数据拟合法

合集下载

数据拟合方法研究

数据拟合方法研究

数据拟合方法研究一、线性回归拟合方法线性回归拟合是最常见的数据拟合方法之一、其基本思想是建立一个线性模型,通过最小二乘法求解模型参数,使模型的预测结果与实际数据之间的误差最小化。

线性回归模型具有简单的形式和可解析的解,适用于解决线性关系的问题。

二、非线性拟合方法如果实际数据与线性模型之间存在非线性关系,线性回归模型就无法准确拟合数据。

这时需要使用非线性拟合方法。

常用的非线性拟合方法有多项式回归、指数函数拟合、对数函数拟合等。

这些方法通过调整模型参数,使模型能更好地逼近实际数据,建立更准确的拟合模型。

三、曲线拟合方法有些数据与线性模型或非线性模型都无法准确拟合,可能需要使用曲线拟合方法。

曲线拟合方法将数据与曲线进行对比,通过调整曲线参数,使曲线与实际数据尽可能接近。

常见的曲线拟合方法有多项式拟合、样条插值、B样条拟合等。

这些方法可以根据实际问题和数据特点选择合适的曲线模型,并通过调整节点或控制点的位置,优化曲线拟合效果。

四、最小二乘法拟合最小二乘法是一种常用的数据拟合方法,可以用于线性或非线性数据拟合。

最小二乘法的基本思想是最小化观测数据与拟合函数之间的残差平方和,即使得模型的预测结果与实际数据之间的误差最小化。

最小二乘法不仅可以用于拟合直线或曲线,还可以用于拟合多项式函数、指数函数、对数函数等。

五、贝叶斯拟合方法贝叶斯拟合方法是一种基于贝叶斯统计学理论的数据拟合方法。

贝叶斯拟合方法将参数的不确定性考虑进来,通过概率分布描述参数的可能取值范围,并通过贝叶斯公式更新参数的后验概率。

贝叶斯拟合方法可以更准确地估计参数的置信区间,并提供更可靠的模型预测。

综上所述,数据拟合方法包括线性回归拟合、非线性拟合、曲线拟合、最小二乘法拟合和贝叶斯拟合等。

不同的拟合方法适用于不同类型的数据和问题。

在实际应用中,需要结合数据的特点和问题的要求,选择合适的拟合方法,并通过调整模型参数,使拟合模型能准确地描述数据的变化趋势。

数据拟合方法

数据拟合方法

第二讲 数据拟合方法在实验中,实验和戡测常常会产生大量的数据。

为了解释这些数据或者根据这些数据做出预测、判断,给决策者提供重要的依据。

需要对测量数据进行拟合,寻找一个反映数据变化规律的函数。

数据拟合方法与数据插值方法不同,它所处理的数据量大而且不能保证每一个数据没有误差,所以要求一个函数严格通过每一个数据点是不合理的。

数据拟合方法求拟合函数,插值方法求插值函数。

这两类函数最大的不同之处是,对拟合函数不要求它通过所给的数据点,而插值函数则必须通过每一个数据点。

例如,在某化学反应中,测–33显然,连续函数关系是客观存在的。

但是通过表中的数据不可能确切地得到这种关系。

何况,由于仪器和环境的影响,测量数据难免有误差。

因此只能寻求一个近拟表达式y = ϕ(t )寻求合理的近拟表达式,以反映数据变化的规律,这种方法就是数据拟合方法。

数据拟合需要解决两个问题:第一,选择什么类型的函数)(t ϕ作为拟合函数(数学模型);第二,对于选定的拟合函数,如何确定拟合函数中的参数。

数学模型应建立在合理假设的基础上,假设的合理性首先体现在选择某种类型的拟合函数使之符合数据变化的趋势(总体的变化规律)。

拟合函数的选择比较灵活,可以选择线性函数、多项式函数、指数函数、三角函数或其它函数,这应根据数据分布的趋势作出选假设拟合函数是线性函数,即拟合函数的图形是一条平面上的直线。

而表中的数据点未能精确地落在一条直线上的原因是实验数据的误差。

则下一步是确定函数y= a + b x中系数a 和b 各等于多少从几何背景来考虑,就是要以a 和b 作为待定系数,确定一条平面直线使得表中数据所对应的10个点尽可能地靠近这条直线。

一般来讲,数据点将不会全部落在这条直线上,如果第k 个点的数据恰好落在这条直线上,则这个点的坐标满足直线的方程,即a +b x k = y k如果这个点不在直线上,则它的坐标不满足直线方程,有一个绝对值为k k y bx a -+的差异(残差)。

数据拟合方法研究

数据拟合方法研究

数据拟合方法研究数据拟合是数据分析中非常重要的工作,其主要目的是找到最佳的函数形式来描述数据之间的关系。

在实际应用中,数据拟合通常用于模型建立、预测分析、实验设计等领域。

本文将介绍数据拟合的基本概念、常用方法以及其在实际应用中的应用。

一、数据拟合基本概念数据拟合是指通过已有数据的样本值,寻找一个函数形式使其最佳地描述这些数据所表现出的规律。

在拟合过程中,常常涉及到拟合函数的选择、参数的求解以及拟合程度的评价等问题。

拟合函数的选择通常依赖于研究问题的不同以及观测数据的特点。

二、常用的数据拟合方法1.最小二乘法拟合在最小二乘法拟合中,我们试图找到一个函数形式使其预测值与观测值之间的误差平方和最小。

这种方法在拟合过程中,通常需要确定待拟合函数的形式、参数估计以及拟合程度的评价指标等问题。

最小二乘法拟合常用于线性回归、非线性回归以及多项式拟合等问题。

2.最大似然估计拟合最大似然估计拟合是一种常用的参数估计方法,其主要思想是选择使得已观测数据样本概率最大化的参数值。

最大似然估计拟合常用于分布拟合、生存分析、统计模型等领域。

通过最大似然估计拟合,可以推测出数据背后的概率分布模型,从而进行预测和推断分析。

3.核函数拟合核函数拟合是一种非参数拟合方法,其主要思想是通过一系列核函数的线性组合来逼近数据分布。

核函数拟合具有较强的灵活性和拟合能力,适用于各种类型的数据分布,并且能够处理多维数据。

在核函数拟合中,需要选择合适的核函数以及核函数的参数,并通过交叉验证等方法选择最佳模型。

4.贝叶斯拟合贝叶斯拟合是一种基于贝叶斯理论的数据拟合方法,其主要思想是通过先验分布和观测数据来更新参数的后验分布,从而得到参数的估计值。

贝叶斯拟合能够处理参数不确定性、模型不确定性以及过拟合等问题,具有较好的鲁棒性和泛化能力。

三、数据拟合的应用数据拟合在实际应用中有着广泛的应用。

以下是几个典型的应用案例:1.经济学中的数据拟合:在经济学中,数据拟合常常用于建立经济模型以及预测分析。

第讲概率统计模型数据拟合方法分解

第讲概率统计模型数据拟合方法分解

第讲概率统计模型数据拟合方法分解在概率统计模型中,数据拟合是指通过已有的数据来估计未知的参数,以便建立模型并进行进一步的分析与预测。

数据拟合方法可以分为参数估计和非参数估计两种。

参数估计方法是假设数据服从其中一特定参数分布,通过最大似然估计或最小二乘估计等方法,估计出这些参数的值。

最大似然估计是基于参数的似然函数,通过寻找使得似然函数取最大值的参数值来进行估计。

最小二乘估计是通过最小化观测值与模型预测值之间的平方差来进行参数估计。

这两种方法都可以通过求导数等数学手段来获得估计值的闭式解,从而得到参数的估计结果。

非参数估计方法是不对数据分布做任何假设,直接通过样本来进行估计。

常见的非参数估计方法包括核密度估计、最近邻估计等。

核密度估计是基于核函数的方式,通过将每个样本点周围一定区域内的所有样本点都等权重地加权平均来估计该点的密度。

最近邻估计则是通过找到每个样本点周围一定区域内的最靠近的样本点,以及这些样本点与该点之间的距离,来估计该点的密度。

在数据拟合过程中,可以通过拟合优度检验来评估模型的拟合效果。

常见的拟合优度检验方法有卡方检验和残差分析。

卡方检验是通过计算观测频数和预期频数之间的差异来检验模型的拟合优度。

残差分析是通过分析观测值与预测值之间的差异,来评估模型的拟合效果。

数据拟合方法的选择应根据具体问题的性质和可用数据的特点来确定。

参数估计方法适用于已知数据分布的情况,且假设其中一特定参数分布是合理的。

非参数估计方法适用于数据分布未知或无法假设特定参数分布的情况。

总之,数据拟合是概率统计模型中的重要步骤,通过参数估计和非参数估计方法,可以对数据进行拟合,建立相应的模型,并进行进一步的分析与预测。

在选择拟合方法时,应根据具体问题的性质和数据的特点来确定适用的方法,并通过拟合优度检验来评估模型的拟合效果。

数据拟合曲线算法

数据拟合曲线算法

数据拟合曲线算法
在数据拟合中,常用的曲线拟合算法有多种,具体选择哪一种算法取决于数据的特点以及我们希望达到的拟合效果。

以下是几种常见的数据拟合曲线算法:
1. 线性回归(Linear Regression):线性回归是一种基本的拟合算法,在数据中用一条直线来拟合数据点的分布。

通过使得拟合直线和实际数据点之间的误差最小,来找到最佳的拟合直线。

2. 多项式拟合(Polynomial Fitting):多项式拟合是一种可以拟合非线性关系的方法。

通过增加模型的多项式次数,使得模型能够更好地拟合复杂的数据分布。

3. 基于最小二乘法的拟合(Least Squares Fitting):最小二乘法是一种常见的拟合方法,旨在找到即使误差最小化的拟合曲线。

该方法可用于拟合线性模型、非线性模型等。

4. 样条插值(Spline Interpolation):样条插值是一种基于分段多项式的拟合方法。

通过将数据点之间的曲线段拟合为多项式曲线,使得整个曲线在数据点处连续,并最小化整体曲线的误差。

5. 非参数拟合(Nonparametric Fitting):非参数拟合不依赖于特定的函数形式,而是根据数据的分布来构建拟合模型。

常见的非参数拟合算法包括局部加权回归(Locally Weighted Regression)和核函数回归(Kernel Regression)等。

需要注意的是,选择拟合算法时需要根据实际情况评估算法的适用性及效果,以及避免过拟合或欠拟合问题。

同时,针对不同的数据类型和拟合目标,还有其他更为专门的拟合算法可供选择。

数据拟合的常用方法

数据拟合的常用方法

数据拟合的常用方法
数据拟合是统计学中一种基本的分析方法,用来根据以前观测到的数据,推断未知数
据的未来趋势和分布情况。

它可以让研究者更好地了解存在于集合数据中的规律及其变化,并且提出有用的结论。

通常,可以使用以下五大常用拟合方法来进行拟合:
(1)普通最小二乘法:普通最小二乘法(OLS)是一种用于数据拟合的常见方法,即
求解一组数据的实际值和预测值的最小误差的方法。

它根据所给的参数和坐标点的坐标绘
制出一个模型,然后拟合出合适的模型,并计算坐标点的误差。

(2)逐步回归:逐步回归也称为自动回归,是一种特殊的最小二乘回归方法,其主
要思想是可以从一系列常量开始,一次一次加入变量,直到变量不再显著,然后停止。


般来说,它可以更快地找到数据拟合最佳模型。

(3)多项式拟合:多项式拟合是利用给定的数据点拟合适合的数学模型的方法,重
点在于选择最佳的模型参数使得拟合的模型更准确,而不是任意地估计一组模型参数。

(4)对数拟合:对数拟合是指将一组实际数据样本点连续地用一条它们之间的唯一
直线连接起来。

利用对数拟合回归方法,可以拟合出一条最佳拟合直线,从而得到数据的
准确分析模型。

(5)伽马调节:伽马调节是一种数据变换方法,目的是使得某些模型更好地适应数据,伽马调节也可以用来某些变量的数值标准化,并用于模型的拟合分析。

测绘技术中的数据拟合方法介绍

测绘技术中的数据拟合方法介绍

测绘技术中的数据拟合方法介绍1. 引言测绘技术是一门应用广泛的学科,常用于地图制作、土地测量和建筑设计等领域。

在测绘过程中,我们经常需要进行数据的拟合,以求得准确的结果。

本文将重点介绍测绘技术中常用的数据拟合方法。

2. 最小二乘法最小二乘法是数据拟合中最常用的方法之一。

其基本原理是通过最小化测量值与拟合曲线之间的残差平方和,来确定最佳的拟合曲线。

最小二乘法可以应用于线性和非线性函数的拟合。

其中,线性最小二乘法可以直接利用矩阵运算求解,而非线性最小二乘法则需要通过迭代法求解。

3. 多项式拟合多项式拟合是一种简单而常用的数据拟合方法。

通过将数据拟合为一个多项式函数,可以较好地逼近数据点的分布。

多项式拟合的优势在于其简单计算和广泛应用。

然而,多项式拟合也存在一些问题,例如容易出现过拟合和不稳定等情况。

4. 样条插值样条插值是一种基于插值原理的数据拟合方法。

其基本思想是将数据点之间的区域进行拟合,从而得到一个平滑的曲线。

样条插值可以分为三次样条插值和分段线性插值两种方法。

三次样条插值方法可以保持曲线的光滑性,而分段线性插值方法则更加快速和简单。

5. 曲线拟合对于非线性的数据,曲线拟合可以提供更加准确的结果。

曲线拟合通常利用数学模型来逼近数据点的分布。

常见的曲线拟合方法包括指数曲线拟合、对数曲线拟合和幂函数曲线拟合等。

曲线拟合要求选取合适的拟合模型,并通过最优化方法来求解模型参数。

6. 联合拟合如果数据集中包含多个相互关联的变量,那么联合拟合方法可以提供更好的拟合结果。

联合拟合是在多个拟合模型之间建立联系,并同时进行参数估计的过程。

联合拟合方法可以提高数据拟合的准确性,减小不确定性。

7. 结论通过本文的介绍,我们了解了测绘技术中常用的数据拟合方法。

最小二乘法在线性和非线性拟合中都具有重要的应用。

多项式拟合、样条插值和曲线拟合则分别适用于不同类型的数据。

联合拟合方法可以适用于包含多个变量的复杂数据集。

在实际测绘过程中,根据不同的数据特点和需求,可以选择合适的拟合方法来提高测量结果的准确性和可靠性。

化学反应中的实验数据拟合方法

化学反应中的实验数据拟合方法

化学反应中的实验数据拟合方法在化学研究中,实验数据拟合是十分重要的一个环节。

当我们进行化学反应实验时,要比较实验数据和已知理论值之间的差异,并确定实验结果的准确性和可靠性,这就需要运用实验数据拟合方法。

实验数据拟合方法是利用数学模型,将实验结果与理论结果进行比较、分析和优化,最终得出一组或多组最优数据。

在化学反应研究中,实验数据拟合主要用于确定反应动力学方程和确定反应速率常数等。

那么,如何进行实验数据拟合呢?首先,我们需要了解实验数据的来源和处理方式。

在化学反应实验中,我们需要对实验数据进行稳定性和重复性测试,然后进行数据处理,得到一系列反应物浓度、反应时间、反应速率等数据。

用这些数据,结合化学反应机理和反应定律,在计算机中编写数学模型,并用标准数学方法求解方程组得出参数。

这个过程中,最常用的方法为最小二乘法和非线性最小二乘法。

最小二乘法是求解一组数据中离均差平方和最小的参数,以达到最优化拟合的目的。

在化学反应中,最小二乘法可以用于研究反应物浓度与反应速率之间的关系。

通过对不同反应条件下的实验数据进行拟合,得出反应动力学方程和反应速率常数等。

非线性最小二乘法是在最小二乘法基础上发展起来的一种方法,它可以解决非线性化学反应系统的实验数据拟合问题。

利用该方法,可以解决由于多种化学反应机制交错导致的复杂数学模型和曲线交叉点等问题。

实验数据拟合技术是化学研究中的重要方法之一,它可以为化学反应机理和反应速率常数等提供定量的实验数据支持,进而提高研究的准确性和可靠性。

因此,熟练掌握实验数据拟合方法对于化学领域的专业人员来说,是非常必要的。

总之,在进行化学反应研究时,实验数据拟合是不可或缺的一个步骤。

使用实验数据拟合方法,可以更加准确地得出反应动力学方程和反应速率常数等数据,从而得出更加客观准确的研究结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 数据拟合法在科学实验和生产实践中,有许多函数关系仅能用由实验或观测得到的一组数据表(,)(0,1,,)i i x y i m =来表示,例如某种物质的化学反应,能够测得生成物的浓度与时间关系的一组数据表.而它们的解析表达式)(t f y =是不知道的。

但是为了要知道化学反应速度,必须要利用已知数据给出它的近似表达式,有了近似表达式,通过求导数便可知道化学反应速度。

可见已知一组数据求它的近似表达式是非常有意义的.如何求它的近似表达式呢?第二章介绍的插值方法是一种有效的方法.但是由于数据(,)(0,1,,)i i x y i m =是由测量或观测得到的,它本身就有误差,作插值时一定要通过型值点),(i i y x 似乎没有必要;其次当m 很大时,采用插值(特别是多项式插值)很不理想(会出现龙格现象),非多项式插值计算又很复杂。

为此,本章介绍一种“整体”近似的方法,即对于给定的数据(,),0,1,,i i x y i n =,选一个线性无关函数系)(,),(),(10x x x n ϕϕϕ ,以它们为基底构成的线性空间为{}0span (),,()n x x ϕϕ=Φ.在此空间内选择函数()()nj j j x x ϕαϕ==∑其中(0,1,,)j j n α=为待定常数。

要求它逼近真实函数)(x f y =的误差尽可能小,这就是数据拟合问题.§1 最小二乘法一、最小二乘法设有数据(,),0,1,,i i x y i m =,令()(),0,1,,ni i i i j j i j r y x y x i m ϕαϕ==-=-=∑.并称Tm r r r r ),,,(10 =为残向量,用)(x ϕ去拟合)(x f y =的好坏问题变成残量的大小问题。

判断残量大小的标准,常用的有下面几种:(1) 确定参数(0,1,,)j j n α=,使残量绝对值中最大的一个达到最小,即i mi r ≤≤0max 为最小。

(2) 确定参数(0,1,,)j j n α=,使残量绝对值之和达到最小,即∑=mi ir为最小。

(3) 确定参数(0,1,,)j j n α=,使残量的平方和达到最小,即2mT ii rr r ==∑ 最小(1)和(2)两个标准很直观,但因为有绝对值,所以实际应用很不方便;而标准(3)既直观,使用又很方便。

按标准(3)确定待定参数,得到近似函数的方法,通常称为最小二乘法。

在实际问题中如何选择基函数()(0,1,,)j x j n ϕ=是一个复杂的问题,一般要根据问题本身的性质来决定。

如果从问题本身得不到这方面的信息,那么通常可取的基函数有多项式、三角函数、指数函数、样条函数等。

下面重点介绍多项式的情况。

设基函数取为()(0,1,,)j j x x j n ϕ==. 已知列表函数()(0,1,,)i i y f x i m ==,且n m . 用多项式01()n n n p x a a x a x =+++ (1.1)去近似)(x f ,问题是应该如何选择n a a a ,,,10 使)(x p n 能较好地近似列表函数)(x f . 按最小二乘法,应选择n a a a ,,,10 使得 2010(,,,)[()()]mn i n i i s a a a f x p x ==-∑ (1.2)取最小。

注意到s 是非负的,且是n a a a ,,,10 的二次多项式,它必有最小值。

求s 对na a a ,,,10 的偏导数,并令其等于零,得到10[()]0,0,1,,mn k ii n i i i y aa x a x x k n =-+++==∑进一步将上式写成如下方程组010002101000012010000(1)()(),()()(),()()(),m m mni i n i i i i m m m mn i i i n i i i i i i m m m mn n n n i i i n i i i i i i m a x a x a y x a x a x a x y x a x a x a x y ===+====+====⎧++++=⎪⎪⎪+++=⎪⎨⎪⎪⎪+++=⎪⎩∑∑∑∑∑∑∑∑∑∑∑ 再将方程组写成矩阵形式20000231000012200001 m m mn i i i i i i m m m m n i i i i i i i i m m m mn n n n i i i i i i i i m x x x a x x x x x x x x ===+====++====⎡⎤+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦∑∑∑∑∑∑∑∑∑∑∑0100m i i m i i i n m n i ii y x y a a x y ===⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦∑∑∑. (1.3) 若令200000211111211,,1n n n n m mmm a y x x x a y x x x A Y a y x x x α⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦则(1.3)可简单地表示为.Y A A A T T =α定义1 方程组(1.4)称为法方程组(也叫正规方程组或正则方程组),而Y A =α(1n +个未知量,1m +个方程式) (1.5) 称为超定方程组(也叫做矛盾方程组).可以证明α为超定方程组(1.4)的最小二乘解的充分必要条件是α满足(1.3).定理1 法方程组(1.4)有唯一一组解。

定理2 设01,,,m a a a 是法方程组(1.4)的解,则多项式0()mi m i i p x a x ==∑是问题的解。

正规方程组方按下表来构造:试按最小二乘法求)(x f 的二次近似多项式.法方程组为.857.5185.7942.9826.1 090.2 503.2090.2 530.2 250.3503.2 250.35210⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡a a a解得0121.036,0.751,0.928.a a a ===故22() 1.0360.7510.928p x x x =++下表给出了)(在节点处的误差:在利用最小二乘法建立和式(1.2)时,所有点i x 都起到了同样的作用,但是有时依据某种理由认为∑中某些项的作用大些,而另外一些作用小些(例如,一些i y 是由精度高的仪器或由操作上比较熟练的人员获得的,自然应该予比较大的信任),在数学上常表现为用2(()())miinii f x p x ρ=-∑ (1.6)替代(1.2)取最小值,此处诸,0>i ρ且∑==mi i1ρ,并称i ρ为权,而(1.6)称为加权和, 并称)(x p n 为)(x f y =在点集},,{0m x x 上关于权函数}{i ρ的最小二乘逼近多项式。

二、内积表示作(),()f x g x 关于权函数()x ρ及01,,,m x x x 的内积(,)()()()mi i i i f g x f x g x ρ==∑ (1.7)其中权函数()x ρ满足()0,0,1,2,,i x i m ρ>=,以4,2m n ==为例,方程组(1.4)化为000110220000111122110021122222(,)(,)(,)(,),(,)(,)(,)(,),(,)(,)(,)(,)a a a f a a a f a a a f ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++=⎧⎪++=⎨⎪++=⎩ (1.8)其中44(,),,0,1,2;(,),0,1,2j k k j k i ik i i i i x x j k f y x k ϕϕϕ======∑∑,20122,4,()1,()1,(),(),()(0,1,2,3,4)i i n m x x x x x x y f x i ρϕϕϕ==≡=====.用矩阵表示为001020000111201102122022(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)a f a f a f ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ (1.12)例2 已知函数()y f x =的数据为0.20.50.70.8511.221 1.6492.014 2.340 2.718i i x y试用最小二乘法求()f x 的二次近似多项式22012()p x a a x a x =++.解 根据题意,得20122,4,()1,()1,(),(),()(0,1,2,3,4)i i m N x x x x x x y f x i ρϕϕϕ==≡=====01234012340.2,0.5,0.7,0.85,1,1;1.221,1.649,2.014,2.430, 2.718, 2.x x x x x N y y y y y m ============44420010200004442011121000442202122200(,)115,(,)1 3.250,(,)1 2.503,(,)1 3.250,(,) 2.503,(,) 2.090,(,)1 2.503,(,) 2.090,(,i i i i i i i i i i i i i i i i i i x x x x x x x x x x ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ=========⨯==⨯==⨯==⨯==⨯==⨯==⨯==⨯=∑∑∑∑∑∑∑∑422044420120) 1.826,(,)19.942,(,)7.185,(,) 5.857,i i i i i i i i i i i x x f y f y x f y x ϕϕϕ=====⨯==⨯==⨯==⨯=∑∑∑∑得法方程组01253.250 2.5039.9423.250 2.503 2.0907.1852.503 2.090 1.826 5.858a a a ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭解得0121.036, 1.036,0.928.a a a === 于是,所求多项式为22() 1.036 1.0360.928p x x x =++.[注] 1) 实际计算表明:当m 较大时,法方程组(1.8)往往是病态的。

因此提高拟合多项式的次数不一定能改善逼近效果。

实际计算中常采用不同的低次多项式去拟合不同的分段,这种方法称为分段拟合。

2) 如何找到更符合实际情况的数据拟合,一方面要根据专业知识和经验来确定经验曲线的近似公式;另一方面要根据散点图的分布形状及特点来选择适当的曲线取拟合这些数据。

相关文档
最新文档