吊车梁设计ppt课件
合集下载
钢结构 吊车梁设计

P Pmax, K
n
—刹车轮与轨道间的滑动摩擦系数 取0.1
K 1
P
i 1
n
max, k
—吊车一侧制动轮的最大轮压之和
2.4.3 吊车梁内力计算
1.计算内容
M x max 及相应
Q、 支座
Vmax
M y max 及局部弯矩(制动桁架)M y
2.计算原则
注意:计算吊车梁的强度、稳定和连接时,按两台吊 车考虑;计算吊车梁的疲劳和变形时按作用在跨间内 起重量最大的一台吊车考虑。疲劳和变形的计算,采 用吊车荷载的标准值,不考虑动力系数。
1加强上翼缘图242吊车梁系统组成图242吊车梁系统组成2制动梁制动桁架较大竖向荷载吊车梁横向水平荷载制动梁制动梁图242吊车梁系统组成图242吊车梁系统组成竖向荷载吊车梁横向水平荷载制动桁架15制动桁架辅助桁架图242吊车梁系统组成图242吊车梁系统组成垂直支撑水平支撑3边柱吊车梁设置垂直辅助桁架轻中级工作制制动桁架吊车梁242吊车梁荷载242吊车梁荷载吊车起重物及系统自重
2.疲劳验算位置
5
A6~A8级吊车梁下列位置应进行疲劳验算 1.受拉翼缘与腹板连接处的主体金属 2.受拉区加劲肋端部的主体金属
2
4
1 3
3.受拉翼缘与支撑连接处的主体金属 (a)跨中截面 (螺栓孔处) 4.下翼缘与腹板连接的角焊缝 5.支座加劲肋与腹板连接的角焊缝
(b)支座截面
图2.4.5 疲劳验算点
x x
受拉区:B点最不利 Mx f Wnx2
y
B
(a)
Wnx1、Wnx2 ——吊车梁截面对x轴上部、 下部纤维处的净截面 图2.4.3 截面强度验算 抵抗矩。
2.带制动梁 A点最不利
n
—刹车轮与轨道间的滑动摩擦系数 取0.1
K 1
P
i 1
n
max, k
—吊车一侧制动轮的最大轮压之和
2.4.3 吊车梁内力计算
1.计算内容
M x max 及相应
Q、 支座
Vmax
M y max 及局部弯矩(制动桁架)M y
2.计算原则
注意:计算吊车梁的强度、稳定和连接时,按两台吊 车考虑;计算吊车梁的疲劳和变形时按作用在跨间内 起重量最大的一台吊车考虑。疲劳和变形的计算,采 用吊车荷载的标准值,不考虑动力系数。
1加强上翼缘图242吊车梁系统组成图242吊车梁系统组成2制动梁制动桁架较大竖向荷载吊车梁横向水平荷载制动梁制动梁图242吊车梁系统组成图242吊车梁系统组成竖向荷载吊车梁横向水平荷载制动桁架15制动桁架辅助桁架图242吊车梁系统组成图242吊车梁系统组成垂直支撑水平支撑3边柱吊车梁设置垂直辅助桁架轻中级工作制制动桁架吊车梁242吊车梁荷载242吊车梁荷载吊车起重物及系统自重
2.疲劳验算位置
5
A6~A8级吊车梁下列位置应进行疲劳验算 1.受拉翼缘与腹板连接处的主体金属 2.受拉区加劲肋端部的主体金属
2
4
1 3
3.受拉翼缘与支撑连接处的主体金属 (a)跨中截面 (螺栓孔处) 4.下翼缘与腹板连接的角焊缝 5.支座加劲肋与腹板连接的角焊缝
(b)支座截面
图2.4.5 疲劳验算点
x x
受拉区:B点最不利 Mx f Wnx2
y
B
(a)
Wnx1、Wnx2 ——吊车梁截面对x轴上部、 下部纤维处的净截面 图2.4.3 截面强度验算 抵抗矩。
2.带制动梁 A点最不利
吊车梁

根据结构体系分
下撑式:制作麻烦,刚度差。 桁架式:刚度大,受荷大。
焊接:节省材料,施工方便。
根据连接方式分
铆接:抗动力性能好。
重型单层钢结构厂房——吊车梁类型
一、吊车梁类型
重型单层钢结构厂房——吊车层钢结构厂房——吊车梁类型
三、制动结构
制动桁架
吊车梁
单层钢结构厂房——吊车梁类型
一、吊车分类 悬挂吊车:起重量小,吊车梁悬挂在屋架下弦 悬臂吊车:沿柱列移动,竖向吊车梁和水平吊车梁 桥式吊车:最常见
重型单层钢结构厂房——吊车梁类型
一、吊车分类 桥式吊车:上承式和下承式
重型单层钢结构厂房——吊车梁类型
二、吊车梁类型 根据支承情况分 简支吊车梁:型钢、焊接钢 连续吊车梁:受力合理,用料经济。 实腹式:制作简单,施工方便。
3.4.吊车梁设计

注意:
当吊车梁采用制动桁架时,需要计算附加轴力和局部弯矩。
附加轴力的计算:用桁架内力分析方法计算 M y max N b1 制动桁架节间局部弯矩按以下近似公式:
轻中级工作制吊车:
M y1
a d
TH d 4
TH
重级工作制吊车:
M y1 TH d 3
3.4.5 焊接实腹式吊车梁的截面选择
计算力及吊车台总数组合表
计算项目
F Q 1Pk , max
T 1.4 ( Q Q1 ) / n
计算力
轻、中级吊车 重级吊车
吊车台数组合
吊车梁及制动结 构的强度和稳定 轮压处腹板局部 压应力、腹板局 部稳定
F Q 1 Pk , max
T 1.4 ( Q Q1 ) / n
下撑式
桁架式
2.7.1 吊车梁系统的组成
吊车梁系统:
吊车梁(吊车桁架) 制动结构 制动梁 制动桁架
制动桁架 辅 助 桁 架 水平支撑 垂直支撑 吊 车 梁 吊车梁 制动梁 加劲肋
制动结构的作用: 承受横向水平力 侧向支承上翼缘,保证吊车梁的整体稳定 制动梁可兼作检修平台
制动桁架 吊车梁
天窗架
3、刚度验算
按效应最大的一台吊车的荷载标准值计算,且不乘动 力系数。 吊车梁的竖向挠度:
M kxl v [v ] 10EI x
2
式中:[v]——吊车梁的容许挠度 轻级桥式吊车:l/800 中级桥式吊车:l/1000
重级桥式吊车:l/1200
注意:
《钢结构设计规范》(GB50017-2003)规定:对于工 作级别为A7、A8吊车的制动结构,计算其水平挠度,按效 应最大的一台吊车的荷载标准值计算,且不乘动力系数。
中、重型厂房结构设计-吊车梁的设计

吊车梁的施工与验收
吊车梁的施工工艺流程
施工准备
根据设计图纸和施工要求,进行现场 勘查,确定吊车梁的安装位置和基础 结构。
01
02
基础制作
根据设计要求,进行吊车梁的基础制 作,包括混凝土浇筑、钢筋绑扎等。
03
吊车梁安装
将吊车梁按照设计要求进行安装,确 保其位置和标高符合设计要求。
质量检测
对吊车梁的安装质量进行检测,包括 其位置、标高、平整度等,确保符合 设计要求和相关规范。
吊车梁的功能
吊车梁的主要功能是支撑和固定吊车 的轨道,承受吊车的运行载荷,并将 载荷传递至厂房的承重结构上,确保 吊车的正常运行和使用安全。
吊车梁的类型与选择
吊车梁的类型
根据制作材料的不同,吊车梁可分为钢吊车梁、钢筋混凝土吊车梁等。根据使用场合和承载能力的不同,又可分 为轻型、中型和重型吊车梁。
吊车梁的选择
选择何种类型的吊车梁应根据厂房的跨度、高度、使用需求以及经济性等因素综合考虑。例如,钢吊车梁具有自 重轻、承载能力强、安装方便等优点,适用于大跨度、高净空的厂房;钢筋混凝土吊车梁则具有承载能力较高、 耐久性好、造价较低等优点,适用于中等跨度和高度的厂房。
吊车梁设计的原则与要求
吊车梁设计的原则
吊车梁设计应遵循安全可靠、经济合理、技术先进的原则, 确保吊车梁能够承受各种可能的载荷组合,满足厂房的正常 使用和安全性能要求。
04
吊车梁的抗震设计
吊车梁的抗震设防目标
防止吊车梁在地震中发生严重破坏,确保厂房的正常使用和 安全。
保证吊车在地震中的安全运行,防止因吊车梁破坏而引起的 设备损坏或人员伤亡。
吊车梁的抗震措施
选择合适的材料
采用高强度钢材,提高吊车梁的承载能力和抗变 形能力。
吊车梁的施工工艺流程
施工准备
根据设计图纸和施工要求,进行现场 勘查,确定吊车梁的安装位置和基础 结构。
01
02
基础制作
根据设计要求,进行吊车梁的基础制 作,包括混凝土浇筑、钢筋绑扎等。
03
吊车梁安装
将吊车梁按照设计要求进行安装,确 保其位置和标高符合设计要求。
质量检测
对吊车梁的安装质量进行检测,包括 其位置、标高、平整度等,确保符合 设计要求和相关规范。
吊车梁的功能
吊车梁的主要功能是支撑和固定吊车 的轨道,承受吊车的运行载荷,并将 载荷传递至厂房的承重结构上,确保 吊车的正常运行和使用安全。
吊车梁的类型与选择
吊车梁的类型
根据制作材料的不同,吊车梁可分为钢吊车梁、钢筋混凝土吊车梁等。根据使用场合和承载能力的不同,又可分 为轻型、中型和重型吊车梁。
吊车梁的选择
选择何种类型的吊车梁应根据厂房的跨度、高度、使用需求以及经济性等因素综合考虑。例如,钢吊车梁具有自 重轻、承载能力强、安装方便等优点,适用于大跨度、高净空的厂房;钢筋混凝土吊车梁则具有承载能力较高、 耐久性好、造价较低等优点,适用于中等跨度和高度的厂房。
吊车梁设计的原则与要求
吊车梁设计的原则
吊车梁设计应遵循安全可靠、经济合理、技术先进的原则, 确保吊车梁能够承受各种可能的载荷组合,满足厂房的正常 使用和安全性能要求。
04
吊车梁的抗震设计
吊车梁的抗震设防目标
防止吊车梁在地震中发生严重破坏,确保厂房的正常使用和 安全。
保证吊车在地震中的安全运行,防止因吊车梁破坏而引起的 设备损坏或人员伤亡。
吊车梁的抗震措施
选择合适的材料
采用高强度钢材,提高吊车梁的承载能力和抗变 形能力。
厂房吊车梁

4 吊车梁翼缘板或腹板的 焊接拼接应采用加引弧板 和引出板的焊透对接焊缝, 引弧板和引出板割去处应 户打磨平整。焊接吊车梁 和焊接吊车桁架的工地移 段拼接应采用焊接或高强 度螺栓的摩擦型连接。
5 在焊接吊车梁或吊车衍 架中,要求焊透的T形接头对 接与角接组合焊缝形式。
• 6 吊车梁横向加劲肋的宽度不宜小于90MM。 在支座处的横向加劲肋应在腹板两侧成对设置, 并片与梁上下翼缘刨平顶紧。中间横向加劲肋 的L端应与梁厂翼缘刨平顶紧,在重级工作制 吊车梁中,中间横向加劲肋亦就在腹板两侧成 对布置。而中、轻级工作制吊梁则可单侧没置 或两侧错开没置。 在焊接吊车梁中。横 向加劲肋(含短加劲肋)不得与受拉翼缘相焊.但 可与受压翼缘焊接。端加劲肋可与梁上下翼缘 相焊、中间横向加劲肋的下端宜在距受拉下翼 缘50-100MM处断断开,其与腹板的连接焊 缝不宜在肋卜端起落弧。 当吊车梁受拉 翼缘(或吊车桁架下弦)与支撑相连时不宜采用 焊接。
11 吊车梁的受拉翼缘(或吊车拓架的 受拉弦杆)上不得焊接悬挂设备的零件, 并不宜在该处打火或焊接夹具。 12 吊车钢轨的接头构造应保证车轮 平稳通过。当采用焊接长轨且用压板 与吊车梁连接时,压板与钢轨间应留 有一定空隙(约1MM)、以使钢轨受温 度作用后有纵向伸缩的可能。
连接构造
制动梁(或制动桁架) 花纹钢板 横隔 (竖向支撑) 吊车梁 加劲肋
d) 加劲肋 角钢斜撑 制动梁
a)吊车梁斜向支撑
b)制动梁挂于墙架柱
c)制动桁架时支撑布置
谢谢!
厂房吊车梁
傅伊达 郑李阳 林翔 俞蕴涛
吊车梁
吊车梁是吊车的路基,吊车梁上有吊 车轨道,吊车就通过轨道在吊车梁上 来回行驶。梁的横截面有的是箱式的、 焊接而成形;也有简易的,用型材焊 接成型,一般为钢筋混凝土或钢结构。
24吊车梁的设计

A6~A8级吊车梁应进行疲劳验算 1.受拉翼缘的连接焊缝处 2.受拉区加劲肋端部 3.受拉翼缘与支撑连接处 的主体金属
4.连接的角焊缝
4
2 1
3
采用一台起重量最大吊车的荷载标准值, 不计动力系数,按常幅疲劳问题计算。
αfΔσ≤[Δσ] Δσ—应力幅,Δσ=σmax-σmin; [Δσ]—循环次数n=2×106次时的容许应
计算刚度时按自重和起重量最大的一台吊车的 荷载标准值计算,且不乘动力系数。
竖向挠度:
v Mkxl2 [v] 10EIx
对于重级工作制吊车梁除计算竖向的刚度外, 还应按下式计算其水平方向的刚度。
水平挠度:
u Mkyl2 l 10EIy1 2200
Mkx—竖向荷载标准值作用下梁的最大弯矩; Mky—跨内一台起重量最大吊车横向水平荷载
2.4 吊车梁的设计
❖吊车梁的荷载 ❖吊车梁的截面组成 ❖吊车梁的连接 ❖吊车梁截面的验算
2.4.1 吊车梁的荷载
➢竖向荷载: P ➢横向水平荷载: T
➢纵向水平荷载: Tc
(通过柱间支撑传至基础)
P Tc P Tc
T
T
(1)吊车竖向荷载(最大轮压) 作用在吊车梁上的最大轮压设计值:
Pmax1.4Pk,max
增设辅助桁架、水平支撑和 垂直支撑。 L≥12m(A6~A8) L≥18m(A1~A5)
竖向荷载
吊车梁
横向水平荷载
制动桁架
制动桁架 吊车梁
2.4.3 吊车梁的连接
原则:吊车梁上翼缘的连接应以能够可靠地与柱传 递水平力,而又不改变吊车梁简支条件。
1.吊车梁上翼缘与 柱的连接 高强螺栓连接 抗疲劳性能强受压翼缘型):
用于吊车起重能力Q≤30t, 跨度l≤6m, 工作级别为A1~A5的吊车梁。
钢结构设计 吊车梁

7
吊车的横向水平荷载
计算公式:
T
Q
(规定百分数)
(Q
Q1)g n
式中的“规定百分数”为:
软钩吊车 Q≤10t时 12%
Q=15~20t时 10%
Q≥75t时 8%
硬钩吊车
20%
Q为吊车的额定起重量(t);Q1为桥式吊车上的横行小车 重量(t),厂家的产品样本或设计手册上可查到;n为桥式 吊车的总轮数,例如四轮吊车n=4,八轮吊车n=8;g为重
浙江大学钢结构研究室
17
挠度验算
吊车梁的竖向挠度应满足下式要求:v
M xkl 2 10EIx
vT
式中:Mxk为由自重和不考虑动力系数的一台最大起 重量的吊车竖向荷载标准值所产生的最大弯矩,容
许挠度 vT 可查规范得。
此外,冶金工厂或类似车间中设有工作级别为A7、 A8级吊车的车间,其跨间每侧吊车梁或吊车桁架的
不大,在设计吊车梁时一般不需考虑。 ) 吊车梁上的永久荷载 吊车梁走道活荷载,(标准值2kN,可适当等
效地并入竖向轮压)
2020年7月1日
浙江大学钢结构研究室
5
2020年7月1日
浙江大学钢结构研究室
6
吊车的竖向荷载
吊车最大轮压标准值 : Pkmax(吊车的厂家的产品样 本或设计手册上均可查到 )
重级工作制计算制动结构水平挠度,考虑1台最大重 级工作制吊车。
荷载最不利位置按绝对最大弯矩和弯矩、剪力影响 线原理确定。
2020年7月1日
浙江大学钢结构研究室
11
最大弯矩计算 最大剪力计算
2020年7月1日
浙江大学钢结构研究室
12
吊车梁的验算
强度验算 整体稳定验算 局部稳定验算 疲劳验算 挠度验算
吊车梁设计PPT精品文档

桁架
桁架式——用钢量少,制造费工。适用于跨度≥18m,起重量 ≤ 75t
下撑式
桁架式
4
2.7.1 吊车梁系统的组成
吊车梁系统:
吊车梁(吊车桁架) 制动结构 制动梁 制动桁架
吊车梁
制动梁 加劲肋
制动桁架
吊
辅
车
助
梁
桁 架
水平支撑 垂直5 支撑
制动结构的作用: 承受横向水平力 侧向支承上翼缘,保证吊车梁的整体稳定 制动梁可兼作检修平台
2020/5/9
当MR (l l
2x a)
0
得x=lxa, x2 la 226
注意: 当吊车梁采用制动桁架时,需要计算附加轴力和局部弯矩。
附加轴力的计算:用桁架内力分析方法计算
N M ymax b1
制动桁架节间局部弯矩按以下近似公式:
F Pk,max
F Pk,max
一台最大吊车
22
计算力及吊车台总数组合表
计算项目
计算力
轻、中级吊车
重级吊车
吊车台数组合
制动结构的水平 挠度
—
T(QQ 1)/n 一台最大吊车
梁上翼缘、制动 结构与柱的连接
T1.4(Q Q 1)/n
T H1 .4H 2(Q QF kg ,m )/an x 取大者
按实际情况, 不多于两台
F
TL
F
TL
T
T
TL
FF
16
1、吊车梁的荷载
1)吊车竖向荷载,设计值
P P Q 1 k ,max
( 3.12 )
式中:α1—— 动力系数, 对悬挂吊车及A1~A5的软钩吊车,取1.05,
对A6~A8的软钩吊车 硬钩吊车
桁架式——用钢量少,制造费工。适用于跨度≥18m,起重量 ≤ 75t
下撑式
桁架式
4
2.7.1 吊车梁系统的组成
吊车梁系统:
吊车梁(吊车桁架) 制动结构 制动梁 制动桁架
吊车梁
制动梁 加劲肋
制动桁架
吊
辅
车
助
梁
桁 架
水平支撑 垂直5 支撑
制动结构的作用: 承受横向水平力 侧向支承上翼缘,保证吊车梁的整体稳定 制动梁可兼作检修平台
2020/5/9
当MR (l l
2x a)
0
得x=lxa, x2 la 226
注意: 当吊车梁采用制动桁架时,需要计算附加轴力和局部弯矩。
附加轴力的计算:用桁架内力分析方法计算
N M ymax b1
制动桁架节间局部弯矩按以下近似公式:
F Pk,max
F Pk,max
一台最大吊车
22
计算力及吊车台总数组合表
计算项目
计算力
轻、中级吊车
重级吊车
吊车台数组合
制动结构的水平 挠度
—
T(QQ 1)/n 一台最大吊车
梁上翼缘、制动 结构与柱的连接
T1.4(Q Q 1)/n
T H1 .4H 2(Q QF kg ,m )/an x 取大者
按实际情况, 不多于两台
F
TL
F
TL
T
T
TL
FF
16
1、吊车梁的荷载
1)吊车竖向荷载,设计值
P P Q 1 k ,max
( 3.12 )
式中:α1—— 动力系数, 对悬挂吊车及A1~A5的软钩吊车,取1.05,
对A6~A8的软钩吊车 硬钩吊车
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
受力情况:
竖向荷载 横向水平荷载
吊车梁 制动梁
适用范围:
制动梁宽度:1200mm
ppt课件.
12
带制动桁架的吊车梁
吊车梁上翼缘
制动桁架 角钢腹杆
双角钢
受力情况:
竖向荷载 横向水平荷载
吊车梁 制动桁架
适用范围:
制动宽度:>1200mm
当
L≥12m(A6~A8) L≥18m(A1~A5)
对边列柱增设辅助桁架、水平支撑
当M(x)为极大时
dM dx
0
梁上轮压的合力作用线与最近 一个轮子间的距离被梁中心线 平分,且此轮压所在位置即为
ppt课件.
21
计算力及吊车台总数组合表
计算项目
计算力
轻、中级吊车
重级吊车
吊车台数组合
吊车梁及制动结 构的强度和稳定
轮压处腹板局部 压应力、腹板局 部稳定
F Q 1Pk ,ax
F Q 1 Pk ,max
按实际情况,
T1.4(Q Q 1)/nT H1.4 (2Q Q PQ k1 ,)m/an x 取大者 不多于两台
a2
a1 6
计算弯矩时的计算简图
a2
a1 4
计算剪力时的计算简图
ppt课件.
25
确定绝对最大弯矩:
x
a
P1 P2 … Pk R
l-x-a … Pn
A l2
C
B
l2
由 MB 0
RA
R (l l
x a)
PK作用点的弯矩为 M(x) RAxMK左 R l (l xa)xMK左
轮子的排列位置应使所有
制动结构的水平 挠度
—
T(QQ 1)/n 一台最大吊车
梁上翼缘、制动 结构与柱的连接
T1.4(Q Q 1)/n
T H1 .4H 2(Q QF kg ,m )/an x 取大者
按实际情况, 不多于两台
柱间支撑处吊车 下翼缘与柱的连 接
TL0.1 F Q k,max
TL0.1 F Q k,max
按实际情况, 不多于两台
硬钩吊车 =0.2
ppt课件.
18
注意:
对于A6~A8级吊车,应考虑由吊车摆动引起的 横向水平力,不与小车沿桥架移动时因刹车引起的 制动力同时考虑。
H 2Q P k,max (3 .1)4
α2—系数, 软钩吊车 抓斗吊车 硬钩吊车
0.1 0.15 0.2
ppt课件.
19
3)吊车纵向水平荷载
吊车桥架沿吊车梁运行时因制动引起的制动力:
和垂直支撑。
ppt课件.
13
ppt课件.
14
ppt课件.
15
3.4.3 吊车梁的荷载计算和内力分析
竖向荷载F 横向水平荷载(刹车力及卡轨力): T 纵向水平荷载(刹车力)TL→传递给柱间支撑,不影响吊车梁
F
TL
F
TL
T
T
TL
FF
ppt课件.
16
1、吊车梁的荷载
1)吊车竖向荷载,设计值
P P Q 1 k ,max
F Q 1 Pk ,max
F Q 1 Pk ,max
不多于两台
吊车梁和制动结 构的疲劳强度
—
F Pk,max T(QQ 1)/n
一台最大吊车
吊车梁的竖向挠 度
F Pk,max
F Pk,max
ppt课件.
一台最大吊车
22
计算力及吊车台总数组合表
计算项目
计算力
轻、中级吊车
重级吊车
吊车台数组合
到横向框架和纵向框架上。
吊车梁
ppt课件.
格构柱
2
吊车梁的类型 按支撑情况分
简支梁——应用最广。 连续梁——经济,受柱的不均匀沉降影响明显,很少使用。
简支梁
ppt课件.
连续梁
3
按结构体系分
实腹式 型钢梁——适用于跨度6m,起重量≤10t的情况。 焊接组合梁——应用较广
下撑式——用钢量少,制造费工。适用于跨度6m,起重量 ≤ 5t
T Q(Q Q 1)/n (3 .1)3
式中:——系数;
γQ——可变荷载分项系数,一般取1.4; 横向水平荷
Q——吊车额定起重量; Q1——小车重量; n——桥式吊车的总轮数;
载考虑两个方 向的刹车情况。
当Q≤10t时, =0.12;
软钩吊车 当Q≤15~50t时, =0.1;
当Q≥75t时, ξ =0.08;
桁架
桁架式——用钢量少,制造费工。适用于跨度≥18m,起重量 ≤ 75t
下撑式
桁架式
ppt课件.
4
2.7.1 吊车梁系统的组成
吊车梁系统:
吊车梁(吊车桁架) 制动结构 制动梁 制动桁架
吊车梁
ppt课件.
制动梁 加劲肋
制动桁架
吊
辅
车
助
梁
桁 架
水平支撑 垂直5 支撑
制动结构的作用:
承受横向水平力 侧向支承上翼缘,保证吊车梁的整体稳定 制动梁可兼作检修平台
吊车梁设计(Design of Crane girder) 3.4§
起重机的工作级别
是按起重机利用等级和载荷
状态划分,是表明起重机工
作繁重程度的参数 。
吊车的工作制等级与工作级别的对应关系
工作制等级 工作级别
轻级 A1~A3
中级 A4,A5
重级 A6,A7
特重级 A8
ppt课件.
1
何为吊车梁? 主要承受吊车竖向及水平荷载,并将这些荷载传
( 3.12 )
式中:α1—— 动力系数, 对悬挂吊车及A1~A5的软钩吊车,取1.05,
对A6~A8的软钩吊车 硬钩吊车
取1.1
其他特种吊车;
γQ——可变荷载分项系数,一般取1.4; Pk,max——吊车每个车轮的最大轮压,查吊车资料
ppt课件.
17
2)吊车横向水平荷载
小车沿桥架移动时因刹车引起的制动力:
ppt课件.
23
2.7.3 吊车梁的内力计算
吊车荷载为移动荷载
采用影响线法
确定最不利轮压位置
计算最大内力
根据影响线法,计算弯矩时的吊车的最不利轮距布
置为:轮子的排列位置应使所有梁上轮压的合力作用线
与最近一个轮子间的距离被梁中心线平分,且此轮压所
在位置即为为最大竖向弯矩的截面位置。
ppt课件.
24
a3
T LQ T k10.1Q P k,max
式中: γQ ─可变荷载分项系数,一般取1.4; Tk1 ─吊车每个制动轮的纵向水平制动力,取0.1Pk,max
4)其他荷载
自重:吊车梁和制动结构、支撑等重量,可通过乘系数 来考虑表3.9。
ppt课件.
20
吊车梁截面部件受力:
竖向荷载全部由吊车梁主体承受 横向水平荷载由制动梁、制动桁架承受(含吊车梁上翼缘) 纵向水平荷载由吊车梁与柱的连接及柱间支撑承受,梁偏压不计。
ppt课件.
6
ppt课件.
7
制动桁架 吊车梁
ppt课件.
8
吊车梁
天窗架
山墙抗风柱
正在建设的ppt门课件式. 刚架工程实例
9
ppt课件.
10
单轴对称工字形截面(加强上翼缘)
适用范围:
Q≤ 30t,L≤ 6m, A1 ~ A5级
ppt课件.
11
带制动梁的吊车梁
制动梁
吊车梁上翼缘 制动板 槽钢