七年级一元一次方程知识点

合集下载

初一数学上册第三单元一元一次方程知识点归纳及测试题

初一数学上册第三单元一元一次方程知识点归纳及测试题

初一数学上册第三单元一元一次方程知识点归纳及测试题知识网络:一.一元一次方程1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).二.列一元一次方程解应用题。

(1)读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:…………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.三.列方程解应用题的常用公式。

概念、定义:1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。

七年级数学一元一次方程知识点讲解

七年级数学一元一次方程知识点讲解

七年级数学一元一次方程知识点讲解①方程是含有未知数的等式。

②方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的整式方程叫做一元一次方程。

③注意判断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;(系数中含字母时不能为零)3)经整理后方程中未知数的次数是 1.④解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

方程的解代入满足,方程成立。

⑤等式的性质:1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等)。

a=b得:a+(-)c=b+(-) c 2)等式两边同时乘以或除以同一个不为零的数,等式不变。

a=b得:a×c=b×c或a÷c=b÷c(c≠0)注意:运用性质时,一定要注意等号两边都要同时+、-、×、÷;运用性质2时,一定要注意0这个数。

⑥解一元一次方程一般步骤:去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个步骤不一定完全用上,或有些步骤还需要重复使用. 因此,解方程时,要根据方程的特点,灵活选择方法. 在解方程时还要注意以下几点:⑴去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号; 注意:去分母(等式的基本性质)与分母化整(分数的基本性质)是两个概念,不能混淆;⑵去括号:遵从先去小括号,再去中括号,最后去大括号不要漏乘括号的项;不要弄错符号(连着符号相乘);⑶移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(以=为界限),移项要变号;⑷合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式.⑸系数化1:(两边同除以未知数的系数)把方程化成ax=b(a≠0)的形式,字母及其指数不变系数化成 1 在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒(一步一步来)。

一元一次方程(知识点+练习)

一元一次方程(知识点+练习)

专题复习:《一元一次方程》【知识链接】★知识点一:方程(一元一次方程)的概念1、什么是方程方程和等式的区别是什么方程:方程是含有的等式,方程等式,但等式方程。

2.什么是一元一次方程它的标准形式和最简形式是什么(1)一元一次方程:只含有个未知数(),且未知数的次数都是,等号两边都是,这样的方程叫做一元一次方程。

(2)一元一次方程的标准(一般)形式是:ax+b=0 (其中,a、b都是常数,且a≠0)(3)一元一次方程的最简形式是:ax=b (其中,a、b都是常数,且a≠0)★知识点二:方程的解与解方程1. 什么是方程的解,什么是解方程方程的解:是指能使方程左右两边都相等的未知数的.解方程:是指求方程解的。

★知识点三:等式的基本性质等式的性质1:等式的两边同时加(或减)(),结果仍相等。

即:如果a=b,那么a±c=b;等式的性质2:等式的两边同时乘,或除以数,结果仍相等。

即:如果a=b,那么ac=bc;或如果a=b,那么a bc c(c≠)等式的对称性:如果a=b,那么b=a;等式的传递性:如果a=b, b=c,那么a=;等式的基本性质的作用:是等式恒等变形的理论依据.★知识点五:一元一次方程的应用列一元一次方程解应用题的一般步骤:1. 审题:通过读题,弄清题意(提取已知量和未知量等信息);2. 找等量关系:用文字表示出包含题目相关数量关系的等量关系;(关键)(1) 条件等量关系(认真分析,积累经验,仔细感悟)(2) 固有等量关系(如s=vt 等)(识记);3. 设未知数:选设一个未知量(可以是直接或间接未知量,还可以是辅助元)4. 列方程:用代数式表示出等量关系中的相关量;5. 解方程: 仔细解出方程;6. 检验:看是否是原方程的解,再看是否符合实际意义;7. 回答:完整回答题目中的问题.【考点解析】考点一 考查一元一次方程的概念例1 下列是一元一次方程的是()A .0127=+yB.082=+y x C .03=z D.3232x x -=+例2. 已知关于x 的方程021)1(||=+-k x k 是一元一次方程,则k 的值为()C.±1D. 0变式练习:1. 如果2345m x -=-是关于x 的一元一次方程,那么m= ;2. 021)2(2=+++kx x k 是一元一次方程,则k = ;3. 如果234x kx -=+是关于x 的一元一次方程,那么k = ;考点二 考查一元一次方程解的概念例3 已知关于x 的方程4x-3m=2的解是x=m ,则m 的值是变式练习:4. 若方程234k x -=与24x =的解相同,则k=5. 下列是关于x 的方程ax b =的解的说法,错误的是()A.方程ax b =有唯一解B.当0a ≠时,方程ax b =有唯一解C.当0,0a b =≠时,方程ax b =无解D.当0,0a b ==时,方程ax b =有无数个解6. 小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方-=-y y 21212,怎么办呢小明想了一想便翻看了书后的答案,此方程的解是35-=y .这个常数应是( )A .1B .2C .3D .4考点三 考查等式的基本性质例4 下列运用等式的性质对等式进行的变形中,正确的是 ( )A.若x y =,则33x y -=-B. 若x y =,则kx ky =C. 若x y =,则x y a a = D. 若x y m m=,则23x y =变式练习:7.把方程762+=-y y 变形为672+=-y y ,这种变形叫 ,根据是 。

七年级上一元一次方程题型及知识点总结

七年级上一元一次方程题型及知识点总结

七年级上一元一次方程题型及知识点总结一元一次方程题型及知识点总结一、知识点1.等式:用“=”号连接而成的式子叫等式。

2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。

3.方程:含未知数的等式,叫方程。

4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项。

移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b 是已知数,且a≠0)。

8.一元一次方程解法的一般步骤:化简方程——分数基本性质去分母——同乘(不漏乘)最简公分母去括号——注意符号变化移项——变号合并同类项——合并后注意符号系数化为1——未知数细数是几就除以几二、典型例题:例1:解下列方程:1) 2x+1=10x+13y-15y+17y+12) x-1=4/-4/1.55x-0.813) (x-3)/(4+11)=2/(3-x)4) 0.5x^2+0.2x-41=2.3x5) 233.0-26.3x=1+(6)-x课堂练1】解方程:1) 3x-2=5x+32) 2x-3/4=1/2-3x/8巩固练:一、选择题1、下列方程中是一元一次方程的是()A、x-y=2005.B、3x-2004.C、x^2+x=1.D、2=32、方程1-(2x-4)/(x-2)=-7/36去分母得()A.1-2(2x-4)=-(x-7)B.6-2(2x-4)=-x-7C.6-2(2x-4)=-(x-7)D.以上答案均不对3、代数式x-(x-1)/3的值等于1时,x的值是().A)3(B)1(C)-3(D)-14、方程2-(3x-7)/(x^2+17)=4/45去分母得(。

一元一次方程

一元一次方程

例1、相遇、追击问题 (1) 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公 里,一列快车从乙站开出,每小时行140公里。 ①慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小 时后两车相遇? ②两车同时开出,相背而行多少小时后两车相距600公里?
例1、相遇、追击问题 (2)甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9 米,乙每秒钟跑7米. ①当两人同时同地背向而行时,经过__________秒钟两人首次相 遇; ②两人同时同地同向而行时,经过__________秒钟两人首次相遇.
知识点七、合并同类项
例2、解下列方程: (1)8 x 6 x 28 (2) y 9 y 4 y 16 (3) 2 x x 3 3 3
知识点八、移项 定义:把等式一边的某项变号移到另一边,叫做移项; 依据:等式的性质1 目的:把含有未知数的项移到方程一边,其他项移到方程的另一边 注意:(1)在方程的同一边交换位置不叫移项,此时项的符号也 不能变; (2)通常把未知数的项移到=的左边,常数项移到=的右边。 步骤:1、移项 2、合并 3、系数化为1
知识点十五:工程问题 工作量=工作效率×工作时间 工作项任务的各工作量的和=总工作量=1
例1、一件工作,单独做,甲队10天完成,乙队15天完成.现在两队 合作,_____天可以完成.
例2、一项工程,甲队独做需要12天完成,乙队独做需要15天完成, 两队合作4天后,剩下的由乙做,还要几天完成?
知识点三、方程的解与解方程 方程的解: 使方程中等号左右两边相等的未知数的值,叫做方程的解. 注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的 结果,它是一个数值(或几个数值),而解方程的含义是指求出方程 的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右 两边计算它们的值,其次比较两边的值是否相等从而得出结论.

七年级上册数学《一元一次方程》-知识点整理

七年级上册数学《一元一次方程》-知识点整理

一元一次方程知识要点解析一、一元一次方程构成要素:1、是等式;2、含有未知数,且只能是一个;3、未知数的次数有且为“1”(一次整式),且次数不为“0”;二、一元一次方程的基本形式:ax = b三、一元方程的解:使方程中等号左右两边相等的未知数的值四、解方程的理论依据:等式的基本性质:性质(1):等式两边都加上(或减去)同一个数(或式子),结果仍相等.用式子形式表示为:如果a=b,那么a±c=b±c;性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.用式子形式表示为:如果a=b那么a×c=b×c,a÷c=b÷c(c≠0);五、解一元一次方程的基本步骤:注意:我们在解一元一次方程时,既要学会按部就班(严格按步骤) 地解方程,又要善于认真观察方程的结构特征,灵活采用解方程的一些技巧,随机应变(灵活打乱步骤)解方程,能达到事半功倍的效果。

对于一般解题步骤与解题技巧来说,前者是基础,后者是机智,只有真正掌握了一般步骤,才能熟能生巧。

解一元一次方程常用的技巧有:1)有多重括号,去括号与合并同类项可交替进行 2)当括号内含有分数时,常由外向内先去括号,再去分母 3)当分母中含有小数时,可用分数的基本性质化成整数 4)运用整体思想,即把含有未知数的代数式看作整体进行变形六、实际问题与一元一次方程1、用一元一次方程解决实际问题的一般步骤是:1)审题,搞清已知量和待求量,分析数量关系. ( 审题,寻找等量关系) 2)根据数量关系与解题需要设出未知数,建立方程; 3)解方程;4) 检查和反思解题过程,检验答案的正确性以及是否符合题意.并作答2、用一元一次方程解决实际问题的典型类型1)数字问题:①:数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c则这个三位数表示为:abc , 10010abc a b c =++(其中a、b 、c 均为整数,且1≤a ≤9,0≤b ≤9,0≤c ≤9)②:用一个字母表示连续的自然数、奇数、偶数等规律数2)和、差、倍、分问题:关键词是“是几倍,增加几倍,增加到几倍,增加百分之几,增长率,哪个量比哪个量……”3)工程问题:工作总量=工作效率×工作时间,注意产品配套问题; 4)行程问题:路程=速度×时间5)利润问题:商品利润=商品售价-商品成本价=商品利润率×商品成本价商品售价=商品成本价×(1+利润率)6)利息问题:①顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的单位时间数叫做期数,利息与本金的比叫做利率.利息的20%付利息税.②利息=本金×利率×期数,本息和=本金+利息,利息税=利息×税率(20%).7)几何问题:必须掌握几何图形的性质、周长、面积等计算公式,注意等积变形; 8)优化方案问题9)浓度问题:溶液×浓度=溶质10)盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量 11)年龄问题:抓住人与人的岁数是同时增长的12)增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量七、、思想方法(本单元常用到的数学思想方法小结)1)建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立方程的思想2)方程思想:用方程解决实际问题的思想就是方程思想.3)化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式. 体现了化“未知”为“已知”的化归思想.4)数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.5)分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.一元一次方程一、本节学习指导本节我们要掌握一元一次方程的解法,需要多做一些练习题,本节有配套学习视频。

七年级数学上册《一元一次方程》知识点

七年级数学上册《一元一次方程》知识点

七年级数学上册《一元一次方程》知识点七年级数学上册《一元一次方程》知识点在现实学习生活中,很多人都经常追着老师们要知识点吧,知识点就是学习的重点。

相信很多人都在为知识点发愁,下面是店铺帮大家整理的七年级数学上册《一元一次方程》知识点,希望能够帮助到大家。

七年级数学上册《一元一次方程》知识点1【第一部分】知识点分布1、一元一次方程的解(重点)2、一元一次方程的应用(难点)3、求解一元一次方程及其在实际问题中的应用(考点)【第二部分】关于一元一次方程一、一元一次方程(1)含有未知数的等式是方程。

(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。

(5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。

(6)求方程的解的过程,叫做解方程。

二、等式的性质(1)用等号“=”表示相等关系的式子叫做等式。

(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果a=b,那么a±c=b±c.(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

如果a=b,那么ac=bc;如果a=b且c≠0,那么(4)运用等式的性质时要注意三点:①等式两边都要参加运算,并且是作同一种运算;②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;③等式两边不能都除以0,即0不能作除数或分母。

三、一元一次方程的解1、解一元一次方程——合并同类项与移项(1)合并同类项的依据:乘法分配律。

合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近x=a (a 常数)的形式。

(2)把等式一边的某项变号后移到另一边,叫做移项。

(3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a(a是常数)的形式。

七年级数学上册《一元一次方程》知识点归纳

七年级数学上册《一元一次方程》知识点归纳

七年级数学上册《一元一次方程》知识点归纳【第一部分】知识点分布、一元一次方程的解(重点)2、一元一次方程的应用(难点)3、求解一元一次方程及其在实际问题中的应用【第二部分】关于一元一次方程一、一元一次方程(1)含有未知数的等式是方程。

(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。

()求出使方程左右两边的值相等的未知数的值,叫做方程的解。

(6)求方程的解的过程,叫做解方程。

二、等式的性质(1)用等号“=”表示相等关系的式子叫做等式。

(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果a=b,那么a±=b±(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

【第一部分】知识点分布1、一元一次方程的解(重点)2、一元一次方程的应用(难点)3、求解一元一次方程及其在实际问题中的应用【第二部分】关于一元一次方程一、一元一次方程(1)含有未知数的等式是方程。

(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。

()求出使方程左右两边的值相等的未知数的值,叫做x=a(a常数)的形式。

(2)把等式一边的某项变号后移到另一边,叫做移项。

(3)移项依据:等式的性质1移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a(a是常数)的形式。

2、解一元一次方程——去括号与去分母(1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。

(2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10.下列各式中,变形正确的是(

A.若 a=b,则 a﹣c=b﹣ c B .若 2x=a,则 x=a﹣ 2
C.若 6a=2b,则 a=3b D .若 a=b+2,则 3a=3b+2
9.如果 a=b,则下列等式不一定成立的是(

A a﹣ c=b﹣ c
B a+c=b+c
Ca b
D ac=bc
11.下列等式变形错误的是(
C.
如果 a=b,那么
B. 如果 2x=2a﹣ b,那么 x=a﹣ b
D.
等式
两边同时除以 a,可得 b=c
9.下列叙述错误的是(

A.等式两边加(或减)同一个数(或式子) ,结果仍相等
B.等式两边乘以(或除以)同一个数(或式子) ,结果仍相等
C.锐角的补角一定是钝角
D.如果两个角是同一个角的余角,那么它们相等
3. 只含有一个未知数,并且未知数的次数是
1,这样的方程叫做一元一次方程。一元一次方
程可以化为 ax+b=0( a≠ 0)的形式,分母中不能含有未知数。
4. 求方程的解叫做解方程
定义类: 1、如果 x 3n-2 -6=0 是一元一次方程,则 n=_____________.
2、下面的等式中,是一元一次方程的为(
2.等式的两边都乘以
,或除以
3.下列说法错误的是(

或 ,结果仍相等. 的数,结果仍相等.
A.若

B .若
,则
C.若

D .若

4. 下列等式变形错误的是 ( )
A. 由 a=b 得 a+5=b+5; B. C. 由 x+2=y+2 得 x=y; D.
由 a=b 得 a b ; 99
由-3x=-3y 得 x=-y

一元一次方程
一、目录 1、从问题到方程 2、一元一次方程的解法 3、用一元一次方程解决实际问题
教学目标:( a)了解一元一次方程的定义 ( b)运用一元一次方程的解法 ( c)掌握用一元一次方程解决实际问题
二、知识点结构梳理及例题 一元一次方程
1. 方程:含有未知数的等式叫做方程。
2. 方程的解:使方程左、右两边相等的未知数的值,叫做方程的解。
3 x-1=4; 5
精选资料,欢迎下载

一元一次方程的解法
1. 移项:把方程中的某一项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。 移项要变号。
2. 解形如 mx+p=nx+q的一元一次方程
(1)移项:根据等式性质,将含未知数的项移到方程的一边(通常是等号左边) 到方程的另一边(通常是等号右边) mx-nx=q-p
5. 运用等式性质进行的变形 , 正确的是 ( )
A. 如果 a=b, 那么 a+c=b-c;
B.
a 如果 c
b c , 那么 a=b;
ab
C. 如果 a=b, 那么 c
c;
D.
如果 a2=3a, 那么 a=3
6. 如果方程 2x+a=x-1 的解是 x=-4, 求 3a-2 的值是 ________.
精选资料,欢迎下载

7.已知 2x=3y( x≠0),则下列比例式成立的是(
A
B
C
) D
4.在下列式子中变形正确的是(

A.
如果 a=b,那么 a+c=b﹣c
B.
如果 a=b,那么
C.
如果 ,那么 a=2
D.
如果 a﹣ b+c=0,那么 a=b+c
8.下列说法正确的是(

A. 如果 ab=ac,那么 b=c
C.由方程
,得 2方程
,得 4x﹣ x+1=4
13.已知等式 a=b 成立,则下列等式不一定成立的是(

A a+m=b+m
B ﹣ a=﹣ b
C ﹣a+1=b﹣ 1 D
精选资料,欢迎下载

14.下列说法正确的是(

A 在等式 ax=bx 两边都除以 x,可得 a=bB 在等式
16.已知 mx=my,下列结论错误的是(

A. x=y
B. a+mx=a+my
C. mx﹣ y=my﹣y
17.下列变形正确的是(

A.若 x2=y2,则 x=y B .若 axy=a ,则 xy=1
D. amx=amy
C.若﹣ x=8,则 x=﹣ 12 D .若 = ,则 x=y
18.如果
,那么
= _________ .
C 在等式 3a=9b 两边都除以 3,可得 a=3
D 在等式
两边都乘以 2,可得 x=y﹣ 1
两边都乘以 x,可得 a=b
15.(2013?东阳市模拟)如图 a 和图 b 分别表示两架处于平衡状态的简易天平,对
三种物体的质量判断正确的是(

a,b,c
A a<c<b
B a< b< c
C c<b<a
D b<a<c

cc
A.若 a+3=b﹣1,则 a+9=3b﹣ 3 B .若 2x﹣ 6=4y﹣ 2,则 x﹣ 3=2y﹣ 1
C.若 x2﹣ 5=y2+1,则 x2﹣ y 2=6 D .若
12.下列方程变形正确的是(

A.由方程
,得 3x﹣ 2x﹣ 2=6
,则 2x=3y
B.由方程
,得 3(x﹣ 1) +2x=1
a=b,那么 a
2. 等式两边都乘或者除以同一个数
a = b (c≠0) cc
(或代数式) ,所得结果仍是等式。 如果 a=b,那么 ac=bc ,
拓展:①对称性:如果 a=b,那么 b=a,即等式的左右互换位置,所得的结果仍是等式;② 传递性:如果 a=b,b=c,那么 a=c(等量代换)
练习:
1.等式的两边都加上(或减去)

A. 3x+ 2y= 0 B . 3+ m= 10 C . 2+ 1 = x D .a2= 16 x
3、如果( n-3 ) x n -2 +5=0 是关于 x 的一元一次方程,求 n 的值 .
4、如果关于 x 的方程( 2m+5) x-3=2x ,当 a 满足什么条件时,该方程 是一元一次方程?
5、若 2x-17 的绝对值与 18-3x 的绝对值相等,则得到关于 x 的方程为
6、一个两位数, 两个数位上的数字之和是 7,把两个数位上的数字对调后得到新的两位 数,比原来的两位数大 25,求原来的两位数。 (设出未知数,列出方程)
精选资料,欢迎下载

练习:
等式的性质(解方程的依据)
1. 等式两边都加上或者减去同一个数(或代数式) ±c=b± c 。
,所得结果仍是等式。如果
19.已知 2y=5x ,则 x: y= _________ . 20.已知 3a=2b( b≠ 0),那么 = _________ .
三、解答题: 21. 利用等式的性质解下列方程并检验
(1)x+3=2
(2)-
:
1 x-2=3 2
(3)9x=8x-6
(4)8y=4y+1
(5)7x-6=-5x
(6)-
相关文档
最新文档