材料力学132第十三章压杆稳定性计算
合集下载
材料力学压杆稳定概念欧拉公式计算临界力

材料力学压杆稳定概念欧拉公式计算临界力材料力学是研究物体受力及变形行为的一门学科。
压杆稳定是材料力学中重要的概念之一、当一个杆件受到作用力时,如果杆件不发生任何形状上的变化,我们称之为杆件处于稳定状态。
然而,当作用力超过一定临界值时,杆件就会发生失稳,产生形状上的变化。
因此,欧拉公式就是用来计算杆件临界力的一种方式。
欧拉公式由瑞士数学家欧拉于18世纪中叶首次提出。
它的基本假设是杆件是理想化的,即杆件是均匀、无缺陷、具有均匀截面的杆件。
根据欧拉公式,杆件临界力可通过以下公式计算:Pcr = (π^2 * E * I) / L^2其中,Pcr表示临界力,E表示杨氏模量,I表示截面惯性矩,L表示杆件的有效长度。
从上述公式中可以看出,临界力与材料的弹性模量有关,即材料越硬,临界力越大;同时临界力与截面的形状也有关,即截面惯性矩越大,临界力越大;临界力还与杆件长度有关,即杆件越短,临界力越大。
例子:假设有一根长为L的无缺陷的圆柱形杆件,其截面半径为r,杨氏模量为E。
根据材料力学的知识,该圆柱形杆件的截面惯性矩可计算为I=(π*r^4)/4Pcr = (π^2 * E * ((π * r^4) / 4) ) / L^2通过上述公式,可以计算出该无缺陷的圆柱形杆件的临界力。
这个临界力表示了该杆件能够承受的最大作用力。
如果作用力超过了临界力,该杆件将发生失稳,产生形状上的变化。
总结起来,材料力学中的压杆稳定概念是指杆件在受力作用下不发生形状上的变化。
欧拉公式是用来计算杆件临界力的一种常用公式,可以帮助工程师们确定杆件的最大承载能力。
压杆稳定计算

第二节
欧拉在 1774 年首先解决的。
细长压杆的临界力
现在我们来求压杆的临界力 Plj ,即杆弯曲后在平衡状态时的纵向力 P,这个问题是 设有一根等截面的直杆 AB,长为 L,两端铰支(图 25-2),在纵向力 P 作用下,发生 微小弯曲变形,选取坐标轴如图所示,杆在弯曲状态下,距下端为 x 的任一截面的挠度 为 y,该截面的弯矩为 M(x)= -Py ( a) 压杆开始丧失稳定时,挠度很小,可以根据挠曲线的近似微分方 程来进行分析,将式(a)代入挠曲线近似微分方程得 d2 y EI = M ( x) = − Py d x2 P (b) 令 k2 = EI 那么上面的微分方程就可写成 d2 y + k2 y = 0 d x2 它的通解是 y=c1sinkx+c2coskx 不知道,所以式中的K也是一个待定值。 要确定上述这几个待定值,可以利用杆端的两个边界条件。在 A 端,即 x=0 处,挠 度 y=0,把它代入式(c) ,即可求得 c2=0 因此挠度曲线方程为 y=C1sinkx (d) 又在 B 端,即 x= l 处,挠度 y=0,代入上式得
P lj
=
π
2
EI
2
(0 .7 l )
2 2
(25-4)
综合上述四个公式可得临界力的一般表达式为
P lj =
π EI = π EI 2 2 (μl ) L0
(25-5)
式中 μ 为长度系数,其值取决于压杆两端的约束情况,可见表 25-1。L0= μ l ,为 压杆的计算长度;E为杆件材料的弹性模量:I为杆件截面的惯矩。
k= l
或 (e)
若取C1=0,则由式(d)得挠曲线方程为y=0,表示杆仍保持直线形式,这个结论与原来
材料力学压杆的稳定性教学课件

脆性材料
如铸铁、玻璃等,其压杆稳定性 主要受材料强度和截面形状影响
,临界载荷较高。
塑性材料
如钢材、铜材等,其压杆稳定性受 材料屈服点和截面形状影响,临界 载荷较低。
复合材料
如玻璃纤维增强塑料等,其压杆稳 定性受材料性能和结构参数影响较 大,临界载荷取决于材料和结构的 设计。
04
压杆的稳定性实验
实验目的与要求
案例三:机械零件中的压杆稳定性分析
总结词
机械零件中的压杆稳定性分析是确保机械设备正常运转的关键因素,通过对机械零件中压杆的稳定性进行分析, 可以提高机械设备的可靠性和安全性。
详细描述
在机械设备中,压杆通常用于传递载荷或支撑部件,其稳定性对机械设备的性能和寿命具有重要影响。通过分析 机械零件中压杆的受力情况、材料特性等因素,可以评估其稳定性,并优化设计以提高机械设备的可靠性和安全 性。
定义
材料力学是研究材料在各种力和 力矩作用下的应力和应变行为的 科学。
重要性
材料力学为工程设计和结构分析 提供了理论基础,确保了工程结 构的稳定性和安全性。
材料力学的基本假设与理论
假设
材料是连续的、均匀的、各向同性的。
理论
胡克定律、弹性力学、塑性力学等。
材料力学在工程中的应用
01
02
03
建筑
建筑设计中的结构分析, 如梁、柱、板等。
本课件旨在帮助学生深入理解材料力学压杆稳定性的基本概念、原理和方法,提高 解决实际问题的能力。
课程目标
01
02
03
04
掌握压杆稳定性的基本概念、 原理和方法。
了解不同类型压杆的稳定性分 析方法。
掌握临界载荷和失稳形式的计 算方法。
如铸铁、玻璃等,其压杆稳定性 主要受材料强度和截面形状影响
,临界载荷较高。
塑性材料
如钢材、铜材等,其压杆稳定性受 材料屈服点和截面形状影响,临界 载荷较低。
复合材料
如玻璃纤维增强塑料等,其压杆稳 定性受材料性能和结构参数影响较 大,临界载荷取决于材料和结构的 设计。
04
压杆的稳定性实验
实验目的与要求
案例三:机械零件中的压杆稳定性分析
总结词
机械零件中的压杆稳定性分析是确保机械设备正常运转的关键因素,通过对机械零件中压杆的稳定性进行分析, 可以提高机械设备的可靠性和安全性。
详细描述
在机械设备中,压杆通常用于传递载荷或支撑部件,其稳定性对机械设备的性能和寿命具有重要影响。通过分析 机械零件中压杆的受力情况、材料特性等因素,可以评估其稳定性,并优化设计以提高机械设备的可靠性和安全 性。
定义
材料力学是研究材料在各种力和 力矩作用下的应力和应变行为的 科学。
重要性
材料力学为工程设计和结构分析 提供了理论基础,确保了工程结 构的稳定性和安全性。
材料力学的基本假设与理论
假设
材料是连续的、均匀的、各向同性的。
理论
胡克定律、弹性力学、塑性力学等。
材料力学在工程中的应用
01
02
03
建筑
建筑设计中的结构分析, 如梁、柱、板等。
本课件旨在帮助学生深入理解材料力学压杆稳定性的基本概念、原理和方法,提高 解决实际问题的能力。
课程目标
01
02
03
04
掌握压杆稳定性的基本概念、 原理和方法。
了解不同类型压杆的稳定性分 析方法。
掌握临界载荷和失稳形式的计 算方法。
材料力学-压杆的稳定性

压杆的稳定性
倒塌后成为一片废墟
压杆的稳定性
1925年苏联莫兹尔 桥在试车时因桥梁 桁架压杆失稳导致破 坏时的情景。
压杆的稳定性
这是1966年我国广东鹤地水库弧门由于大风导致 支臂柱失稳的实例。
1983年10月4日,高 54.2m、长17.25m、总 重565.4KN大型脚手架 局部失稳坍塌,5人死亡、
EI
d2
y
M
(x)
P cr
y
dx2 EI
EI
d2y k2y 0 dx2
压杆的稳定性
通解: y Asin kx B coskx
边界条件:
y
y 0, y 0
Pcr
y
Pcr
x0
xl
(i) B 0 (ii) 0 Asin kl
A 0, sin kl 0
11.1 压杆稳定的概念
一、概述
(a): 木杆的横截面为矩形(12cm), 高为 3cm,当荷载重量为6kN时杆还不致 破坏。
(b): 木杆的横截面与(a)相同,高为1.4m (细长压杆),当压力为0.1KN时杆 被压弯,导致破坏。
(a)和(b)竟相差60倍,为什么?
拉压杆的强度条件为: = —F—N [ ] A
7人受伤 。
压杆的稳定性
三 平衡的稳定性 随遇平衡 不稳定平衡
压杆的稳定性
稳定平衡
压杆平衡的稳定性
F<FF<cr Fcr
F>Fcr F>Fcr
F=FF=crFcr
稳定平衡状态
不稳定平衡状态
随遇平衡状态 (临界状态)
四 临界压力Pcr的概念
压杆的稳定性
材料力学 第十三章压杆稳定

最小刚度平面,即I 最小的纵向平面。 F
(4)若压杆在两个形心主惯性平面内的杆端约束不相
同时,该杆的临界力应按两个方向的(I/ μl)min值计算。 y z x
轴销
(5)假设压杆是均质的直杆,且只有在压杆的微弯 曲状态下仍然处于弹性状态时才是成立的;实际压杆 的临界力均小于理论值。
9l 5l
2l
稳定性
丧失原有平衡形式的现象称为失稳 失稳也是一种失效形式 理想中心受压细长压杆的临界力
§13-2
一﹑Euler公式
细长压杆的临界力
x Fcr
1.两端铰支的临界压力
M(x)=Fcrw (a)
l
E I w″= -M(x)(b) 得 E I w″= - Fcrw
w
x O y
令 k2=Fcr / EI
M(x) Fcr=F
2 0.8 160 p 0.04 i 4
l
l
2 EI 2 210 109 0.044 / 64 Fcr 102kN 2 2 (2 0.8) l
Fcr F Fst 34kN nst
例4:厂房钢柱长7m,由两根16b号Q235槽钢组成。截
稳定的。
F ≥ Fcr
F ≥ Fcr
F≥Fcr
(2)当F≥Fcr时,
在干扰力除去后,杆
干扰力
件不能恢复到原直线 位置,在曲线状态下 保持平衡。 原有的直线平衡状态是
(a)
(b)
(c)
不稳定的。
这种丧失原有平衡形式的现象称为丧失稳定性,简称失稳.
Fcr——压杆保持稳定平衡所能承受的极限压力, 即临界压力(临界荷载)。 压杆在外力作用下保持原有平衡形式的能力
(4)若压杆在两个形心主惯性平面内的杆端约束不相
同时,该杆的临界力应按两个方向的(I/ μl)min值计算。 y z x
轴销
(5)假设压杆是均质的直杆,且只有在压杆的微弯 曲状态下仍然处于弹性状态时才是成立的;实际压杆 的临界力均小于理论值。
9l 5l
2l
稳定性
丧失原有平衡形式的现象称为失稳 失稳也是一种失效形式 理想中心受压细长压杆的临界力
§13-2
一﹑Euler公式
细长压杆的临界力
x Fcr
1.两端铰支的临界压力
M(x)=Fcrw (a)
l
E I w″= -M(x)(b) 得 E I w″= - Fcrw
w
x O y
令 k2=Fcr / EI
M(x) Fcr=F
2 0.8 160 p 0.04 i 4
l
l
2 EI 2 210 109 0.044 / 64 Fcr 102kN 2 2 (2 0.8) l
Fcr F Fst 34kN nst
例4:厂房钢柱长7m,由两根16b号Q235槽钢组成。截
稳定的。
F ≥ Fcr
F ≥ Fcr
F≥Fcr
(2)当F≥Fcr时,
在干扰力除去后,杆
干扰力
件不能恢复到原直线 位置,在曲线状态下 保持平衡。 原有的直线平衡状态是
(a)
(b)
(c)
不稳定的。
这种丧失原有平衡形式的现象称为丧失稳定性,简称失稳.
Fcr——压杆保持稳定平衡所能承受的极限压力, 即临界压力(临界荷载)。 压杆在外力作用下保持原有平衡形式的能力
第十三章压杆的稳定性

(a)
(b)
7
§ 13-2
细长压杆的临界力
w A sin kx B cos kx (c)
将边界条件x=0,w=0代入式(c)得 B=0。于是根据(c)式并利用边界条件 x=l,w=0得到
A sin kl 0
由于B=0,故上式中的A不可能等于零,则
sin kl 0
w
解得:kl 0,π, 2π,
φ28 800 C
P=30kN
1
μ1l1 0.5 900 75 i1 6 s 1 P
解: 1.根据已知条件求 s ,P cr1 304 1.12 75 220MPa
a - s 304 - 240 s 57.1 b 1.12
3
§ 13-1
压杆稳定性的概念
2. 理想中心杆件 1. 压杆轴线是理想直线即无初弯曲, 2. 压力作用线与轴线完全重合, 3. 材料是绝对均匀的。
二、失稳(屈曲)
压杆丧失其直线平衡而过渡到曲线平衡,
称为丧失稳定性,简称失稳或屈曲。
4
§ 13-1
压杆稳定性的概念
F<Fcr
F=Fcr
F>Fcr
Fcr:临界压力
F 30 103 2 48.72MPa A2 p 282 4
24
§ 13-4
压杆的稳定性计算
作业:P1076; P10916 思考:P11017; P11018
25
§ 13-4
压杆的稳定性计算
答疑通知
地点:工科二号楼A424(力学系)
时间:17周的周二下午两点;
26
§ 13-4
P=30kN
n2
材料力学

压杆的稳定条件(安全系数法)
F
F cr
n st
[Fst ]
n st ——稳定安全因数
F ——工作压力
[ Fst ] ——稳定许用压力
— [ st ]
材料力学
cr
n st
[st ]
——稳定许用应力
F A
工作应力
压杆稳定问题/压杆的稳定计算
压杆的稳定条件
n nst
— n Fcr cr
工作安全因数
F
2、由杆AC的强度条件确定 Fmax 。
1
FN1 A1
s ns
FN 2
A
F s A1 26.7KN
2ns
3、由杆AB的稳定条件确定 Fmax 。
材料力学
n
Fcr FN 2
nst
柔度: l2 1 0.6 80 i2 d2 / 4
0 < p 可用直线公式.
因此
FcrcrA2 (ab)A2 (30 1.4 1 2 8)0 160 4d22
(中柔度杆)
(p s)
粗短杆—不发生屈曲,而发生屈服(< 0)
(小柔度杆,按强度问题处理cr= s (b))
材料力学
压杆稳定问题/中、小柔度杆的临界应力
中长杆临界应力的经验公式
1) 直线公式
crab
a、b是与材料有关的常数。
直线公式的适用范围: 0 < p
ps
0
as
b
临界应力总图——临界应力随柔度变化的曲线
材料力学
压杆稳定问题/中、小柔度杆的临界应力
三、中、小柔度杆的临界应力
材料力学
压杆稳定问题/中、小柔度杆的临界应力
1、问题的提出
材料力学-压杆稳定

1.直线型经验公式
对于柔度(λs≤λ<λp)的中柔 度杆(中长压杆),临界应力 与λ的关系采用直线公式:
cr a b 13 8
式(13-8)中的系数a,b可查书中表 13-1。 λ的最低界限:
s
a
s
b
(塑性材料)
b
a
b
b
(脆性材料)
---------(13-9)
图13-3
2.抛物线型经验公式
式中有c1,c2,k三个未知量。根据边界条件:当x=0时, yA=0;代入式(c)得c2=0。式(c)成为
y c1 sinkx (d )
当x=l时,yB=0;代入式(d)后可得 c1 sinkl 0 (e)
要满足式(e),必然是c1或sinkl等于零,若c1=0,则压杆 上各点的位移都为零,这显然与压杆在微弯状态下保持平衡 的前提不符,故必须是sinkl=0。要满足这一条件的kl值为:
kl 0, ,2 ,L ,n (n为正整数)
由k P n 可得:
EI l
P
n2 2 EI
l2
(
f
)
使压杆可能在微弯状态下保持平衡的最大轴向压力,应
该是式(f) 中n=1时的P值,这就是所求的两端铰支压杆的临
界力Pcr,即
Pcr
2 EI
l2
(13 1)
式(13-1)习惯上称为两端铰支压杆的欧拉公式。当各个 方向的支承情况相同时(如两端为球铰),压杆总是在它的 抗弯能力最小的纵向平面内失稳,所以式(13-1)中的EI是压 杆的最小抗弯刚度,即I应取截面的最小形心主惯性矩Imin。
2
图13-4 对于柔度(λ<λc)的杆件,临界应力与λ的关系采用抛物线公式:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p
2E p
2 206109
200106 100
所以,只有压杆的长细比λ≥100时,才能应用欧 拉公式计算其临界压力。
当压杆的长细比λ<λp时,欧拉公式已不适 用。 在工程上,一般采用经验公式。 在我国 的设计手册和规范中给出的是直线公式和抛物 线公式。
直线公式 cr ab
式中 a、b是与材料性质有关的系数。
4
d2
d224
2
4
44
4
1:1:5
Pcra:Pcrb:Pcrc craA 1: crbA 2: crcA 3
1:2:20
例:图示圆截面压杆d=40mm,σs=235MPa。 求可以用经验公式σcr=304-1.12λ (MPa)计算临 界应力时的最小杆长。
CL13TU26
解:s
as
b
30423561.6 1.12
二、欧拉公式的适用范围 经验公式
在推导欧拉公式时,使用了挠曲线的近似微 分方程
EIvM (x)
在推导该方程时,应用了胡克定律。因此,欧拉 公式也只有在满足胡克定律时才能适用:
cr
2E 2
p
或写成 2E p
记
p
2E p
则欧拉公式的适用范围:
p
满足该条件的杆称为细长杆或大柔度杆
对A3钢,当取E=206GPa,σp=200MPa,则
对于塑性材料:
cr abs
即 as
b
记
s
as
b
则sp 经验公式的适用范围
对于 λ<λs的杆,不存在失稳问题,应考虑强度 问题
cr s
经验公式中,抛物线公式的表达式为
cr a1b12
式中 a1、b1也是与材料性质有关的系数,可
在有关的设计手册和规范中查到。
三、临界应力总图
1. 细 长 杆 ( p ), 用 欧 拉 公 式 2E
§13-3 压杆的临界应力及临界应力总图
一、压杆的临界应力
2E I Pcr ( l ) 2
cr
Pc r A
2EI (l)2 A
2 E (i 2 A) (l )2 A
2E l 2
i
令 l
i
则
cr
2E 2
l
i
cr
2E 2
压杆的长细比 压杆的柔度
计算压杆的临界 应力的欧拉公式
由ils 得 :
0.04
l s
i 61.6
4 0.7
0.88m
作业(P251-254)
1,2,3,6,16
例:三根材料、长度均相同、两端均为球 铰支座的细长杆结构,各自的截面形状如图, 求三根杆的临界应力之比以及临界力之比。
CL13TU25
cra:crb:crc21E2
2E
:
22
2E
:
32
i12:i22:i32
I1 : I2 : I3 A1 A2 A3
d4 6d42
d4 :6d42
d4
2: 64
d2
稳定性条件:
Pmax
Pc r [nst ]
式中 Pmax ------压杆所受最大工作载荷 Pc r ------压杆的临界压力 [ n s t ] ------压杆的规定稳定安全系数
稳定性条件也可以表示成: nst
Pcr Pmax
[nst ]
式中 n s t 为压杆实际的工作稳定安全系数。
例:非细长杆如果误用了欧拉公式计算临 界力,其结果比实际_大_,_危_险__;横截面上 的正应力有可能__超_过_比_例_极_限__。
表 13-2 直 线 公 式 的 系 数 a 和 b
材料 A3 钢 优质碳钢 硅钢 铬钼钢 铸铁 强铝 松木
a(MPa) 304 461 578 9807
332.2 373 28.7
b(MPa) 1.12 2.568 3.744 5.296 1.454 2.15 0.19
下面考虑经验公式的适用范围:
cr 2 2. 中 长 杆 ( s p ), 用 经 验 公 式
cr a b 3. 粗 短 杆 ( s ), 用 强 度 条 件
cr s
cr
s cr s cr ab
p
2E
ห้องสมุดไป่ตู้
cr 2
小柔度杆 中柔度杆 大柔度杆
O
s
a s
b
p
2E p
l
i
CL13TU20
§13-4 压杆的稳定性计算