平面向量常考题型

合集下载

平面向量常考方法总结

平面向量常考方法总结

平面向量中的基本方法一、向量基本不等式向量基本不等式:b a b a ⋅≥+222,()42b a b a +≤⋅当且仅当b a =时取等【例1】已知平面向量a 、b 满足1422=+⋅+b b a a,则a +2的最大值是.【练习1】已知平面向量a 、b 满足12922=+⋅+b b a a,则a +3的最大值是.【例2】已知平面向量a 、b满足32≤a ,则b a ⋅的最小值是.【练习2】已知平面向量a 、b满足323≤-a ,则b a ⋅的最小值是.向量三角不等式:+≤±≤-,当向量a 、b 共线时,取等推论:y x y x y x +≤±≤-,Ry x ∈,{}y x y x y x -+=+,max ,{}y x y x y x -+=-,min【例3】已知平面向量a 、b 是非零向量,且12=-a ,2=-,则-的最大值是.【练习3】已知平面向量a 、b 是非零向量,且22=+a ,310=-,则的最大值是.【例4】已知平面向量a 、b 1=2=,若对任意单位向量e ,6≤+,ba ⋅的取值范围是.【练习4】已知平面向量a 、b 1=21=,若对任意单位向量e 26≤+,b a ⋅的取值范围是.向量回路恒等式:CBAD CD AB +=+【例5】在平面凸四边形ABCD 中,已知2=AB ,N M ,分别是边BC AD ,的中点,且23=MN .若()1=-⋅BC AD MN ,则=⋅CD AB .【练习5】在平面四边形ABCD 中,设3=AC ,2=BD ,则()()=++AD BC CD AB .四、向量对角线定理向量对角线定理:记D C B A 、、、是空间中的任意四点,则有⎪⎭⎫--+=⋅21BD AC 【例6】在四边形ABCD 中,已知F E ,分别是边BC AD ,的中点,且m BC AD =⋅,n BD AC =⋅,2=AB ,1=EF ,3=CD ,则=-n m .五、互换系数恒等式若向量a ,b =,则有a a μλ+=+【例7】已知a ,b ,c 是平面内的三个单位向量,且b a ⊥,b a +++23的最小值为.【练习7】已知a ,b ,c o60=,的最小值为.六、极化恒等式极化恒等式的代数形式:()()⎥⎦⎤⎢⎣⎡-++=⋅2241b a b a b a 极化恒等式的对偶形式:()()22222b a b a b a -++=⎪⎭⎫ ⎝⎛+【例8】已知a ,b 是满足31≤≤,31≤≤,31≤≤,的取值范围是.【练习8】已知a ,b 是满足31≤≤,31≤≤3≤+,的取值范围是.【例9】已知a ,b 是满足31≤≤,31≤≤,31≤≤,则b a ⋅的取值范围是.【例10】在四边形ABCD 中,已知O 分别是边BD 的中点,且7-=⋅AD AB ,3=OA ,5=OC ,则=⋅DC BC .【练习9】在ABC ∆中,已知D 分别是边BC 的中点,F E ,分别是边AD 的两个三等份点,且4=⋅CA BA ,1-=⋅CF BF ,则=⋅CE BE .【练习10】如图,在同一平面内,点A 位于两直线n m ,同侧,且A 到于两直线n m ,的距离分别为3,1点C B ,分别在n m ,5=+,则AC AB ⋅最大值为.【例11】在ABC ∆中,F E ,分别是边AC AB ,的中点,P 在EF 的上,若ABC ∆的面积为2,则2BC PC PB +⋅最小值为.【练习11】已知AB 中为圆O 的直径,M 为弦CD 的一点,8=AB ,6=CD ,则MB MA ⋅的取值范围是.七、矩形大法点O 矩形ABCD 所在平面内任意一点,则有:2222OD OB OC OA +=+【例12】在直角ABC ∆中,D 为斜边AB 的中点,P 为CD=.【练习12】在平面内,若21AB AB ⊥1==,21AB AB AP +=21<的取值范围是.。

专题06 平面向量 (解析版)

专题06 平面向量 (解析版)

专题06 平面向量【真题感悟】1.(2018年浙江卷)已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是()A.B.C.2 D.【答案】A【解析】设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.2.(2017年浙江卷)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记,,,则A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3【答案】C【解析】因为,,,所以,故选C.3.(2019年浙江卷)已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.【答案】(1)0 (2)【解析】()()12345613562456AB BC CD DA AC BD AB AD λ+λ+λ+λ+λ+λ=λ-λ+λ-λ+λ-λ+λ+λ要使123456AB BC CD DA AC BD λ+λ+λ+λ+λ+λ的最小,只需要135562460λ-λ+λ-λ=λ-λ+λ+λ=,此时只需要取1234561,1,1,1,1,1λ=λ=-λ=λ=λ=λ=此时123456min 0AB BC CD DA AC BD λ+λ+λ+λ+λ+λ=等号成立当且仅当1356,,λ-λλ-λ均非负或者均非正,并且2456,,λ-λλ+λ均非负或者均非正. 比如1234561,1,,1,1,11λλλ=-λλ=-=λ===则123456max AB BC CD DA AC BD λ+λ+λ+λ+λ+λ==4.(2017年浙江卷)已知向量a,b 满足1,2a b ==,则a b a b ++-的最小值是___________,最大值是______.【答案】 4【解析】设向量,a b 的夹角为θ,由余弦定理有: 212a b -=+=212212cos 4cos a b θ+=+-⨯⨯⨯=,则:54cos a b a b ++-=+令y =[]21016,20y =+,据此可得:()()maxmin2025,164a b a b a b a b++-==++-==,即a b a b ++-的最小值是4,最大值是25.5.(2016年浙江文)已知平面向量a ,b ,|a|=1,|b|=2,a·b=1.若e 为平面单位向量,则|a·e|+|b·e|的最大值是______.【解析】由已知得,60<>=︒a b ,不妨取(1,0)=a ,=b ,设(cos ,sin )αα=e ,则cos cos ααα⋅+⋅=++a e b e 2cos αα,取等号时cos α与sin α同号.所以2cos 2cos αααα=αα=)αθ=+(其中sinθθ==θ为锐角).)αθ+≤ 易知当2αθπ+=时,sin()αθ+取最大值1,此时α为锐角,sin ,cos αα同为正,因此上述不等式中等.6.(2016年浙江理)已知向量a ,b ,|a | =1,|b |=2,若对任意单位向量e ,均有 |a·e |+|b·e |≤,则a·b 的最大值是 .【答案】12【解析】()221||||262a b e a e b e a b a b a b a b +⋅≤⋅+⋅≤+≤⇒++⋅≤⇒⋅≤,即最大值为12. 7.(2015年浙江文)已知1e , 2e 是平面单位向量,且1212e e ⋅=.若平面向量b 满足121b e b e ⋅=⋅=,则b = .【解析】由题可知,不妨()11,0e =,212e ⎛=⎝⎭,设(),b x y =,则11b e x ⋅==,2112b e x y ⋅=+=,所以31,3b ⎛⎫= ⎪ ⎝⎭,所以113b =+=.8.(2015年浙江理)已知12,e e 是空间单位向量,1212e e ⋅=,若空间向量b 满足1252,2b e b e ⋅=⋅=,且对于任意,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈,则0x = ,0y = ,b = .【答案】1,2,22.【解析】问题等价于12()b xe ye -+当且仅当0x x =,0y y =时取到最小值1,两边平方即xy y x y x |+--++5422在0x x =,0y y =时,取到最小值1,2245|b |x y x y xy ++--+ 22(4)5||x y x y b =+--+22243()(2)7||24y x y b -=++--+,∴⎪⎩⎪⎨⎧===⇒⎪⎪⎩⎪⎪⎨⎧=+-=-=-+22||211||702024002000y x y y x . 【考纲要求】1.理解平面向量及几何意义,理解零向量、向量的模、单位向量、向量相等、平行向量、向量夹角的概念. 2.掌握向量加法、减法、数乘的概念,并理解其几何意义.3.理解平面向量的基本定理及其意义,会用平面向量基本定理解决简单问题. 4.掌握平面向量的正交分解及其坐标表示. 5.掌握平面向量的加法、减法与数乘的坐标运算.6.理解平面向量数量积的概念及其意义,了解平面向量的数量积与向量投影的关系. 7.掌握平面向量数量积的坐标运算,掌握数量积与两个向量的夹角之间的关系.8.会用坐标表示平面向量的平行与垂直.9.会用向量方法解决某些简单的平面几何问题.【考向分析】1.平面向量的线性运算2.平面向量的坐标运算3.平面向量的数量积、模、夹角.【高考预测】平面向量的数量积、模、夹角是高考考查的重点、热点,往往以选择题或填空题的形式出现.常常以平面图形为载体,考查数量积、夹角、垂直的条件等问题;也易同三角函数、解析几何、不等式等知识相结合,以工具的形式出现.近几年浙江卷主要考查平面向量的坐标运算、模的最值等问题,与三角函数、解析几何密切相连,难度为中等或中等偏难.【迎考策略】1.向量线性运算的解题策略(1)常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连向量的和用三角形法则.(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解.(3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.2. 准确理解共线向量定理(1)a∥b等价于存在不全为零的实数λ1,λ2,使λ1a+λ2b=0成立.对于向量a(a≠0),b,若存在实数λ,使得b=λa,则向量a,b共线;若向量a=(x1,y1),b=(x2,y2),则x1y2-x2y1=0⇔a∥b;(2)共线向量定理是解决三点共线问题的有利工具:解题过程中常用到结论:“P,A,B三点共线”等价于“对直线AB 外任意一点O ,总存在非零实数λ,使()1OP O OB A λλu u u r u u u u r u r=+-成立”.3. 基底的“唯一”与“不唯一”“不唯一”:只要同一平面内两个向量不共线,就可以作为表示平面内所有向量的一组基底,对基底的选取不唯一;“唯一”:平面内任意向量a 都可被这个平面内的一组基底e1,e2线性表示,且在基底确定后,这样的表示是唯一的.4.平面向量数量积的计算方法①定义法求平面向量的数量积:已知向量a ,b 的模及夹角θ,利用公式a·b =|a ||b|cos θ求解; ②坐标法求平面向量的数量积: (a)已知或可求两个向量的坐标;(b)已知条件中有(或隐含)正交基底,优先考虑建立平面直角坐标系,使用坐标法求数量积.③基底法求平面向量的数量积:选取合适的一组基底,利用平面向量基本定理将待求数量积的两个向量分别表示出来,进而根据数量积的运算律和定义求解.(2)对于向量数量积与线性运算的综合运算问题,可先利用数量积的运算律化简,再进行运算. 5.向量数量积的性质(1)如果e 是单位向量,则a ·e =e ·a . (2)a ⊥b ⇔a ·b =0.(3)a ·a =|a |2,|a (4)cos θ=||||⋅a ba b .(θ为a 与b 的夹角)(5)|a ·b |≤|a ||b |.6.利用向量夹角公式、模公式,可将有关角度问题、线段长问题转化为向量的数量积来解决.同时应注意: (1)两向量的夹角是指当两向量的起点相同时,表示两向量的有向线段所形成的角,若起点不同,应通过移动,使其起点相同,再观察夹角.(2)两向量夹角的范围为[0,π],特别当两向量共线且同向时,其夹角为0,共线且反向时,其夹角为π. (3)在利用向量的数量积求两向量的夹角时,一定要注意两向量夹角的范围. 7.巧建坐标系系,妙解向量题:坐标是向量代数化的媒介,若能建立适当的直角坐标系,往往能很快实现问题的转化.常见的建系方法如下:(1)利用图形中现成的垂直关系若图形中有明显互相垂直且相交于一点的两条直线(如矩形、直角梯形等),可以利用这两条直线建立坐标系. (2)利用图形中的对称关系图形中虽没有明显互相垂直交于一点的两条直线,但有一定对称关系(如:等腰三角形、等腰梯形等),可利用自身对称性建系.建立平面直角坐标系的基本原则是尽可能地使顶点在坐标轴上,或在同一象限. (3)三角形中有唯一一个特殊角(30°、45°、60°等)时,有以下两种建系方法(4)圆(或半圆、扇形)与其他图形的综合图形通常以圆心为坐标原点建系.(5)所给向量中任意两向量之间的夹角为特殊角,将所给向量平移为共起点,以该起点为坐标原点建系.【强化演练】1.(2019年高考北京卷理)设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【解析】AB 与AC 的夹角为锐角,所以2222||||2||||2AB AC AB AC AB AC AB AC ++⋅>+-⋅,即22||||AB AC AC AB +>-,因为AC AB BC -=,所以|AB +AC |>|BC |;当|AB +AC |>|BC |成立时,|AB +AC |2>|AB -AC |2AB ⇒•AC >0,又因为点A ,B ,C 不共线,所以AB 与AC 的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C .2.(2019届北京市通州区三模)设a ,b 均为单位向量,则“a 与b 夹角为2π3”是“||+=a b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D【解析】因为a ,b 均为单位向量, 若a 与b 夹角为2π3,则||1+=a b , 因此,由“a 与b 夹角为2π3”不能推出“||+=a b ”;若||+=a b||+=a b 解得1cos ,2=a b ,即a 与b 夹角为π3, 所以,由“||+=a b 不能推出“a 与b 夹角为2π3” 因此,“a 与b 夹角为2π3”是“||+=a b ”的既不充分也不必要条件. 故选D3.(浙江省温州市2019届高三2月高考适应)在平面上,,是方向相反的单位向量,||=2 ,(-) •(-) =0 ,则|-|的最大值为( ) A .1 B .2C .2D .3【答案】D【解析】由题意(-) •(-) =0,即-(=0,又,是方向相反的单位向量,所以有,即||=1,记,则A,B两点的轨迹分别是以原点为圆心,以2和1为半径的圆上,当反向共线时,如图:|-|的最大值为1+2=3,故选D.4.(浙江省金华十校2019届高三上期末)已知向量,满足:,,,且,则的最小值为A.B.4 C.D.【答案】A【解析】由题意可知,把看作,,,则可表示为,点B在直线上,设,,,,,,,则的最小值可转化为在直线取一点B,使得最小,作点C关于的对称点,则最小值即可求出,设,由,解得,,则,故的最小值为.故选:A.5.(浙江省嘉兴市2019届高三上期末)已知向量,满足,,则的取值范围是( )A.B.C.[D.[【答案】D【解析】设点M为平面中任意一点,点是关于原点对称的两个点,设,根据题意,根据椭圆的定义得到点M的轨迹是以为焦点的椭圆,方程为.,即.故答案为:D.6.(浙北四校2019届高三12月模拟)已知向量,满足,,则的最小值是( ) A.1 B.2 C.3 D.4【答案】A【解析】因为,,由绝对值向量三角不等式得:===1,故选A.7.(浙江省2019届高考模拟卷(一))如图,在中,,,为上一点,且满足,若的面积为,则的最小值为( )A.B.C.3 D.【答案】D【解析】,得到,所以,结合的面积为,得到,得到,所以,故选D.8.(浙江省温州九校2019届高三第一次联考)已知是不共线的两个向量,的最小值为,若对任意m,n,的最小值为1, 的最小值为2,则的最小值为()A.2 B.4 C.D.【答案】B【解析】设的夹角为,则,则由的最小值为,的最小值为,可得,两式相乘可得(*)而,结合(*)可得,解得则故选B.9.(浙江省“七彩阳光”联盟2019届高三期初联考)均为单位向量,且它们的夹角为,设满足,则的最小值为()A.B.C.D.【答案】C【解析】设,以所在直线为轴,垂直于所在直线为轴,建立平面直角坐标系则,,则满足,故,如图其轨迹图象则其最小值为故选.10.(天津市和平区2019届高三下学期第三次质量调查)已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边BC ,DC 上,3BC BE =,DC DF λ=,若1AE AF ⋅=,则λ的值为( ) A .3 B .2C .23D .52【答案】B【解析】由题意可得:()()113AE AF AB BE AD DF AB BC BC AB λ⎛⎫⎛⎫⋅=+⋅+=+⋅+ ⎪ ⎪⎝⎭⎝⎭22111133AB BC AB BC λλ⎛⎫=+++⋅ ⎪⎝⎭, 且:224,22cos1202AB BC AB BC ==⋅=⨯⨯=-, 故()44112133λλ⎛⎫+++⨯-= ⎪⎝⎭,解得:2λ=.故选:B.11.(湖北省黄冈中学2019届高三三模)已知m ,n 是两个非零向量,且||2m =,|2|4m n +=,则||||m n n ++的最大值为______.【答案】【解析】设m 的起点为坐标原点,因为||2m =,所以设m 的终点坐标为(2,0),即(2,0)m =,设(,)n x y =,因为|2|4m n +=,所以2222(22)(2)16(1)4x y x y ++=⇒++=,21x -≤≤,||||(m n n x ++=+,而2222(1)423x y x x y ++=⇒++=,所以有||||72m n n ++=+≤==1x =-时,取等号,即||||m n n ++的最大值为12.(浙江省七彩联盟2019届高三11月期中】已知向量,满足,,若对任意实数x 都有,则的最小值为______【答案】【解析】如图,由,知在上的投影为2,即,,对任意实数x 都有,.由摄影定理可得,.设,取,可得P在直线BC上,线段OP的最小值为O到直线BC的距离,当时,.故答案为:.13.(浙江省浙南名校联盟2019届高三上期末)若向量满足,且,则的最小值是_ _.【答案】【解析】设,,,由可知,所以点C在以AB为直径的圆上;设,,则,而表示点O到以AB为直径的圆上任一点的距离,所以最大值即是点O到圆心E的距离加半径,即,所以,即最小值为2.故答案为2.14.(浙江省台州市2019届高三上期末)设圆,圆半径都为1,且相外切,其切点为.点,分别在圆,圆上,则的最大值为__ __.【答案】【解析】以为原点,两圆圆心所在的直线为轴建立如图所示的直角坐标系.则,,令,,所以所以,令,则,所以当时,有最大值,填.15.(2019年高考天津卷理数】在四边形ABCD 中,,5,30AD BC AB AD A ==∠=︒∥,点E在线段CB 的延长线上,且AE BE =,则BD AE ⋅=_____________. 【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,5,AB AD ==则B ,5)2D . 因为AD ∥BC ,30BAD ∠=︒,所以30ABE ∠=︒, 因为AE BE =,所以30BAE ∠=︒,所以直线BEy x =-, 直线AE的斜率为3-,其方程为3y x =-.由y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x 1y =-,所以1)E -. 所以35(,)(3,1)12BD AE =-=-.16. (2019年高考江苏卷)如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE交于点O .若6ABAC AO EC ⋅=⋅,则ABAC的值是_____.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-,()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故ABAC=。

高中数学第六章平面向量及其应用考点题型与解题方法(带答案)

高中数学第六章平面向量及其应用考点题型与解题方法(带答案)

高中数学第六章平面向量及其应用考点题型与解题方法单选题1、在△ABC 中,若AB⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ <0,则△ABC -定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 答案:C分析:根据向量的数量积的运算公式,求得cosA <0,得到A 为钝角,即可求解. 由向量的数量积的运算公式,可得AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |⋅|AC ⃗⃗⃗⃗⃗ |cosA <0,即cosA <0, 因为A ∈(0,π),所以A 为钝角,所以△ABC -定是钝角三角形. 故选:C.2、已知a ,b ⃗ 是不共线的向量,OA ⃗⃗⃗⃗⃗ =λa +μb ⃗ ,OB ⃗⃗⃗⃗⃗ =3a −2b ⃗ ,OC ⃗⃗⃗⃗⃗ =2a −3b ⃗ ,若A,B,C 三点共线,则实数λ,µ满足( )A .λ=μ−5B .λ=μ+5C .λ=μ−1D .λ=μ+1 答案:B解析:根据向量的线性运算方法,分别求得AB ⃗⃗⃗⃗⃗ =(3−λ)a −(2+μ)b ⃗ ,BC ⃗⃗⃗⃗⃗ =−a −b ⃗ ; 再由AB⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ ,得到3−λ=−(2+μ),即可求解. 由OA ⃗⃗⃗⃗⃗ =λa +μb ⃗ ,OB ⃗⃗⃗⃗⃗ =3a −2b ⃗ ,OC ⃗⃗⃗⃗⃗ =2a −3b⃗ , 可得AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(3−λ)a −(2+μ)b ⃗ ,BC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ =−a −b ⃗ ; 若A,B,C 三点共线,则AB ⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ ,可得3−λ=−(2+μ),化简得λ=μ+5. 故选:B.3、在△ABC 中,角A,B,C 的对边分别为a,b,c ,且B =π3,b =3,a =√3,则c =( ). A .√3B .2√3C .3−√3D .3 答案:B分析:利用余弦定理可构造方程直接求得结果.在△ABC 中,由余弦定理得:b 2=a 2+c 2−2accosB =3+c 2−√3c =9,即c 2−√3c −6=0,解得:c =−√3(舍),∴c =2√3.c故选:B.4、已知非零向量a →与b →共线,下列说法不正确的是( ) A .a →=b →或a →=−b →B .a →与b →平行C .a →与b →方向相同或相反D .存在实数λ,使得a →=λb →答案:A分析:根据向量共线的概念,以及向量共线定理,逐项判断,即可得出结果. 非零向量a →与b →共线,对于A ,a →=λb →,λ≠0,故A 错误;对于B ,∵向量a →与b →共线,∴向量a →与b →平行,故B 正确; 对于C ,∵向量a →与b →共线,∴a →与b →方向相同或相反,故C 正确; 对于D ,∵a →与b →共线,∴存在实数λ,使得a →=λb →,故D 正确. 故选:A.5、已知向量a =(−1,m ),b ⃗ =(m +1,2),且a ⊥b ⃗ ,则m =( ) A .2B .−2C .1D .−1 答案:C分析:由向量垂直的坐标表示计算.由题意得a ⋅b ⃗ =−m −1+2m =0,解得m =1 故选:C .6、已知f (x )=sin (ωx +π6)+cosωx (ω>0),将f (x )图象上的横坐标伸长到原来的2倍(纵坐标不变时),得到g (x )的图象.g (x )的部分图象如图所示(D 、C 分别为函数的最高点和最低点):其中CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22,则ω=( )A .π4B .π2C .πD .2π 答案:C分析:先求出g (x )的解析式,再利用CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22得到cos∠ACB =12,进而求出|AB |=2,所以T =2×2=4,ω=π 由f (x )=√32sinωx +32cosωx =√3sin (ωx +π3),∴g (x )=√3sin (12ωx +π3),因为D 、C 分别为函数的最高点和最低点,所以DA =AC =CB ,由CA⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22,即|CA ⃗⃗⃗⃗⃗ |2⋅cos∠ACB =|AD |22∴cos∠ACB =12,∴△ACB 为正三角形,又△ABC 的高为√3, ∴|AB |=2 ∴T =2×2=4, ∴即2π12ω=4πω=4,∴ω=π, 故选:C .7、某人先向东走3km ,位移记为a →,接着再向北走3km ,位移记为b →,则a →+b →表示( ) A .向东南走3√2km B .向东北走3√2km C .向东南走3√3km D .向东北走3√3km 答案:B分析:由向量的加法进行求解.由题意和向量的加法,得a →+b →表示先向东走3km ,再向北走3km,即向东北走3√2km.故选:B.8、在锐角△ABC中,角A,B,C的对边分别为a,b,c,S为△ABC的面积,且2S=a2−(b−c)2,则2b2+c2bc 的取值范围为()A.(4315,5915)B.[2√2,4315)C.[2√2,5915)D.[2√2,+∞)答案:C分析:根据余弦定理和△ABC的面积公式,结合题意求出sinA、cosA的值,再用C表示B,求出bc =sinBsinC的取值范围,即可求出2b2+c2bc的取值范围.解:在△ABC中,由余弦定理得a2=b2+c2−2bccosA,且△ABC的面积S=12bcsinA,由2S=a2−(b−c)2,得bcsinA=2bc−2bccosA,化简得sinA+2cosA=2,又A∈(0,π2),sin2A+cos2A=1,联立得5sin2A−4sinA=0,解得或sinA=0(舍去),所以bc =sinBsinC=sin(A+C)sinC=sinAcosC+cosAsinCsinC=45tanC+35,因为△ABC为锐角三角形,所以0<C<π2,B=π−A−C<π2,所以π2−A<C<π2,所以tanC>tan(π2−A)=1tanA=34,所以1tanC∈(0,43),所以bc∈(35,53),设bc =t,其中t∈(35,53),所以2b2+c2bc=2bc+cb=2t+1t=2(t+12t),由对勾函数单调性知y=2t+1t 在(35,√22)上单调递减,在(√22,53)上单调递增,当t=√22时,y=2√2;当t=35时,y=4315;当t=53时,y=5915;所以y∈[2√2,5915),即2b2+c2bc的取值范围是[2√2,5915).故选:C.小提示:关键点点睛:由2b2+c2bc =2bc+cb,所以本题的解题关键点是根据已知及bc=sinBsinC=sin(A+C)sinC=4 sin5AsinAcosC+cosAsinCsinC=45tanC+35求出bc的取值范围.多选题9、等边三角形ABC 中,BD →=DC →,EC →=2AE →,AD 与BE 交于F ,则下列结论正确的是( ) A .AD →=12(AB →+AC →)B .BE →=23BC →+13BA →C .AF →=12AD →D .BF →=12BA →+13BC →答案:AC分析:可画出图形,根据条件可得出D 为边BC 的中点,从而得出选项A 正确; 由EC →=2AE →可得出AE →=13AC →,进而可得出BE →=13BC →+23BA →,从而得出选择B 错误;可设AF →=12AD →,进而得出AF →=λ2AB →+3λ2AE →,从而得出λ=12,进而得出选项C 正确;由AF →=12AD →即可得出BF →=12BA →+14BC →,从而得出选项D 错误. 如图,∵BD →=DC →,∴D 为BC 的中点,∴AD →=12(AB →+AC →),∴A 正确; ∵EC →=2AE →,∴AE →=13AC →=13(BC →−BA →),∴BE →=BA →+AE →=BA →+13(BC →−BA →)=13BC →+23BA →,∴ B 错误;设AF →=λAD →=λ2AB →+λ2AC →=λ2AB →+3λ2AE →,且B ,F ,E 三点共线,∴λ2+3λ2=1,解得λ=12,∴AF →=12AD →,∴C 正确;BF →=BA →+AF →=BA →+12AD →=BA →+12(BD →−BA →)=BA →+14BC →−12BA →=12BA →+14BC →,∴D 错误. 故选:AC10、已知△ABC 是边长为2的等边三角形,D ,E 分别是AC,AB 上的点,且AE ⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,BD 与CE 交于点O ,则( )A .OC ⃗⃗⃗⃗⃗ +EO ⃗⃗⃗⃗⃗ =0⃗B .AB⃗⃗⃗⃗⃗ ⋅CE ⃗⃗⃗⃗⃗ =0 C .|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |=√3D .ED ⃗⃗⃗⃗⃗ 在BC ⃗⃗⃗⃗⃗ 方向上的投影为76 答案:BD解析:可证明EO =CE ,结合平面向量线性运算法则可判断A ;由AB⃗⃗⃗⃗⃗ ⊥CE ⃗⃗⃗⃗⃗ 结合平面向量数量积的定义可判断B ;建立直角坐标系,由平面向量线性运算及模的坐标表示可判断C ;由投影的计算公式可判断D. 因为△ABC 是边长为2的等边三角形,AE⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ , 所以E 为AB 的中点,且CE ⊥AB ,以E 为原点如图建立直角坐标系,则E (0,0),A (−1,0),B (1,0),C(0,√3),由AD ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ 可得AD ⃗⃗⃗⃗⃗ =23AC ⃗⃗⃗⃗⃗ =(23,2√33),则D (−13,2√33), 取BD 的中点G ,连接GE ,易得GE//AD 且GE =12AD =DC , 所以△CDO ≌△EGO ,EO =CO ,则O (0,√32), 对于A ,OC⃗⃗⃗⃗⃗ +EO ⃗⃗⃗⃗⃗ =EC ⃗⃗⃗⃗⃗ ≠0⃗ ,故A 错误;对于B ,由AB ⃗⃗⃗⃗⃗ ⊥CE ⃗⃗⃗⃗⃗ 可得AB⃗⃗⃗⃗⃗ ⋅CE ⃗⃗⃗⃗⃗ =0,故B 正确; 对于C ,OA ⃗⃗⃗⃗⃗ =(−1,−√32),OB ⃗⃗⃗⃗⃗ =(1,−√32),OC ⃗⃗⃗⃗⃗ =(0,√32),OD ⃗⃗⃗⃗⃗⃗ =(−13,√36), 所以OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ =(−13,−√33),所以|OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |=23,故C 错误; 对于D ,BC⃗⃗⃗⃗⃗ =(−1,√3),ED ⃗⃗⃗⃗⃗ =(−13,2√33), 所以ED ⃗⃗⃗⃗⃗ 在BC ⃗⃗⃗⃗⃗ 方向上的投影为BC ⃗⃗⃗⃗⃗ ⋅ED ⃗⃗⃗⃗⃗⃗ |BC⃗⃗⃗⃗⃗ |=13+22=76,故D 正确.故选:BD.小提示:关键点点睛:建立合理的平面直角坐标系是解题关键. 11、下列说法中错误的是( ). A .若a //b ⃗ ,b ⃗ //c ,c //d ,则a //d B .若|a |=|b ⃗ |且a //b ⃗ ,则a =b⃗ C .若a ,b ⃗ 非零向量且|a +b ⃗ |=|a −b ⃗ |,则a ⊥b ⃗ D .若a //b ⃗ ,则有且只有一个实数λ,使得a =λb ⃗ 答案:ABD分析:对于题中所给的条件与结论需要考虑周全,可以得出结论. A 选项,当b ⃗ ,c 中至少有一个0⃗ 时,a 与d 可能不平行,故A 错误; B 选项,由|a |=|b ⃗ |且a //b ⃗ ,可得a =b ⃗ 或a =−b⃗ ,故B 错误; C 选项,|a +b ⃗ |=|a −b ⃗ |,根据数量积规则,则两边平方化简可得a ⋅b ⃗ =0, ∴a ⊥b⃗ ,故C 正确; D 选项,根据向量共线基本定理可知当a ,b⃗ 都为非零向量时成立, a 为零向量时也成立(λ=0) ,若b ⃗ =0⃗ 时,λ 不存在,但b ⃗ //a (零向量与所有的向量共线),故D 错误; 故选:ABD.12、下列说法错误的是( )A .若a //b ⃗ ,则存在唯一实数λ使得a =λb⃗ B .两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b⃗ 共线且反向C .已知a =(1,2),b ⃗ =(1,1),且a 与a +λb ⃗ 的夹角为锐角,则实数λ的取值范围是(−53,+∞) D .在△ABC 中,BC ⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ ,则△ABC 为等腰三角形 答案:AC分析:若a =b ⃗ =0⃗ 可判断A ;将已知条件两边平方再进行数量积运算可判断B ;求出a +λb ⃗ 的坐标,根据a ⋅(a +λb ⃗ )>0且a 与a +λb ⃗ 不共线求出λ的取值范围可判断C ;取AC 的中点D ,根据向量的线性运算可得CA ⃗⃗⃗⃗⃗ ⋅BD⃗⃗⃗⃗⃗⃗ =0可判断D ,进而可得正确选项. 对于A :若a =b ⃗ =0⃗ 满足a //b⃗ ,则实数λ不唯一,故选项A 错误; 对于B :两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则(a −b ⃗ )2=(|a |+|b⃗ |)2, 所以a 2+b ⃗ 2−2a ⋅b ⃗ =|a |2+|b ⃗ |2+2|a ||b ⃗ |,可得2a ⋅b ⃗ =2|a ||b ⃗ |⋅cos 〈a ⋅b ⃗ 〉=−2|a ||b ⃗ |,cos 〈a ⋅b ⃗ 〉=−1,因为0≤〈a ⋅b ⃗ 〉≤π,所以〈a ⋅b ⃗ 〉=π,所以a 与b⃗ 共线且反向,故选项B 正确; 对于C :已知a =(1,2),b ⃗ =(1,1),所以a +λb ⃗ =(1+λ,2+λ),若a 与a +λb ⃗ 的夹角为锐角,则a ⋅(a +λb ⃗ )=1+λ+2(2+λ)>0,解得:λ>−53,当λ=0时,a +λb ⃗ =a ,此时a 与a +λb ⃗ 的夹角为0,不符合题意,所以λ≠0,所以λ的取值范围是(−53,0)∪(0,+∞),故选项C 不正确;对于D :在△ABC 中,取AC 的中点D ,由BC⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ ,得CA ⃗⃗⃗⃗⃗ ⋅(BC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=CA ⃗⃗⃗⃗⃗ ⋅(BC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ )=CA ⃗⃗⃗⃗⃗ ⋅2BD ⃗⃗⃗⃗⃗⃗ =0,故BD 垂直平分AC ,所以△ABC 为等腰三角形,故选项D 正确. 故选:AC .13、有下列说法,其中错误的说法为 A .若a //b ⃗ ,b ⃗ //c ,则a //cB .若2OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ =0,S ΔAOC ,S ΔABC 分别表示ΔAOC ,ΔABC 的面积,则S ΔAOC :S ΔABC =1:6 C .两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b ⃗ 共线且反向D .若a //b ⃗ ,则存在唯一实数λ使得a =λb ⃗ 答案:AD分析:对每一个选项逐一分析判断得解.A. 若a //b ⃗ ,b ⃗ //c ,则a //c ,如果a ,c 都是非零向量,b ⃗ =0⃗ ,显然满足已知条件,但是结论不一定成立,所以该选项是错误的;B. 如图,D,E 分别是AC,BC 的中点,2OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ =0⃗ ,∴2(OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )+(OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )=0⃗ ,∴4OD ⃗⃗⃗⃗⃗⃗ +2OE ⃗⃗⃗⃗⃗ =0⃗ ,∴OE ⃗⃗⃗⃗⃗ =−2OD ⃗⃗⃗⃗⃗⃗ , 所以OD =16AB,则S ΔAOC :S ΔABC =1:6,所以该选项是正确的;C. 两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b ⃗ 共线且反向,所以该选项是正确的;D. 若a //b ⃗ ,如果a 是非零向量,b ⃗ =0⃗ ,则不存在实数λ使得a =λb ⃗ ,所以该选项是错误的. 故选A,D小提示:本题主要考查平面向量的运算,考查向量的平行及性质,意在考查学生对这些知识的理解掌握水平,属于基础题. 填空题14、已知P ,Q 分别是四边形ABCD 的对角线AC 与BD 的中点,BC ⃗⃗⃗⃗⃗ =a ,DA ⃗⃗⃗⃗⃗ =b ⃗ ,且a ,b ⃗ 是不共线的向量,则向量PQ⃗⃗⃗⃗⃗ =___________. 答案:−12a −12b⃗ 分析:取AB 的中点E ,连接PE,QE ,然后利用向量的加法法则和三角形中位线定理求解. 如图,取AB 的中点E ,连接PE,QE ,因为P ,Q 分别是四边形ABCD 的对角线AC 与BD 的中点,BC ⃗⃗⃗⃗⃗ =a ,DA ⃗⃗⃗⃗⃗ =b⃗ 所以PE ⃗⃗⃗⃗⃗ =12CB ⃗⃗⃗⃗⃗ =−12a ,EQ ⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ =−12b ⃗ , 所以PQ ⃗⃗⃗⃗⃗ =PE ⃗⃗⃗⃗⃗ +EQ ⃗⃗⃗⃗⃗ =12CB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ =−12a −12b⃗ .所以答案是:−12a−12b⃗15、在△ABC中,若a=2,c=2√3,cosC=−12,M是BC的中点,则AM的长为____________.答案:√7分析:在△ABC中,由余弦定理求出b=2,进而,在△AMC中,由余弦定理可得AM.在△ABC中,由余弦定理c2=b2+a2−2abcosC得b2+2b−8=0,又b>0,所以b=2.在△AMC中,CA=b=2,CM=a2=1,由余弦定理得AM2=CA2+CM2−2CA⋅CM⋅cosC=22+12−2×2×1×(−12)=7,所以AM=√7.所以答案是:√7.16、在△ABC中,cos∠BAC=−13,AC=2,D是边BC上的点,且BD=2DC,AD=DC,则AB等于 ___.答案:3分析:运用余弦定理,通过解方程组进行求解即可.设DC=x,AB=y,因为BD=2DC,AD=DC,所以BC=3x,AD=DC=x,在△ADC中,由余弦定理可知:cosC=AC2+CD2−AD22AC⋅DC =4+x2−x24x=1x,在△ABC中,由余弦定理可知:cosC=AC2+CB2−AB22AC⋅BC =4+9x2−y212x,于是有4+9x2−y212x =1x⇒9x2−y2=8(1),在△ABC中,由余弦定理可知:cosA=AB2+CA2−CB22AB⋅AC =y2+4−9x24y=−13,⇒27x2−3y2−4y=12(2),把(1)代入(2)中得,y=3,所以答案是:3解答题17、记△ABC的内角A,B,C的对边分别为a,b,c﹐已知sinCsin(A−B)=sinBsin(C−A).(1)若A=2B,求C;(2)证明:2a2=b2+c2答案:(1)5π8;(2)证明见解析.分析:(1)根据题意可得,sinC=sin(C−A),再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),再根据正弦定理,余弦定理化简即可证出.(1)由A=2B,sinCsin(A−B)=sinBsin(C−A)可得,sinCsinB=sinBsin(C−A),而0<B<π2,所以sinB∈(0,1),即有sinC=sin(C−A)>0,而0<C<π,0<C−A<π,显然C≠C−A,所以,C+C−A=π,而A=2B,A+B+C=π,所以C=5π8.(2)由sinCsin(A−B)=sinBsin(C−A)可得,sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),再由正弦定理可得,accosB−bccosA=bccosA−abcosC,然后根据余弦定理可知,1 2(a2+c2−b2)−12(b2+c2−a2)=12(b2+c2−a2)−12(a2+b2−c2),化简得:2a2=b2+c2,故原等式成立.18、如图,有一景区的平面图是一个半圆形,其中O为圆心,直径AB的长为2km,C,D两点在半圆弧上,且BC=CD,设∠COB=θ;(1)当θ=π12时,求四边形ABCD的面积.(2)若要在景区内铺设一条由线段AB,BC,CD和DA组成的观光道路,则当θ为何值时,观光道路的总长l 最长,并求出l的最大值.答案:(1)√6−√24+14;(2)5分析:(1)把四边形ABCD分解为三个等腰三角形:△COB,△COD,△DOA,利用三角形的面积公式即得解;(2)利用θ表示(1)中三个等腰三角形的顶角,利用正弦定理分别表示BC,CD和DA,令t=sinθ2,转化为二次函数的最值问题,即得解.(1)连结,则∠COD=π12,∠AOD=5π6∴四边形ABCD的面积为2×12×1×1×sinπ12+12×1×1×sin5π6=√6−√24+14(2)由题意,在△BOC中,∠OBC=π−θ2,由正弦定理BC sinθ=OBsin(π−θ2)=1cosθ2∴BC=CD=sinθcosθ2=2sinθ2同理在△AOD中,∠OAD=θ,∠DOA=π−2θ,由正弦定理DAsin(π−2θ)=ODsinθ∴DA=sin2θsinθ=2cosθ∴l=2+4sin θ2+2cosθ=2+4sinθ2+2(1−2sin2θ2),0<θ<π2OD令t =sin θ2(0<t <√22) ∴l =2+4t +2(1−2t 2)=4+4t −4t 2=−4(t −12)2+5 ∴t =12时,即θ=π3,l 的最大值为5 小提示:本题考查了三角函数和解三角形综合实际应用问题,考查了学生综合分析,数学建模,转化划归,数学运算能力,属于较难题。

高考数学真题汇编---平面向量(有解析)

高考数学真题汇编---平面向量(有解析)

高考数学真题汇编---平面向量学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题)1.(2017•新课标Ⅱ)设非零向量,满足|+|=|﹣|则()A.⊥B.||=||C.∥D.||>||2.(2017•新课标Ⅲ)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3 B.2C.D.23.(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣C.﹣D.﹣14.(2017•浙江)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I35.(2016•新课标Ⅲ)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°6.(2016•新课标Ⅱ)已知向量=(1,m),=(3,﹣2),且(+)⊥,则m=()A.﹣8 B.﹣6 C .6 D.87.(2016•天津)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.8.(2016•山东)已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣9.(2016•四川)在平面内,定点A,B,C,D满足==,•=•=•=﹣2,动点P,M满足=1,=,则||2的最大值是()A.B.C.D.10.(2016•四川)已知正三角形ABC的边长为2,平面ABC内的动点P,M 满足||=1,=,则||2的最大值是()A.B.C.D.二.填空题(共20小题)11.(2017•山东)已知向量=(2,6),=(﹣1,λ),若,则λ=.12.(2017•新课标Ⅲ)已知向量=(﹣2,3),=(3,m),且,则m=.13.(2017•新课标Ⅰ)已知向量=(﹣1,2),=(m,1),若向量+与垂直,则m=.14.(2017•新课标Ⅰ)已知向量,的夹角为60°,||=2,||=1,则|+2|=.15.(2017•山东)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是.16.(2017•江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是.17.(2017•北京)已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O为原点,则•的最大值为.18.(2017•江苏)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=.19.(2017•天津)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ∈R),且=﹣4,则λ的值为.20.(2016•新课标Ⅱ)已知向量=(m,4),=(3,﹣2),且∥,则m=.21.(2016•上海)在平面直角坐标系中,已知A(1,0),B(0,﹣1),P是曲线y=上一个动点,则•的取值范围是.22.(2016•新课标Ⅰ)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.23.(2016•山东)已知向量=(1,﹣1),=(6,﹣4),若⊥(t+),则实数t的值为.24.(2016•新课标Ⅰ)设向量=(x,x+1),=(1,2),且⊥,则x=.25.(2016•浙江)已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是.26.(2016•上海)如图,已知点O(0,0),A(1,0),B(0,﹣1),P是曲线y=上一个动点,则•的取值范围是.27.(2016•江苏)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.28.(2016•北京)已知向量=(1,),=(,1),则与夹角的大小为.29.(2016•上海)如图,在平面直角坐标系xOy中,O为正八边形A1A2…A8的中心,A1(1,0)任取不同的两点A i,A j,点P满足++=,则点P落在第一象限的概率是.30.(2016•浙江)已知向量,,||=1,||=2,若对任意单位向量,均有|•|+|•|≤,则•的最大值是.三.解答题(共1小题)31.(2017•山东)在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,= =3,求A和a.﹣6,S△ABC高考数学真题汇编---平面向量参考答案与试题解析一.选择题(共10小题)1.【分析】由已知得,从而=0,由此得到.【解答】解:∵非零向量,满足|+|=|﹣|,∴,解得=0,∴.故选:A.2.【分析】如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,先求出圆的标准方程,再设点P的坐标为(cosθ+1,sinθ+2),根据=λ+μ,求出λ,μ,根据三角函数的性质即可求出最值.【解答】解:如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,则A(0,0),B(1,0),D(0,2),C(1,2),∵动点P在以点C为圆心且与BD相切的圆上,设圆的半径为r,∵BC=2,CD=1,∴BD==∴BC•CD=BD•r,∴r=,∴圆的方程为(x﹣1)2+(y﹣2)2=,设点P的坐标为(cosθ+1,sinθ+2),∵=λ+μ,∴(cosθ+1,sinθ+2)=λ(1,0)+μ(0,2)=(λ,2μ),∴cosθ+1=λ,sinθ+2=2μ,∴λ+μ=cosθ+sinθ+2=sin(θ+φ)+2,其中tanφ=2,∵﹣1≤sin(θ+φ)≤1,∴1≤λ+μ≤3,故λ+μ的最大值为3,故选:A.3.【分析】根据条件建立坐标系,求出点的坐标,利用坐标法结合向量数量积的公式进行计算即可.【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣)=﹣,故选:B.4.【分析】根据向量数量积的定义结合图象边角关系进行判断即可.【解答】解:∵AB⊥BC,AB=BC=AD=2,CD=3,∴AC=2,∴∠AOB=∠COD>90°,由图象知OA<OC,OB<OD,∴0>•>•,•>0,即I3<I1<I2,故选:C.5.【分析】根据向量的坐标便可求出,及的值,从而根据向量夹角余弦公式即可求出cos∠ABC的值,根据∠ABC的范围便可得出∠ABC 的值.【解答】解:,;∴;又0°≤∠ABC≤180°;∴∠ABC=30°.故选:A.【分析】求出向量+的坐标,根据向量垂直的充要条件,构造关于m的方程,解得答案.【解答】解:∵向量=(1,m),=(3,﹣2),∴+=(4,m﹣2),又∵(+)⊥,∴12﹣2(m﹣2)=0,解得:m=8,故选:D.7.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:C.【分析】若⊥(t+),则•(t+)=0,进而可得实数t的值.【解答】解:∵4||=3||,cos<,>=,⊥(t+),∴•(t+)=t•+2=t||•||•+||2=()||2=0,解得:t=﹣4,故选:B.9.【分析】由==,可得D为△ABC的外心,又•=•=•,可得可得D为△ABC的垂心,则D为△ABC的中心,即△ABC为正三角形.运用向量的数量积定义可得△ABC的边长,以A为坐标原点,AD所在直线为x轴建立直角坐标系xOy,求得B,C的坐标,再设P(cosθ,sinθ),(0≤θ<2π),由中点坐标公式可得M的坐标,运用两点的距离公式可得BM的长,运用三角函数的恒等变换公式,结合正弦函数的值域,即可得到最大值.【解答】解:由==,可得D为△ABC的外心,又•=•=•,可得•(﹣)=0,•(﹣)=0,即•=•=0,即有⊥,⊥,可得D为△ABC的垂心,则D为△ABC的中心,即△ABC为正三角形.由•=﹣2,即有||•||cos120°=﹣2,解得||=2,△ABC的边长为4cos30°=2,以A为坐标原点,AD所在直线为x轴建立直角坐标系xOy,可得B(3,﹣),C(3,),D(2,0),由=1,可设P(cosθ,sinθ),(0≤θ<2π),由=,可得M为PC的中点,即有M(,),则||2=(3﹣)2+(+)2=+==,当sin(θ﹣)=1,即θ=时,取得最大值,且为.故选:B.10.【分析】如图所示,建立直角坐标系.B(0,0),C.A.点P的轨迹方程为:=1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,可得M,代入||2=+3sin,即可得出.【解答】解:如图所示,建立直角坐标系.B(0,0),C.A.∵M满足||=1,∴点P的轨迹方程为:=1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,则M,∴||2=+=+3sin≤.∴||2的最大值是.也可以以点A为坐标原点建立坐标系.解法二:取AC中点N,MN=,从而M轨迹为以N为圆心,为半径的圆,B,N,M三点共线时,BM为最大值.所以BM最大值为3+=.故选:B.二.填空题(共20小题)11.【分析】利用向量共线定理即可得出.【解答】解:∵,∴﹣6﹣2λ=0,解得λ=﹣3.故答案为:﹣3.12.【分析】利用平面向量数量积坐标运算法则和向量垂直的性质求解.【解答】解:∵向量=(﹣2,3),=(3,m),且,∴=﹣6+3m=0,解得m=2.故答案为:2.13.【分析】利用平面向量坐标运算法则先求出,再由向量+与垂直,利用向量垂直的条件能求出m的值.【解答】解:∵向量=(﹣1,2),=(m,1),∴=(﹣1+m,3),∵向量+与垂直,∴()•=(﹣1+m)×(﹣1)+3×2=0,解得m=7.故答案为:7.14.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.15.【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【解答】解:【方法一】由题意,设=(1,0),=(0,1),则﹣=(,﹣1),+λ=(1,λ);又夹角为60°,∴(﹣)•(+λ)=﹣λ=2××cos60°,即﹣λ=,解得λ=.【方法二】,是互相垂直的单位向量,∴||=||=1,且•=0;又﹣与+λ的夹角为60°,∴(﹣)•(+λ)=|﹣|×|+λ|×cos60°,即+(﹣1)•﹣λ=××,化简得﹣λ=××,即﹣λ=,解得λ=.故答案为:.16.【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,=(﹣12﹣x0,﹣y0)•(﹣x0,6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0,表示直线2x﹣y+5=0以及直线上方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5,1],故答案为:[﹣5,1].17.【分析】设P(cosα,sinα).可得=(2,0),=(cosα+2,sinα).利用数量积运算性质、三角函数的单调性与值域即可得出.【解答】解:设P(cosα,sinα).=(2,0),=(cosα+2,sinα).则•=2(cosα+2)≤6,当且仅当cosα=1时取等号.故答案为:6.18.【分析】如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.可得cosα=,sinα=.C.可得cos(α+45°)=.sin(α+45°)=.B.利用=m+n(m,n∈R),即可得出.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴cosα=,sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m,n∈R),∴=m﹣n,=0+n,解得n=,m=.则m+n=3.故答案为:3.19.【分析】根据题意画出图形,结合图形,利用、表示出,再根据平面向量的数量积列出方程求出λ的值.【解答】解:如图所示,△ABC中,∠A=60°,AB=3,AC=2,=2,∴=+=+=+(﹣)=+,又=λ﹣(λ∈R),∴=(+)•(λ﹣)=(λ﹣)•﹣+λ=(λ﹣)×3×2×cos60°﹣×32+λ×22=﹣4,∴λ=1,解得λ=.故答案为:.20.【分析】直接利用向量共线的充要条件列出方程求解即可.【解答】解:向量=(m,4),=(3,﹣2),且∥,可得12=﹣2m,解得m=﹣6.故答案为:﹣6.21.【分析】设P(cosα,sinα),α∈[0,π],则=(1,1),=(cosα,sinα+1),由此能求出•的取值范围.【解答】解:∵在平面直角坐标系中,A(1,0),B(0,﹣1),P是曲线y=上一个动点,∴设P(cosα,sinα),α∈[0,π],∴=(1,1),=(cosα,sinα+1),=cosα+sinα+1=,∴•的取值范围是[0,1+].故答案为:[0,1+].22.【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.23.【分析】根据向量的坐标运算和向量的数量积计算即可.【解答】解:∵向量=(1,﹣1),=(6,﹣4),∴t+=(t+6,﹣t﹣4),∵⊥(t+),∴•(t+)=t+6+t+4=0,解得t=﹣5,故答案为:﹣5.24.【分析】根据向量垂直的充要条件便可得出,进行向量数量积的坐标运算即可得出关于x的方程,解方程便可得出x的值.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.25.【分析】由题意可知,||+||为在上的投影的绝对值与在上投影的绝对值的和,由此可知,当与共线时,||+||取得最大值,即.【解答】解:||+||=,其几何意义为在上的投影的绝对值与在上投影的绝对值的和,当与共线时,取得最大值.∴=.故答案为:.26.【分析】设出=(x,y),得到•=x+,令x=cosθ,根据三角函数的性质得到•=sinθ+cosθ=sin(θ+),从而求出•的范围即可.【解答】解:设=(x,y),则=(x,),由A(1,0),B(0,﹣1),得:=(1,1),∴•=x+,令x=cosθ,θ∈[0,π],则•=sinθ+cosθ=sin(θ+),θ∈[0,π],故•的范围是[﹣,1,],故答案为:[﹣1,].27.【分析】由已知可得=+,=﹣+,=+3,=﹣+3,=+2,=﹣+2,结合已知求出2=,2=,可得答案.【解答】解:∵D是BC的中点,E,F是AD上的两个三等分点,∴=+,=﹣+,=+3,=﹣+3,∴•=2﹣2=﹣1,•=92﹣2=4,∴2=,2=,又∵=+2,=﹣+2,∴•=42﹣2=,故答案为:28.【分析】根据已知中向量的坐标,代入向量夹角公式,可得答案.【解答】解:∵向量=(1,),=(,1),∴与夹角θ满足:cosθ===,又∵θ∈[0,π],∴θ=,故答案为:.29.【分析】利用组合数公式求出从正八边形A1A2…A8的八个顶点中任取两个的事件总数,满足++=,且点P落在第一象限,则需向量+的终点落在第三象限,列出事件数,再利用古典概型概率计算公式求得答案.【解答】解:从正八边形A1A2…A8的八个顶点中任取两个,基本事件总数为.满足++=,且点P落在第一象限,对应的A i,A j,为:(A4,A7),(A5,A8),(A5,A6),(A6,A7),(A5,A7)共5种取法.∴点P落在第一象限的概率是,故答案为:.30.【分析】根据向量三角形不等式的关系以及向量数量积的应用进行计算即可得到结论.【解答】解:由绝对值不等式得≥|•|+|•|≥|•+•|=|(+)•|,于是对任意的单位向量,均有|(+)•|≤,∵|(+)|2=||2+||2+2•=5+2•,∴|(+)|=,因此|(+)•|的最大值≤,则•≤,下面证明:•可以取得,(1)若|•|+|•|=|•+•|,则显然满足条件.(2)若|•|+|•|=|•﹣•|,此时|﹣|2=||2+||2﹣2•=5﹣1=4,此时|﹣|=2于是|•|+|•|=|•﹣•|≤2,符合题意,综上•的最大值是,法2:由于任意单位向量,可设=,则|•|+|•|=||+||≥||+|=||=|+|,∵|•|+|•|≤,∴|+|≤,即(+)2≤6,即||2+||2+2•≤6,∵||=1,||=2,∴•≤,即•的最大值是.法三:设=,=,=,则=+,=﹣,|•|+|•|=||+||=||≤||,由题设当且仅当与同向时,等号成立,此时(+)2取得最大值6,第21页(共22页)由于|+|2+|﹣|)2=2(||2+||2)=10,于是(﹣)2取得最小值4,则•=,•的最大值是.故答案为:.三.解答题(共1小题)31.【分析】根据向量的数量积和三角形的面积公式可得tanA=﹣1,求出A和c的值,再根据余弦定理即可求出a.【解答】解:由=﹣6可得bccosA=﹣6,①,由三角形的面积公式可得S△ABC=bcsinA=3,②∴tanA=﹣1,∵0<A<180°,∴A=135°,∴c==2,由余弦定理可得a2=b2+c2﹣2bccosA=9+8+12=29∴a=第22页(共22页)。

第6章平面向量专题3极化恒等式应用常考题型专题练习——【含答案】

第6章平面向量专题3极化恒等式应用常考题型专题练习——【含答案】

第6章平⾯向量专题3极化恒等式应⽤常考题型专题练习——【含答案】【知识总结】1.平⾏四边形中的极化恒等式.平⾯向量的数量积可以表⽰为以这组向量为邻边的平⾏四边形的“和对⾓线”与“差对⾓线”平⽅的14,即221[]4a b AC BD=-2.三⾓形中的极化恒等式.在?ABC中,若M 是线段B C 的中点,则214AB AC AM BC=-1、.如图在三⾓形ABC中,D是BC的中点,E,F是AD上的两个三等分点,4,1,BA CA BF CF==-则BE CE值为______.11【答案】78【解析】设2222,,||||94DC a DF b BA CA AD BD b a ==?=-=-=2222||||1BF CF FD BD b a ?=-=-=-解得22513,88b a == 22227||||48BE CE ED BD b a ∴?=-=-=2、已知点A ,B ,C 2的圆上,若2AB =,则AC BC 的最⼤值为.322.222.4.2A B C D ++【答案】B【解析】设A ,B ,C 三点所在圆的圆⼼为O ,取AB 中点D ,故2221=14AC BC CA CB CD AB CD =-=-因为A ,B ,C 三点在圆上,所以CD 长度最⼤为r+d,其中d 为圆⼼O 到弦AB 的距离,故最⼤值为1+2,所以21CD -的最⼤值为21+2)1-=(222+ 3、已知ABC ?是边长为2的等边三⾓形,P 为平⾯ABC 内⼀点,则()PA PB PC ?+的最⼩值是_____【答案】32-【解析】设BC 的中点为O,OC的中点为M,连接OP,PM,222133()22||||2||222PA PB PC PO PA PM AO PM∴?+=?=-=-≥-当且仅当M与P重合时取等号4、已知AB是圆O的直径,AB长为2,C是圆O上异于,A B 的⼀点,P是圆O所在平⾯上任意⼀点,则() PA PB PC+?的最⼩值为____________【答案】12-【解析】取OC中点为M,()22211=22[]2[]44PA PB PC PO PC PM OC PM+??=-=-由于P点是圆O所在平⾯上⼀点,故PM最⼩值为0,故()PA PB PC+?的最⼩值为12-。

高考平面向量常考题型

高考平面向量常考题型

高考平面向量常考题型平面向量是高中数学中重要的一部分,在高考中也是常考的题型之一。

本文将介绍高考中常见的平面向量题型及解题方法,帮助学生更好地掌握这一知识点。

1. 向量的基本概念向量可以表示为一个有方向的线段,用符号“→”表示。

向量有大小和方向两个属性,可以用坐标表示。

在平面直角坐标系中,一个向量可以表示为 (x,y)。

2. 向量的加减法向量的加减法可以通过将向量的坐标相加减实现。

例如,向量 A = (2,3) 和向量 B = (4,-1),则 A + B = (2+4,3-1) = (6,2),A -B = (2-4,3+1) = (-2,4)。

3. 向量的数量积向量的数量积也称为点积,可以用以下公式表示:A·B =|A||B|cosθ,其中 A 和 B 分别为向量,|A| 和 |B| 分别为它们的长度,θ为 A 和 B 之间的夹角。

4. 向量的向量积向量的向量积也称为叉积,可以用以下公式表示:A×B =|A||B|sinθn,其中 A 和 B 分别为向量,|A| 和 |B| 分别为它们的长度,θ为 A 和 B 之间的夹角,n 为垂直于 A 和 B 所在平面的单位向量。

5. 平面向量的模长平面向量的模长可以通过勾股定理求得,即 |A| = √(x+y),其中 A = (x,y)。

6. 向量共线、垂直的判定两个向量共线的条件是它们的夹角为 0 或 180 度,可以用向量的数量积判断。

若 A·B = 0,则 A 和 B 垂直,可以用向量的向量积判断。

7. 向量的投影向量的投影是一个向量在另一个向量上的投影。

可以用以下公式求得:projA B = (A·B/|B|)B,其中 A 和 B 分别为向量,projA B 为 A 在 B 上的投影。

8. 高维向量高维向量是指超过两个维度的向量。

它们的处理方法与平面向量类似,只是需要用更多的坐标表示。

以上就是高考平面向量常考题型的介绍。

(常考题)北师大版高中数学必修四第二章《平面向量》检测题(包含答案解析)(2)

(常考题)北师大版高中数学必修四第二章《平面向量》检测题(包含答案解析)(2)

一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( )A .1B .3C .7D .32.已知ABC 为等边三角形,2AB =,ABC 所在平面内的点P 满足1AP AB AC --=,AP 的最小值为( )A .31-B .221-C .231-D .71-3.设向量a ,b ,c 满足||||1a b ==,12a b ⋅=,()()0a c b c -⋅-=,则||c 的最小值是( ) A .31+ B .31- C .3 D .14.若平面向量与的夹角为,,,则向量的模为( ) A .B .C .D .5.如下图,四边形OABC 是边长为1的正方形,点D 在OA 的延长线上,且2OD =,点P 为BCD 内(含边界)的动点,设(,)OP OC OD R αβαβ=+∈,则αβ+的最大值等于( )A .3B .2C .52D .326.已知,M N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则2PM PN -的最大值为( )A .53+B .53-C .523+D .57.已知向量(3,0)a =,(0,1)b =-,(,3)c k =,若(2)a b c -⊥,则k =( ) A .2B .2-C .32D .32-8.在ABC 中,D 为AB 的中点,60A ∠=︒且2AB AC AB CD ⋅=⋅,若ABC 的面积为43AC 的长为( )A.43B.433C.3 D.239.在ABC∆中,D为BC边上一点,且AD BC⊥,向量AB AC+与向量AD共线,若10AC =,2BC=,0GA GB GC++=,则ABCG=()A.3 B.5C.2 D.10210.如图,一条河的两岸平行,河的宽度d=0.6 km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的时间为6 min,则客船在静水中的速度为()A.62km/h B.8 km/hC.234km/h D.10 km/h11.如图所示,在ABC中,点D在线段BC上,且3BD DC=,若AD AB ACλμ=+,则λμ=()A.12B.13C.2 D.2312.设非零向量a与b的夹角是23π,且a a b=+,则22a tbb+的最小值为()A.33B.32C.12D.1二、填空题13.如图,已知四边形ABCD,AD CD⊥,AC BC⊥,E是AB的中点,1CE=,若//AD CE,则AC BD⋅的最小值为___________.14.设123,,e e e 为单位向量,且()312102e e ke k =+>,若以向量12,e e 为邻边的三角形的面积为12,则k 的值为__________. 15.已知向量(1,1,0)a →=,(1,0,2)b →=-,(,1,2)c x →=-,若,,a b c →→→是共面向量,则x =__________.16.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,)OC mOA nOB m n R =+∈,则mn等于 . 17.如图,在△ABC 中,13AN NC =,P 是BN 上的一点,若AP =m 211AB AC +,则实数m 的值为_____.18.设向量a ,b ,c ,满足1a b ==,12a b ⋅=-,a c -与b c -的夹角为60︒,则c 的最大值等于________19.在ABC 中,22AB =26AC =G 为ABC 的重心,则AG BC ⋅=________.20.在ABC 中,22AC AB ==,120BAC ∠=,O 是BC 的中点,M 是AO 上一点,且3AO MO =,则MB MC ⋅的值是______.三、解答题21.在ABCD 中,2AB =,23AC =AB 与AD 的夹角为3π. (Ⅰ)求AD ;(Ⅱ)求AC 和BD 夹角的余弦值.22.如图,在梯形ABCD 中,E 为DC 的中点,//,,2AD BC BAD π∠=,3BDA BC BD π∠==.(1)求AE BD ⋅;(2)求AC 与BD 夹角的余弦值. 23.已知向量(1,2)a =-,||25b =. (1)若b a λ=,其中0λ<,求b 的坐标; (2)若a 与b 的夹角为23π,求()(2)a b a b -⋅+的值. 24.已知向量m ,n 不是共线向量,32a m n =+,64b m n =-,c m xn =+ (1)判断,a b 是否共线; (2)若//a c ,求x 的值 25.已知(2,0)a=,||1b =.(1)若a 与b 同向,求b ;(2)若a 与b 的夹角为120,求a b +. 26.已知向量a 与向量b 的夹角为3π,且1a =,()32a a b ⊥-. (1)求b ;(2)若27a mb -=,求m .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题. 【详解】设a 、b 所成角为θ, 由||||2==a b ,2a b,则1cos 2θ=,因为0θπ≤≤ 所以3πθ=,记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴, 建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=,表示点()P x 与点()2,0A 两点间的距离, 由,,1x y R x y ∈+=113222ya y b y x ⎛⎫⎛⎛⎫+-=+=-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以1322ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭,表示点()P x 与点32Q ⎛ ⎝⎭两点间的距离, ∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为P 到,A Q 两点的距离和最小,()P x 在直线y =上,()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR == 故选:C 【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、32Q ⎛⎝⎭两点间的距离,考查了运算求解能力.2.C解析:C 【分析】计算出AB AC +的值,利用向量模的三角不等式可求得AP 的最小值. 【详解】2222222cos123AB AC AB AC AB AC AB AC AB AC π+=++⋅=++⋅=,所以,23AB AC += 由平面向量模的三角不等式可得()()231AP AP AB AC AB AC AP AB AC AB AC =--++≥---+=.当且仅当AP AB AC --与AB AC +方向相反时,等号成立.因此,AP 的最小值为1. 故选:C. 【点睛】结论点睛:在求解向量模的最值时,可利用向量模的三角不等式来求解:a b a b a b -≤±≤+. 3.B解析:B 【分析】建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为12⎫⎪⎪⎝⎭,21⎫-⎪⎪⎝⎭,设c 的坐标为(),x y ,由已知可得22124x y ⎛-+= ⎝⎭,表示以2⎛⎫ ⎪ ⎪⎝⎭为圆心,12为半径的圆,求出圆心到原点的距离,再减去半径即为所求 【详解】解:建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为122⎛⎫ ⎪ ⎪⎝⎭,,221⎛⎫-⎪ ⎪⎝⎭,设c 的坐标为(),x y , 因为()()0a c b c -⋅-=,所以11,,02222x y x y ⎛⎫⎛⎫--⋅---= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,化简得22124x y ⎛-+= ⎝⎭,表示以3,0⎛⎫ ⎪⎪⎝⎭为圆心,12为半径的圆, 则||c 的最小值表示圆上的点到原点的距离的最小值, 因为圆到原点的距离为3,所以圆上的点到原点的距离的最小值为312-,故选:B【点睛】此题考查平面向量的数量积运算,解题的关键是写出满足条件的对应的点,考查数学转化思想,考查数形结合的思想,属于中档题4.C解析:C 【解析】,,又,,则,故选5.D解析:D 【分析】以O 为原点,边OA 和OC 所在的直线分别为x 和y 轴建立如图所示的平面直角坐标系,设(),P x y ,易得1,2y x αβ==,则12x y αβ+=+,再将原问题转化为线性规划问题,求目标函数12x y +在可行域BCD 内(含边界)的最大值,即可求出结果. 【详解】以O 为原点,边OA 和OC 所在的直线分别为x 和y 轴建立如图所示的平面直角坐标系, 则()()0,1,2,0C D ,如下图所示:设(),P x y ,∵ (,)OP OC OD R αβαβ=+∈, ∴()()(),0,12,0)2,(x y αββα=+=,∴2,x y βα==,即1,2y x αβ==,∴12x y αβ+=+, 令1,2z x y =+则12y x z =-+,其中z 为直线12y x z =-+在y 轴上的截距,由图可知,当该直线经过点()1,1B 时,其在y 轴上的截距最大为32, ∴αβ+的最大值为32. 故选:D . 【点睛】本题考查平面向量在几何中的应用,建立坐标系后,可将原问题转化为线性规划中的最值问题,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.6.A解析:A 【分析】根据条件可知22PM PN PO OM ON -=+-2PO OM ON ≤+-,即可求出最大值. 【详解】由1MN =可知,OMN 为等边三角形,则1cos602OM ON OM ON ⋅=⋅⋅︒=, 由PM PO OM =+,PN PO ON =+,得22PM PN PO OM ON -=+-2PO OM ON ≤+-,()224413OM ON OM ON -=-⋅+=,又()3,4P ,则5PO =,因此当PO 与2OM ON -同向时,等号成立,此时2PM PN -的最大值为5+故选:A. 【点睛】本题考查向量模的大小关系,属于中档题.7.B解析:B 【分析】求出2a b -)2=,利用向量垂直数量积为零列方程求解即可.【详解】由(3,0)a =,(0,1)b =-,得2a b -)2=,若(2)c a b -⊥,则(2)?0a b c -=,0,2k +=∴=-.故选B. 【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用12210x y x y -=解答;(2)两向量垂直,利用12120x x y y +=解答.8.B解析:B 【分析】设,,AB c AC b ==先化简2AB AC AB CD ⋅=⋅得3c b =,由ABC 的面积为16bc =,即得AC 的长.【详解】设,,AB c AC b ==由题得2AB AC AB CD ⋅=⋅,所以2()AB AC AB AD AC AB AD AB AC ⋅=⋅-=⋅-⋅, 所以3,3cos cos0,332cAB AC AB AD c b c c b π⋅=⋅∴⨯⨯⨯=⨯⨯∴=.因为ABC 的面积为1sin 1623b c bc π⨯⨯⨯=∴=.所以2316,b b =∴=所以3AC =.故选:B 【点睛】本题主要考查平面向量的数量积运算,考查三角形的面积的应用,意在考查学生对这些知识的理解掌握水平.9.B解析:B 【解析】取BC 的中点E ,则2AB AC AE +=与向量AD 共线,所以A 、D 、E 三点共线,即ABC ∆中BC 边上的中线与高线重合,则10AB AC ==.因为0GA GB GC ++=,所以G 为ABC ∆的重心,则2222() 2.32BC GA GE AC ==-=所以22101,112, 5.2AB CE CG CG==+=∴== 本题选择B 选项.10.A解析:A 【解析】设客船在静水中的速度大小为 /v km h 静,水流速度为 v 水,则2/v km h =水,则船实际航行的速度v v v =+静水,60.160t h =,由题意得100.1AB v ≤=. 把船在静水中的速度正交分解为x y v v v 静=+, ∴0.660.1y v ==,在Rt ABC 中,221060.8BC =-=.. ∵80.1x x BCv v v v +=+==水水,∴826x v =-= ∴2262x yv v v 静=+=设v v 静水<,>=θ,则tan 1yxv v θ==,∴2cos 2θ=.此时222272242410102v v v v v v v +=+⋅+=+⨯+=≤静水静静水水= ,满足条件,故选A.11.B解析:B 【分析】由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解. 【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=,故选:B . 【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题.12.B解析:B 【分析】利用向量a 与b 的夹角是23π,且a a b =+,得出a b a b ==+,进而将22a tb b+化成只含有t 为自变量的二次函数形态,然后利用二次函数的特性来求出最值. 【详解】对于a ,b 和a b +的关系,根据平行四边形法则,如图a BA CD ==,b BC =,a b BD +=,23ABC π∠=,3DCB π∴∠=, a a b =+,CD BD BC ∴==,a b a b ∴==+, 2222222==222a tb a tb a tb bbb+++,a b =,22222222244cos 223=224a t a b t b a tb a tb bbbπ++++=,22222222244cos 4231244a t a b t b a t aa t a t tb aπ++-+==-+当且仅当1t =时,22a tb b+的最小值为2. 故选:B. 【点睛】本题考查平面向量的综合运用,解题的关键点在于把22a tb b+化成只含有t 为自变量的二次函数形态,进而求最值.二、填空题13.【分析】令结合题中已知条件得出通过根据数量积的概念以及二次函数的性质可得结果【详解】令因为所以又因为是的中点所以故可得所以当时取得最小值故答案为:【点睛】关键点点睛:将表示成根据几何关系将所需量用表 解析:1-【分析】令ACD θ∠=,结合题中已知条件得出2CAD πθ∠=-,2CAB πθ∠=-,2sin AC θ=,22sin AD θ=,通过()AC BD AC BA AD ⋅=⋅+,根据数量积的概念以及二次函数的性质可得结果. 【详解】令ACD θ∠=,因为AD CD ⊥,AC BC ⊥,//AD CE , 所以BCE θ∠=,2ACE CAD πθ∠=∠=-,又因为E 是AB 的中点,1CE =,所以2AB =,1CE =,CBA θ∠=,2CAB πθ∠=-,故可得2sin AC θ=,22sin AD θ=,所以()AC BD AC BA AD AC BA AC AD ⋅=⋅+=⋅+⋅2222sin 2cos 2sin 2sin cos 4sin 4sin 22ππθπθθθθθθ⎛⎫⎛⎫=⨯⨯-++⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭2214sin 12θ⎛⎫=-- ⎪⎝⎭,当21sin 2θ=时,AC BD ⋅取得最小值1-, 故答案为:1-. 【点睛】关键点点睛:将BD 表示成BA AD +,根据几何关系将所需量用θ表示,将最后结果表示为关于θ的函数.14.【详解】两端平方得又得即夹角为所以即又所以【详解】 两端平方得222114k ke e =++⋅, 又121122S e e sin θ==, 得1sin θ=,即12,e e 夹角为90︒,所以120e e ⋅=, 即234k =,又 0k >, 所以k =.15.-2【详解】由于不共线且和共面根据平面向量的基本定理有即即解得解析:-2 【详解】由于,a b 不共线,且和c 共面,根据平面向量的基本定理,有c ma nb =+,即()(),1,2,,2x m n m n -=--,即122x m n m n =--⎧⎪-=-⎨⎪=⎩,解得1,112m n x ===--=-.16.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3解析:【详解】 方法一:3cos 2OA OC AOC OAOC⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ②22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③将②③代入①得:22323m n=+,所以229m n =,点C 在AOB ∠内, 所以3mn=. 方法二:以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()(10,03A B ,, , 设()31cos30,sin 30=,2OC λλ⎫=︒︒⎪⎪⎝⎭,又()(()1,033OC mOA nOB m n m n =+=+=,得()31,=32m n λ⎫⎪⎪⎝⎭,即 3=132m nλ⎧⎪⎪⎨⎪=⎪⎩, 解得3mn=. 故答案为:3.17.【解析】由得设=n 所以+n=+n()=(1-n)=m 由n=得m=1-n= 解析:311【解析】由13AN NC=,得14AN AC=.设BP=n BN,所以AP AB BP AB=+=+n BN =AB+n(AN AB-)=(1-n)14AB nAC+=m211AB AC+.由14n=211,得m=1-n=311.18.【分析】作向量根据已知条件可得出与的夹角为四点共圆再结合正余弦定理可得出结果【详解】解:如下图作向量与的夹角为即又与的夹角为即与夹角为四点共圆当为直径时最大在中由余弦定理得:的外接圆的直径为四点共圆解析:2【分析】作向量OA a=,OB b=,OC c=,根据已知条件可得出a与b的夹角为120︒,A,O,B,C四点共圆,再结合正余弦定理可得出结果.【详解】解:如下图,作向量OA a=,OB b=,OC c=,∴CA a c=-,CB b c=-,1 a b==,1cos,2 a b a b a b⋅=⋅⋅=-,∴a与b的夹角为120︒,即120AOB∠=︒.∴120AOB∠=︒.又a c-与b c-的夹角为60︒,即CA与CB夹角为60︒,∴A,O,B,C四点共圆.∴当OC为直径时c最大,在AOB中,由余弦定理得:2222cos1203AB OA OB OA OB =+-⋅︒=, ∴3AB =.∴AOB 的外接圆的直径为2sin120AB=︒.∴A ,O ,B ,C 四点共圆的圆的直径为2.∴c 的最大值为2.故答案为:2. 【点睛】本题主要考查向量在几何图形中的应用,考查正余弦定理,考查数形结合的能力,分析问题能力,属于中档题.19.6【分析】根据三角形重心的性质转化为以及再求数量积【详解】如图点是的中点为的重心所以故答案为:6【点睛】本题考查向量数量积重心重点考查转化与化归思想计算能力属于基础题型解析:6 【分析】根据三角形重心的性质转化为()13AG AB AC =+,以及BC AC AB =-,再求数量积. 【详解】如图,点D 是BC 的中点,G 为ABC 的重心,∴()()22113323AG AD AB AC AB AC ==⨯+=+,BC AC AB =-,所以()()()221133AG BC AB AC AC AB AC AB ⋅=+⋅-=- ()126863=-=故答案为:6 【点睛】本题考查向量数量积,重心,重点考查转化与化归思想,计算能力,属于基础题型.20.【分析】用表示向量然后利用平面向量数量积的运算律可求得的值【详解】为的中点故答案为:【点睛】本题考查平面向量数量积的计算解答的关键就是选择合适的基底表示向量考查计算能力属于中等题解析:53-【分析】用AB 、AC 表示向量MB 、MC ,然后利用平面向量数量积的运算律可求得MB MC ⋅的值. 【详解】O 为BC 的中点,()12AO AB AC ∴=+, 3AO MO =,()1136MO AO AB AC ∴==+,()2133AM AO AB AC ==+, ()()11233MB AB AM AB AB AC AB AC ∴=-=-+=-, ()()11233MC AC AM AC AB AC AC AB ∴=-=-+=-, 22AC AB ==,120BAC ∠=,()()()22112252299MB MC AB AC AC AB AB AC AB AC∴⋅=-⋅-=⋅--221155122122923⎡⎤⎛⎫=⨯⨯⨯--⨯-⨯=- ⎪⎢⎥⎝⎭⎣⎦. 故答案为:53-. 【点睛】本题考查平面向量数量积的计算,解答的关键就是选择合适的基底表示向量,考查计算能力,属于中等题.三、解答题21.(Ⅰ)2AD =;(Ⅱ)0. 【分析】(Ⅰ)设AB a =,AD b =,利用平面向量加法的平行四边形法则可得AC a b =+,由23AC =b 的方程,即可解得AD b =;(Ⅱ)计算得出0AC BD ⋅=,可得出AC BD ⊥,进而可得出结果. 【详解】(Ⅰ)设AB a =,AD b =,则AC a b =+,BD AD AB b a =-=-.向量AB 与AD 的夹角为3π,cos 3a b a b b π∴⋅=⋅=. ()22222242AC a b a ba ab b b b ∴=+=+=+⋅+=++=整理得2280b b +-=,0b ≥,解得2b =,即2AD =;(Ⅱ)()()220AC BD a b b a b a ⋅=+⋅-=-=,则AC BD ⊥, 因此,AC 和BD 夹角的余弦值为0. 【点睛】本题考查利用平面向量的数量积求向量的模,同时也考查了平面向量夹角余弦值的计算,考查计算能力,属于中等题.22.(1)0;(2)- 【分析】(1)由BCD △为等边三角形得出2BC AD =,由向量的加法和减法运算得出13,22AE AB AD BD AD AB =+=-,再由向量的数量积公式得出AE BD ⋅的值;(2)设AD a =,则3,2,AB BC BD a AC ====,由数量积公式得出AC BD ⋅,进而得出AC 与BD 夹角的余弦值. 【详解】解:(1)因为//AD BC ,,,23BAD BDA BC BD ππ∠=∠==所以BCD △为等边三角形,23BC AB AD == 又E 为DC 的中点 所以1113()(),2222AE AC AD AB BC AD AB AD BD AD AB =+=++=+=- 则221313()02222AE BD AB AD AD AB AB AB AD AD ⎛⎫⋅=+⋅-=--⋅+= ⎪⎝⎭(2)设AD a =,则3,2,7AB a BC BD a AC a ====222(2)()2AC BD AB AD AD AB AB AD AB AD a ⋅=+⋅-=--⋅+=-设AC 与BD 的夹角为θ,则2cos 2AC BDAC BD θ⋅=== 【点睛】本题主要考查了利用定义求向量的数量积以及夹角,属于中档题.23.(1)(2,4)-;(2)5-. 【分析】(1)由向量模的坐标表示求出λ,可得b 的坐标; (2)根据向量数量积的运算律及数量积的定义计算. 【详解】(1)由题知(,2)b λλ=-,2||(|b λλ=+==2λ=-,故(2,4)b =-;(2)21(a =+= ∴222221()(2)22||||cos105220532a b a b a a b b a a b b π⎛⎫-⋅+=-⋅-=-⋅-=-⋅--=- ⎪⎝⎭. 【点睛】本题考查向量模的坐标表示,考查向量数量积的运算律,掌握数量积的运算律是解题关键.24.(1),a b 不共线;(2)23x = 【分析】(1)根据平面向量共线定理判断. (2)由平面向量共线定理计算. 【详解】解:(1)若a 与b 共线,由题知a 为非零向量, 则有b a λ=,即64(32)m n m n λ-=+,6342λλ=⎧∴⎨-=⎩得到2λ=且2λ=-, λ∴不存在,即a 与b 不平行.(2) ∵//a c ,∴存在实数r ,使得c ra =, 即32m xn rm rn +=+, 即132r x r=⎧⎨=⎩,解得23x =.【点睛】本题考查平面向量共线定理,掌握平面向量共线定理是解题基础.25.(1)(1,0)b =;(2)3(,2a b +=-或33(,2a b +=. 【分析】(1)先设(,)b x y =,再根据向量共线定理即可求解即可;(2)由已知结合向量数量积的定义及数量积的坐标表示即可求解. 【详解】解:(1)设(,)b x y =,由题意可得,存在实数0λ>,使得b a λ=, 即(x ,)(2y λ=,0)(2λ=,0),所以2x λ=,0y =, 由||1b =可得241λ=,即12λ=或12λ=-(舍),所以(1,0)b =, (2)设(,)b x y =,所以1·cos12021()12a b a b =︒=⨯⨯-=-, 又因为()()·2,0,2a b x y x =⋅=, 故21x =-即12x =-,因为||1b =,所以221x y +=,故y =当y =,12x =-时,33(,2a b +=,当y =12x =-时,3(,2a b +=-.【点评】本题主要考查了向量共线定理及向量数量积的定义及性质的简单应用,属于中档试题. 26.(1)3b =;(2)13m =-或1m =. 【分析】(1)本小题先求出32a b ⋅=,再求3b =即可; (2)本小题先求出23210m m --=,再求解m .【详解】解:(1)∵()23232320a a b a a b a b ⋅-=-⋅=-⋅=, ∴32a b ⋅=,∴13cos 322a b a b b π⋅=⋅⋅==, ∴3b =.(2)∵27a mb -=, ∴()222227244469a mba mab m b m m =-=-⋅+=-+,整理得:23210m m --=,解得:13m=-或1m=.【点睛】本题考查利用向量垂直求向量的数量积、向量的数量积公式、利用和与差的向量的模求参数,是中档题.。

平面向量知识点归纳及常考题型分析

平面向量知识点归纳及常考题型分析

平面向量知识点归纳及常考题型分析【知识点回顾】1、实数与向量的积的运算律:设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ) a ;(2)第一分配律:(λ+μ) a =λa +μa ;(3)第二分配律:λ(a +b )=λa +λb2、向量的数量积的运算律:(1) a ·b = b ·a (交换律);(2)(λa )·b = λ(a ·b )=λa ·b =a ·(λb );(3)(a +b )·c = a ·c +b ·c3、平面向量基本定理如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a =λ11e +λ22e .不共线的向量1e 、2e 叫做表示这一平面内所有向量的一组基底.4、向量共线(平行)的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a //b (b ≠0)1221x y x y ⇔-=5、a 与b 的数量积(或内积):a ·b =|a ||b |cos θ6、a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.7、平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++(2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --(3)设A 11(,)x y ,B 22(,)x y ,则2121(,AB OB OA x x y y =-=--(4)设a =(,),x y R λ∈,则λa =(,x y λλ (5)设a =11(,)x y ,b =22(,)x y ,则a ·b =1212(x x y y +8、两向量的夹角公式 121cos ||||x a b a b x θ⋅==⋅+a =11(,)x y ,b =22(,)x y )9、平面两点间的距离公式,A B d =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ) 10、向量的平行与垂直 :设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 a ||b ⇔b =λa 1221x y x y ⇔-=a ⊥b (a ≠0)⇔ a ·b =01212x x y y ⇔+=11、线段的定比分公式 :设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+⇔12(1)OP tOP t OP =+-(11t λ=+) 12、三角形的重心坐标公式 △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,33x x x y y y G ++++ 13、点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,h k 14、“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,P x h y k ++ (2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+ (3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)f x h y k --= (5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,x y15、 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔== (2)O 为ABC ∆的重心0OA OB OC ⇔++=(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=(5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+【题型归纳】一、向量的概念和基本运算例1、(1)判断下列命题是否正确:①若a b =,则a b =;②两个向量相等的充要条件是它们的起点相同,终点相同;③若AB DC =,则ABCD 是平行四边形;④若ABCD 是平行四边形,则AB DC =;⑤若,a b b c ==,则a c =;⑥若//,//a b b c ,则//a c 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学》必会基础题型——《平面向量》【基本概念与公式】 【任何时候写向量时都要带箭头】1.向量:既有大小又有方向的量。

记作:AB 或a 。

2.向量的模:向量的大小(或长度),记作:||AB 或||a 。

3.单位向量:长度为1的向量。

若e 是单位向量,则||1e =。

4.零向量:长度为0的向量。

记作:0。

【0方向是任意的,且与任意向量平行】5.平行向量(共线向量):方向相同或相反的向量。

6.相等向量:长度和方向都相同的向量。

7.相反向量:长度相等,方向相反的向量。

AB BA =-。

8.三角形法则:AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数)9.平行四边形法则:以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。

10.共线定理://a b a b λ=⇔。

当0λ>时,a b 与同向;当0λ<时,a b 与反向。

11.基底:任意不共线的两个向量称为一组基底。

12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a b a b +=+13.数量积与夹角公式:||||cos a b a b θ⋅=⋅; cos ||||a b a b θ⋅=⋅ 14.平行与垂直:1221//a b a b x y x y λ⇔=⇔=;121200a b a b x x y y ⊥⇔⋅=⇔+= 题型1.向量的加减运算1.设a 表示“向东走8km ”, b 表示“向北走6km ”,则||a b += 。

2.化简()()AB MB BO BC OM ++++= 。

3.已知||5OA =,||3OB =,则||AB 的最大值和最小值分别为 、 。

4.已知AC AB AD 为与的和向量,且,AC a BD b ==,则AB = ,AD = 。

5.已知点C 在线段AB 上,且35AC AB =,则AC = BC ,AB = BC 。

题型2.基本概念判断正误:(1)共线向量就是在同一条直线上的向量。

(2)若两个向量不相等,则它们的终点不可能是同一点。

(3)与已知向量共线的单位向量是唯一的。

(4)四边形ABCD 是平行四边形的条件是AB CD =。

(5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。

(6)因为向量就是有向线段,所以数轴是向量。

(7)若a 与b 共线, b 与c 共线,则a 与c 共线。

(8)若ma mb =,则a b =。

(9)若ma na =,则m n =。

(10)若a 与b 不共线,则a 与b 都不是零向量。

(11)若||||a b a b ⋅=⋅,则//a b 。

(12)若||||a b a b +=-,则a b ⊥。

题型3.作图法球向量的和已知向量,a b ,如下图,请做出向量132a b +和322a b -。

ab题型4.向量的数乘运算1.计算:(1)3()2()a b a b +-+= (2)2(253)3(232)a b c a b c +---+-=2.已知(1,4),(3,8)a b =-=-,则132a b -= 。

题型5.向量的坐标运算1.已知(4,5)AB =,(2,3)A ,则点B 的坐标是 。

2.已知(3,5)PQ =--,(3,7)P ,则点Q 的坐标是 。

3.若物体受三个力1(1,2)F =,2(2,3)F =-,3(1,4)F =--,则合力的坐标为 。

4.已知(3,4)a =-,(5,2)b =,求a b +,a b -,32a b -。

5.已知(1,2),(3,2)A B ,向量(2,32)a x x y =+--与AB 相等,求,x y 的值。

6.已知(2,3)AB =,(,)BC m n =,(1,4)CD =-,则DA = 。

7.已知O 是坐标原点,(2,1),(4,8)A B --,且30AB BC +=,求OC 的坐标。

题型6.根据图形由已知向量求未知向量1.已知在ABC ∆中,D 是BC 的中点,请用向量AB AC ,表示AD 。

2.在平行四边形ABCD 中,已知,AC a BD b ==,求AB AD 和。

题型7.结合三角函数求向量坐标1.已知O 是坐标原点,点A 在第二象限,||2OA =,150xOA ∠=,求OA 的坐标。

2.已知O 是原点,点A 在第一象限,||43OA =60xOA ∠=,求OA 的坐标。

题型8.判断两个向量能否作为一组基底1.已知12,e e 是平面内的一组基底,判断下列每组向量是否能构成一组基底:A.1212e e e e +-和B.1221326e e e e --和4C.122133e e e e +-和D.221e e e -和2.已知(3,4)a =,能与a 构成基底的是( )A.34(,)55B.43(,)55C.34(,)55--D.4(1,)3--题型9.求向量的夹角1.已知||8,||3a b ==,12a b ⋅=,求a 与b 的夹角。

2.已知(3,1),(23,2)a b ==-,求a 与b 的夹角。

3.已知(1,0)A ,(0,1)B ,(2,5)C ,求cos BAC ∠。

题型10.求数量积1.已知||3,||4a b ==,且a 与b 的夹角为60,求(1)a b ⋅,(2)()a a b ⋅+, (3)1()2a b b -⋅,(4)(2)(3)a b a b -⋅+。

2.已知(2,6),(8,10)a b =-=-,求(1)||,||a b ,(2)a b ⋅,(3)(2)a a b ⋅+,(4)(2)(3)a b a b -⋅+。

题型11.求向量的模1.已知||3,||4a b ==,且a 与b 的夹角为60,求(1)||a b +,(2)|23|a b -。

2.已知(2,6),(8,10)a b =-=-,求(1)||,||a b ,(5)||a b +,(6)1||2a b -。

3.已知||1||2a b ==,,|32|3a b -=,求|3|a b +。

题型12.向量的平行与垂直1.已知(6,2)a =,(3,)b m =-,当m 为何值时,(1)//a b ?(2)a b ⊥?2.已知(1,2)a =,(3,2)b =-,(1)k 为何值时,向量ka b +与3a b -垂直? (2)k 为何值时,向量ka b +与3a b -平行?3.已知a 是非零向量,a b a c ⋅=⋅,且b c ≠,求证:()a b c ⊥-。

题型13.求单位向量 【与a 平行的单位向量:||a e a =±】 1.与(12,5)a =平行的单位向量是 。

2.与1(1,)2m =-平行的单位向量是 。

题型14.三点共线问题1.已知(0,2)A -,(2,2)B ,(3,4)C ,求证:,,A B C 三点共线。

2.2(5),28,3()2AB a b BC a b CD a b =+=-+=-,求证:A B D 、、三点共线。

3.已知2,56,72AB a b BC a b CD a b =+=-+=-,则一定共线的三点是 。

4.已知(1,3)A -,(8,1)B -,若点(21,2)C a a -+在直线AB 上,求a 的值。

5.已知四个点的坐标(0,0)O ,(3,4)A ,(1,2)B -,(1,1)C ,是否存在常数t ,使OA tOB OC +=成立?题型15.判断多边形的形状1.若3AB e =,5CD e =-,且||||AD BC =,则四边形的形状是 。

2.已知(1,0)A ,(4,3)B ,(2,4)C ,(0,2)D ,证明四边形ABCD 是梯形。

3.已知(2,1)A -,(6,3)B -,(0,5)C ,求证:ABC ∆是直角三角形。

4.在平面直角坐标系内,(1,8),(4,1),(1,3)OA OB OC =-=-=,求证:ABC ∆是等腰直角三角形。

题型16.平面向量的综合应用1.已知(1,0)a =,(2,1)b =,当k 为何值时,向量ka b -与3a b +平行?2.已知(3,5)a =,且a b ⊥,||2b =,求b 的坐标。

3.已知a b 与同向,(1,2)b =,则10a b ⋅=,求a 的坐标。

3.已知(1,2)a =,(3,1)b =,(5,4)c =,则c = a + b 。

4.已知(5,10)a =,(3,4)b =--,(5,0)c =,请将用向量,a b 表示向量c 。

5.已知(,3)a m =,(2,1)b =-,(1)若a 与b 的夹角为钝角,求m 的范围;(2)若a 与b 的夹角为锐角,求m 的范围。

6.已知(6,2)a =,(3,)b m =-,当m 为何值时,(1)a 与b 的夹角为钝角?(2)a 与b 的夹角为锐角?7.已知梯形ABCD 的顶点坐标分别为(1,2)A -,(3,4)B ,(2,1)D ,且//AB DC ,2AB CD =,求点C 的坐标。

8.已知平行四边形ABCD 的三个顶点的坐标分别为(2,1)A ,(1,3)B -,(3,4)C ,求第四个顶点D 的坐标。

9.一航船以5km/h 的速度向垂直于对岸方向行驶,航船实际航行方向与水流方向成30角,求水流速度与船的实际速度。

10.【2007年广东卷】已知ABC ∆三个顶点的坐标分别为(3,4)A ,(0,0)B ,(,0)C c ,(1)若0AB AC ⋅=,求c 的值;(2)若5c =,求sin A 的值。

【备用】1.已知||3,||4,||5a b a b ==+=,求||a b -和向量,a b 的夹角。

2.已知x a b =+,2y a b =+,且||||1a b ==,a b ⊥,求,x y 的夹角的余弦。

1.已知(1,3),(2,1)a b ==--,则(32)(25)a b a b +⋅-= 65 。

4.已知两向量(3,4),(2,1)a b ==-,求当a xb a b +-与垂直时的x 的值。

5.已知两向量(1,3),(2,)a b λ==,a b 与的夹角θ为锐角,求λ的范围。

变式:若(,2),(3,5)a b λ==-,a b 与的夹角θ为钝角,求λ的取值范围。

选择、填空题的特殊方法:1.特例法例:《全品》P27:4。

因为M,N 在AB,AC 上的任意位置都成立,所以取特殊情况,即M,N 与B,C 重合时,可以得到1m n ==,2m n ∴+=。

2.代入验证法例:已知向量(1,1),(1,1),(1,2)a b c ==-=--,则c =( D ) A.1322a b -- B.1322a b -+ C.3122a b - D.3122a b -+ 变式:已知(1,2),(1,3),(1,2)a b c ==-=-,请用,a b 表示c 。

相关文档
最新文档