可保持在30GPa 以上;此外这种薄膜同时可获得优异的表面质量,因此工业应用前景广阔。

相关文档
最新文档