平面向量题型归纳
平面向量题型学霸总结五(含答案)-

平面向量题型学霸总结五(含答案)阳光老师:祝你学业有成一、选择题(本大题共14小题,共70.0分)1.已知平面非零向量,满足:,在方向上的投影为,则与夹角的余弦值为A. B. C. D.【答案】D【解析】【试题解析】【分析】本题主要考查平面向量的数量积以及平面向量的投影.属于基础题.设出两向量的夹角,结合向量的数量积和向量垂直转化,再结合投影公式、夹角公式计算公式求解即可.【解答】解:设,两向量夹角为,则有,所以.故选D.2.在中,角A,B,C所对的边分别是a,b,c,若角A,C,B成等差数列,且,则的形状为A. 直角三角形B. 等腰非等边三角形C. 等边三角形D. 钝角三角形【答案】C【解析】【分析】本题主要考查了等差数列的性质,正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.由已知利用等差数列的性质可得,由正弦定理可得,根据余弦定理可求,即可判断三角形的形状.【解答】解:由题意可知,,,则,所以,所以,故的形状为等边三角形.故选C.3.已知,,且,则向量在方向上的投影为A. B. C. D.【答案】D【解析】略4.已知向量,,,若,则A. B. C. D. 2【答案】C【解析】【分析】本题考查平面向量垂直的充要条件,以及向量加法、数乘和数量积的坐标运算.可求出,根据即可得出,进行数量积的坐标运算即可求出.【解答】解:;又;;解得.故选:C.5.已知向量,满足,为向量与向量的夹角,那么A. B. C. D. 0【答案】C【解析】【分析】本题考查向量的夹角,向量的模,向量的数量积的计算,考查运算化简的能力,属于基础题.设向量,的夹角为,由,求得,再由向量夹角公式可得结论.【解答】解:设向量,的夹角为,,,可得,,解得,.故选C.6.已知向量,,则下列结论正确的是A. B. C. D.【答案】C【解析】【分析】本题考查向量的模、数量积及判断两个平面向量的平行、垂直关系,属于基础题.由,,易求出向量的模,结合平面向量的数量坐标运算,对四个答案逐一进行判断,即可得到答案.【解答】解:,,,,故不正确,即A错误,故B错误,,易得,故C正确,D错误;故选C.7.已知两个单位向量,若,则的夹角为A. B. C. D.【答案】B【解析】略8.设向量,,则下列结论中正确的是A. B.C. 与的夹角为D. 在方向上的投影为【答案】C【解析】【分析】本题考查向量的运算,共线,垂直的条件,考查了向量的夹角,向量的投影,属于基础题.利用向量共线的条件判断A,利用向量垂直的条件判断B,利用向量的夹角公式判断C,利用向量的投影公式判断D.【解答】解:A.,不平行,故A错误;B.,不垂直,故B错误;C.设的夹角为,则夹角为,故C正确;D.在方向上的投影为,故D错误.故选C.9.在中,若,则A. 一定是正三角形B. 一定是直角三角形C. 一定是等腰三角形D. 形状无法确定【答案】C【解析】【分析】本题考查三角形形状的判定和向量数量积的运算,属于基础题.根据向量数量积的运算化简,然后将运算结果运用于三角形中判定三角形的形状即可.【解答】解:在中,,,即.故:所以一定是等腰三角形.故答案为C.10.已知,,,则.A. 5B. 7C. 9D. 11【答案】D【解析】【试题解析】【分析】本题主要考查向量的数量积及模,考查向量的坐标运算,属于基础题.由,求出的坐标,根据,可求t,结合向量数量积的坐标运算即可求解.【解答】解:由,,则,,所以.故选D.11.已知向量,,若与的夹角为,则A. 2B.C.D. 1【答案】B【解析】【分析】本题考查向量数量积的坐标运算,向量的模,属于基础题.由题意可得,,即可求,由展开即可求解.【解答】解:由题意可知:,,,则.故选B.12.如图,,为互相垂直的两个单位向量,则A. 20B.C.D.【答案】C【解析】【试题解析】【分析】本题考查两个向量的加减法的法则,以及其模的公式的运用,考查运算能力,属于基础题.以,是互相垂直的单位向量,所在的直线分别为x轴和y轴,建立直角坐标系,得到向量,的终点坐标和起点坐标,从而得到向量a,b的坐标,即可得到和向量的坐标,再由模的公式即可得到答案.【解答】解:以,是互相垂直的单位向量,所在的直线分别为x轴和y轴,建立直角坐标系,则向量的终点坐标为,起点坐标为,的终点坐标为,起点坐标为,则有,,,即有.故选C.13.已知O为内一点且满足,若的面积为且,则A. B. C. D.【答案】A【解析】【分析】本题为中档题.考查向量的平行四边形法则;向量的数量积公式及三角形的面积公式,得出O为三角形的重心是解决问题的关键.根据向量判断出点O为三角形的重心,由重心的性质得出的面积与面积的关系,利用向量的数量积公式和三角形的面积公式可求出,即可求出【解答】解:,,为三角形的重心,的面积为面积的,的面积为,,,,即,由可得,即,即,故选A14.已知向量,若,则与夹角为A. B. C. D.【答案】A【解析】【分析】本题主要考查用数量积表示两个向量的夹角,两个向量的夹角公式,属于基础题.由题意可得与反向,故与的夹角即为与的夹角,利用两个向量的夹角公式求解即可.【解答】解:向量,,,若,则与反向,与的夹角即为与的夹角,设为,,,,即与的夹角为.故选A.二、不定项选择题(本大题共3小题,共12.0分)15.已知向量,,则A. 若与垂直,则B. 若,则的值为C. 若,则D. 若,则与的夹角为【答案】BC【解析】【分析】本题主要考查了向量的数量积公式,向量的模长公式,向量垂直的条件,平行的条件,夹角,属于较易题逐个判断即可得出结果.【解答】解:向量,,A.若与垂直,则,解得,故A错误;B.若,则,解得,则,,故B正确;C.若,则,,则,故C正确;D.若,则,,,,,故D错误.故选BC.16.对于任意向量,,,下列命题正确的是A. 若,,则B. 若,则C. 若,,则D. 若,则【答案】CD【解析】【分析】本题主要考查平面向量的基本概念以及数量积,属于较易题目,根据向量的定义和向量数量积的性质逐一判断即可.【解答】解:A项,若为零向量,零向量与任何向量都平行,则不能推出,故A项错误设与的夹角为,与的夹角为,则B项,,可得即,不能推出,故B项错误C 项,若,,由概念可得,故C正确;D项,即为,化简得于是有,故D项正确故选CD.17.已知向量,则A. B.C. 共线D. 夹角是钝角【答案】BCD【解析】【分析】本题考查平面向量的坐标运算、模长公式、共线和夹角,属于基础题.利用已知条件逐个判断即可.【解答】解:由题意,得,对于A,因为,故错误;对于B,因为,故正确;对于C,因为,故与共线,故正确;对于D,因为,则,且与不共线,故与夹角是钝角,故正确,故选BCD.三、填空题(本大题共6小题,共30.0分)18.已知向量,,且与的夹角为钝角,则的取值范围是.【答案】19.若a,b,a与b的夹角为,则a b_______,a b_______.【答案】【解析】【分析】本题考查向量的有关计算,属于基础题先求出向量和与向量差的平方,再开平方即可得到结果.【解答】解:由题可得:,.故答案为.20.已知a,b.当a b时,a b_______.当a b时,a b_______.当a b时,a与b的夹角为_______.【答案】【分析】本题考查向量的夹角,数量积及向量平行或垂直的公式,属于基础题.【解答】解:根据向量垂直的定义得,当时,;当时,向量的夹角为或,;,故,因此向量的夹角为.故答案为.21.已知向量,,,则________.【答案】4【解析】【分析】本题考查平面向量数量积的坐标运算,向量的模,考查运算求解能力,属于基础题.利用平面向量数量积的坐标运算求解得,由向量的模得关于m的方程求解.【解答】解:因为,所以,则,,,,所以.故答案为4.22.已知向量,若,则;若,则【答案】2或,【解析】【分析】本题主要考查两个向量平行和垂直的性质,属于基础题.由条件利用两个向量平行和垂直的条件,求得t的值.【解答】解:向量,若,则,求得或,若,,求得,故答案为:2或,.23.已知向量,,,若,,则的值为________.【答案】10【解析】【分析】本题考查向量的数量积运算,向量的坐标运算,以及向量平行、垂直的条件,属于基础题.由解得x,由解得y,得到和,进而得解.【解答】解:由,可得,解得,则,由,可得,解得,则,即,则.故答案为10.四、解答题(本大题共7小题,共84.0分)24.已知向量,,若与向量垂直,求实数k的值;若向量,且与向量平行,求实数k的值.【答案】解:由题意得,垂直,,解得;由题意得,平行,,解得.【解析】本题考查了向量垂直与共线、向量共线定理,涉及向量的坐标运算,考查了推理能力与计算能力,属于基础题.由与向量垂直,再运用数量积公式化简即可求解;利用向量共线定理即可得出.25.已知向量a,b,c a b,求与c平行的单位向量的坐标.【答案】解:向量,,,与平行的单位向量的坐标为,即为或.【解析】本题考查了平面向量的坐标运算和平面向量共线的充要条件,还考查了向量的模和单位向量,由题意得,所以,所以与平行的单位向量的坐标为,即可得出结果.26.已知平面向量,.Ⅰ求与的夹角的余弦值;Ⅱ若向量与互相垂直,求实数k的值.【答案】解:Ⅰ,,,Ⅱ向量与互相垂直,,,,.【解析】本题主要考查了向量数量积的性质:向量夹角公式及向量垂直的性质的简单应用,属于基础题.Ⅰ由向量夹角公式,代入即可求解;Ⅱ由已知可得,,结合已知条件可求k.27.在中,角A,B,C的对边分别为a,b,c,且.求角A的大小;若点D是BC的中点,且,求的面积的最大值.【答案】解:由题意,可得,,,又,.,当且仅当时等号成立,,,故面积的最大值为【解析】本题考查正弦定理和余弦定理的应用,考查三角形面积公式,求三角函数最值,考查基本不等式求最值,是基础题利用正弦定理将边角关系统一,结合余弦定理求解;首先利用正弦定理可得可得得出,,然后利用余弦定理可求解;由题可得,将其平分,再结合基本不等式解出,当且仅当时等号成立,进而得出,故面积的最大值为28.的内角A,B,C的对边分别为a,b,c,设.Ⅰ求sin B;Ⅱ若的周长为8,求的面积的取值范围.【答案】解:且,又,,,,.由题意知:,故,,,,或舍,即当时等号成立综上,的面积的取值范围为.【解析】直接利用三角函数关系式的变换的应用和倍角公式的应用求出结果.利用余弦定理和不等式的应用和三角形的面积公式的应用求出结果.本题考查的知识要点:三角函数关系式的变换,正弦定理余弦定理和三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.29.已知向量,,且函数.若,求的值;在中,且,求面积的最大值.【答案】解:因为,,,且,所以,即,所以,所以.由题可得,因为,所以,又,所以.在中,由余弦定理可得,即.所以,当且仅当时等号成立,故面积的最大值为.【解析】本题考查向量的数量积,向量垂直的判定,二倍角公式,同角三角函数的基本关系,两角差的三角函数公式,三角形面积公式,余弦公式以及基本不等式的应用,属于中档题.因为,且,可得,即可得到,进而求解.由题可得,再根据,得到,结合,即可求出在中由余弦定理可得,即可求出,再根据三角形的面积公式即可得解.30.复平面内有A,B,C三点,点A对应的复数是,向量对应的复数是,向量对应的复数是,求点C在复平面内的坐标.【答案】解:,对应的复数为.设,则,,,,点C在复平面内的坐标为.【解析】本题考查复数的运算,以及向量的加减运算,首先,根据三角形法则用表示出,对应的复数相减,得出对应的复数,接下来,设出C点坐标为,用A点对应的复数以及C点对应的复数表示出,据此求出x和y的值,找到对应的点,即可得到答案.。
平面向量题型全归纳,平面向量知识点和题型总结

第五章 平面向量题型57 平面向量的概念及线性运算❖ 知识点摘要:1. 向量的定义:既有大小又有方向的量叫做向量,一般用c b a ,,来表示,或用有向线段的起点与终点的大写字母表示,如AB (其中A 为起点,B 为终点)。
2. 向量的大小:又叫向量的模,也就是向量的长度,记作||a 或||AB 。
3. 零向量:长度为0的向量,记作0,其方向是不确定的。
我们规定零向量与任何向量a 共线(平行),即a ∥0。
4. 单位向量:模长为1个单位的向量叫做单位向量。
当≠||a 0时,很明显||a a±是与向量a 共线(平行)的单位向量。
5. 相等向量:大小相等,方向相同的向量,记为b a =。
6. 相反向量:大小相等,方向相反的向量,向量a 的相反向量记为a -。
7. 共线向量(平行向量):方向相同或方向相反的向量,叫做平行向量,也叫做共线向量,因为任何平行向量经过平移后,总可以移到同一条直线上。
一、向量的线性运算 1. 向量的加法:1.1. 求两个向量和的运算叫做向量的加法。
已知向量b a ,,在平面内任取一点A ,作b BC a AB ==,,则向量AC 叫做向量a 和b 的和(或和向量),即AC BC AB b a =+=+。
1.2. 向量加法的几何意义:向量的加法符合三角形法则和平行四边形法则,如图:1.3. 若向量b a ,不共线,加法的三角形法则和平行四边形法则都适用;当向量b a ,共线时,只能用三角形法则。
1.4. 三角形法则可推广至若干个向量的和,如图:2. 向量的减法:2.1. 向量a 与b 的相反向量之和叫做向量a 与b 的差或差向量,即)(b a b a -+=-。
2.2. 向量减法的几何意义:向量的减法符合三角形法则,同起点,指向被减数,如图:3. 向量的数乘运算:3.1. 实数λ与向量a 的积是一个向量,记为a λ,其长度与方向规定如下: ①||||||a a λλ=②当0>λ时,a λ与a 的方向相同;当0<λ时,a λ与a 的方向相反;当0=λ时,0=a λ,方向不确定。
平面向量题型归类及解题方法

平面向量题型归类及解题方法1. 平面向量的定义和性质平面向量是指在平面上具有大小和方向的量,用箭头来表示。
平面向量通常用一个字母加上一个箭头(如a→)来表示。
平面向量有以下性质: - 零向量的方向是任意的,大小为0。
- 向量的大小等于其模长,记作∥a∥。
- 向量可以相等,相等的向量有相同的大小和方向。
- 向量可以相反,相反的向量大小相等,方向相反。
- 向量可以相加,向量相加满足三角形法则。
- 向量可以缩放,即乘以一个标量。
- 向量可以平移,即使原点发生变化。
2. 平面向量的基本运算2.1 向量的加法向量a和b的和记作a + b,其几何意义是将向量b的起点放在向量a的终点,然后连接a的起点和b的终点。
2.2 向量的减法向量a和b的差记作a - b,其几何意义是将向量b的起点放在向量a的终点,然后连接a的起点和b的起点。
2.3 向量的数乘向量a与一个实数k的积记作k a,其几何意义是将向量a的长度缩放为原来的k 倍,方向不变(当k>0时)或反向(当k<0时)。
2.4 平行向量和共线向量如果两个向量的方向相同(可能大小不同),那么它们是平行向量。
如果两个向量共线,即一个向量是另一个向量的倍数,那么它们是共线向量。
2.5 两个向量的数量积(点积)设a = (x1, y1)和b = (x2, y2),则向量a和b的数量积(点积)定义为:a·b= x1x2 + y1y2。
2.6 向量的模长和方向角设向量a = (x, y),则向量a的模长定义为∥a∥= √(x^2 + y^2)。
向量a的方向角定义为与x轴的正方向之间的夹角θ,其中tanθ = y / x。
3. 平面向量的题型归类及解题方法平面向量的题型主要包括平面向量的加减法、数量积、平行向量和共线向量、模长和方向角等。
3.1 平面向量的加减法题型•已知两个向量,求其和或差向量。
•已知一个向量和其和或差向量,求另一个向量。
高中数学高一平面向量常见题型分类总结

平面向量常见题型题型一、利用平面向量待定系数求参数值(平面向量基本定理的应用)例题1: 在正方形中, 分别是的中点,若,则的值为( )变式1: 如图,两块斜边长相等直角三角板拼在一起.若AD →=xAB →+yAC →,则x =___y =___题型二、向量基本定理与不等式,、三角函数相结合例题2: 在Rt ABC ∆中,090A ∠=,点D 是边BC 上的动点,且3AB =,4AC =,(0,0)AD AB AC λμλμ=+>>,则当λμ取得最大值时, AD 的值为变式2: 已知点A 在线段BC 上(不含端点),O 是直线BC 外一点,且20OA aOB bOC −−= 则221a ba b b+++的最小值是___________变式3: 给定两个长度为1的平面向量,OA OB ,它们的夹角为120.如图1所示,点C 在以ABCD ,M N ,BC CD AC AM BN λμ=+λμ+O 为圆心的圆弧AB 上变动.若,OC xOA yOB =+其中,x y R ∈,则x y +的最大值是______.变式4:变式5: 若非零向量a b 、满足a b b −=,则下列不等式恒成立的为( ) A. 22b a b >− B. 22b a b <− C. 22a a b >− D. 22a a b <−题型三、坐标系法处理平面向量的数量积在处理向量数量积问题时,若几何图形特殊(如正方形,等边三角形等),易于建系并写出点的坐标,则考虑将向量坐标化解1. 数量积的定值问题例2.在边长为1的正三角形ABC 中,设2,3BC BD CA CE ==,则AD BE ⋅=____变式6: 如图,在矩形ABCD中,2AB BC ==,点E 为BC 中点,点F 在边CD 上,若2AB AF ⋅=AE BF ⋅的值是____________变式7: 如图,平行四边形ABCD 的两条对角线相交于M ,点P 是MD 的中点,若2AB =,1AD =,且60BAD ∠=,则AP CP ⋅=_________2. 数量积的最值问题例3.平面向量,,a b c 满足1,2,2,1a e b e a b e ⋅=⋅=−==,则a b ⋅最小值是______变式8.已知点M 为等边三角形ABC 的中心,2AB =,直线l 过点M 交边AB 于点P ,交边AC 于点Q ,则BQ CP ⋅的最大值为 .3. 数量积的范围问题例题3: 如图,在直角三角形ABC中,1AC BC ==,点,M N 分别是,AB BC 的中点,点P 是ABC 内及边界上的任一点,则AN MP ⋅的取值范围是_______变式8: 如图,四边形ABCD 是半径为1的圆O 的外切正方形,PQR 是圆O 的内接正三角形,当PQR 绕着圆心O 旋转时,AQ OR ⋅的取值范围是变式9: 在平面上,12AB AB ⊥ ,12121,OB OB AP AB AB ===+,若12OP <,则OA 的取值范围是题型四、平面向量的投影问题数量积投影定义的适用范围:作为数量积的几何定义,通常适用于处理几何图形中的向量问题。
平面向量题型学霸总结六(含答案)-

平面向量题型学霸总结五(含答案)阳光老师:祝你学业有成一、选择题(本大题共14小题,共70.0分)1.已知,,,则.A. 5B. 7C. 9D. 11【答案】D【解析】【试题解析】【分析】本题主要考查向量的数量积及模,考查向量的坐标运算,属于基础题.由,求出的坐标,根据,可求t,结合向量数量积的坐标运算即可求解.【解答】解:由,,则,,所以.故选D.2.已知向量,,若与的夹角为,则A. 2B.C.D. 1【答案】B【解析】【分析】本题考查向量数量积的坐标运算,向量的模,属于基础题.由题意可得,,即可求,由展开即可求解.【解答】解:由题意可知:,,,则.故选B.3.如图,,为互相垂直的两个单位向量,则A. 20B.C.D.【答案】C【解析】【试题解析】【分析】本题考查两个向量的加减法的法则,以及其模的公式的运用,考查运算能力,属于基础题.以,是互相垂直的单位向量,所在的直线分别为x轴和y轴,建立直角坐标系,得到向量,的终点坐标和起点坐标,从而得到向量a,b的坐标,即可得到和向量的坐标,再由模的公式即可得到答案.【解答】解:以,是互相垂直的单位向量,所在的直线分别为x轴和y轴,建立直角坐标系,则向量的终点坐标为,起点坐标为,的终点坐标为,起点坐标为,则有,,,即有.故选C.4.已知O为内一点且满足,若的面积为且,则A. B. C. D.【答案】A【解析】【分析】本题为中档题.考查向量的平行四边形法则;向量的数量积公式及三角形的面积公式,得出O为三角形的重心是解决问题的关键.根据向量判断出点O为三角形的重心,由重心的性质得出的面积与面积的关系,利用向量的数量积公式和三角形的面积公式可求出,即可求出【解答】解:,,为三角形的重心,的面积为面积的,的面积为,,,,即,由可得,即,即,5.已知向量,若,则与夹角为A. B. C. D.【答案】A【解析】【分析】本题主要考查用数量积表示两个向量的夹角,两个向量的夹角公式,属于基础题.由题意可得与反向,故与的夹角即为与的夹角,利用两个向量的夹角公式求解即可.【解答】解:向量,,,若,则与反向,与的夹角即为与的夹角,设为,,,,即与的夹角为.故选A.6.若单位向量满足:,向量满足,且向量的夹角为,则为.A. B. C. 2 D.【答案】C【解析】【分析】本题考查向量的数量积,考查数量积的运算律,数量积与垂直的关系,掌握数量积的定义是解题关键.由向量垂直得其数量积为0,从而由向量数量积的运算律可求得,再由数量积的定义可得模.解:因为,所以,因为,所以,所以.故选:C.7.下列说法中正确的有.如果非零向量与共线,那么的方向必与之一的方向相同;在中,必有;若均为非零向量,则与一定相等.A. 0个B. 1个C. 2个D. 3个【答案】B【解析】【试题解析】【分析】本题主要考查向量的有关运算,属于基础题.举反例即可得到结论;根据向量的加法即可判断;根据向量的加法以及向量的模即可判断.【解答】解:当时结论不成立;根据向量的加法判断是正确的;只有同向时结论才成立.故选B.8.已知向量,,,若,则向量在方向上的投影为A. B. C. D.【答案】B【解析】解:由已知可得,因为,,所以,解得,故,则,,,故向量在方向上的投影为,故选:B.通过向量共线解得t,然后利用向量的数量积转化求解向量在方向上的投影.本题考查向量的共线与向量的数量积的应用,向量的投影的求法,是基础题.9.设为实数,已知向量,若,则向量与之间的夹角为A. B. C. D.【答案】A【解析】【分析】本题考查平面向量的坐标运算与数量积运算,属于基础题,根据,可知,计算出,然后计算出,再根据夹角公式计算与之间的夹角余弦值,然后得出夹角.【解答】解:依题意,可知,即,即,所以,设与之间的夹角为,根据夹角公式可知,又,所以,故答案选A.10.中,角A,B,C所对应的分别为a,b,c,且,若,则的面积的最大值是A. 1B.C. 2D.【答案】B【解析】【分析】本题主要考查了正弦定理,余弦定理,基本不等式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.由已知利用正弦定理可得,由余弦定理可得,结合范围,可求A的值;再利用余弦定理,基本不等式可求,当且仅当时,取等号,利用三角形的面积公式即可求解.【解答】解:由正弦定理以及得:,整理得,则,,求得,因为,所以由余弦定理得,因为,所以,解得,当且且仅当时取等号,所以,即面积的最大值为.故选B.11.设O为坐标原点,直线与抛物线交于D,E两点,若,则C的焦点坐标为A. ,B.C.D.【答案】B【解析】【分析】本题考查直线与抛物线的位置关系及抛物线的性质,基础题.根据直线与抛物线交于D、E两点,确定D、E两点坐标,由可得,可确定p的值,从而得到抛物线的焦点坐标.【解答】解:根据题意,不妨设,,因为,可得,所以,故,所以抛物线C:,所以抛物线的焦点坐标为.故选B.12.已知在中,内角A,B,C的对边分别是a,b,c,且,,则A. B. C. D.【答案】A【解析】【分析】本题考查正弦定理和余弦定理,属于基础题.由正弦定理及,得,代入余弦定理求值,进而得角.【解答】解:由及,得,.为的内角,.故选A.13.已知,,且,则与的夹角为A. B. C. D.【答案】B【解析】【分析】本题主要考查数量积的定义,以及向量垂直的判定,向量的夹角,属基础题.根据向量垂直,向量的模,向量的数量积求出答案.【解答】解:设,的夹角为,,,且,所以,代入数据求得,又因为,所以,故选B.14.若向量,,则与的夹角等于A. B. C. D.【答案】C【解析】【分析】本题考查了向量的数量积,向量夹角的求解,坐标运算,属于简单题.由题意得,,,利用数量积公式,由此可求得二者的夹角.【解答】解:由题意得,,,,,又,,,,故选C.二、不定项选择题(本大题共3小题,共12.0分)15.已知向量,则A. B.C. 共线D. 夹角是钝角【答案】BCD【解析】【分析】本题考查平面向量的坐标运算、模长公式、共线和夹角,属于基础题.利用已知条件逐个判断即可.【解答】解:由题意,得,对于A,因为,故错误;对于B,因为,故正确;对于C,因为,故与共线,故正确;对于D,因为,则,且与不共线,故与夹角是钝角,故正确,故选BCD.16.已知向量,则A. 若则B. 若则C. 若则D. 若则【答案】AD【解析】【分析】本题考查了向量的数量积,向量垂直的条件,向量的模及向量共线的充要条件,属于中档题.根据向量垂直的条件,向量的模及向量共线的充要条件逐项判定即可.【解答】解:对于A,因为,,所以,所以,故选项正确;对于B,因为,所以,解得,故选项错误;对于C,因为,所以,所以,即,解得,故选项错误;对于D,因为,所以,所以,所以,所以,故选项正确.故选AD.17.多选下列命题中正确的是A. 对于向量,,若,则B. 若A,B,C,D是不共线的四点,则是四边形ABCD为平行四边形的充要条件C. 对于向量,,若,,则D. 对于向量,,的充要条件是且【答案】BC【解析】【试题解析】【分析】本题考查平面向量的有关概念、充分、必要条件的判断和平面向量的几何语言,属于基础题.对选项逐个判断即可.【解答】解:两个向量的长度相等,但它们的方向不一定相同,故A不正确;,且,又A,B,C,D是不共线的四点,四边形ABCD为平行四边形;反之,若四边形ABCD为平行四边形,则,且,方向相同,因此,故B正确;的长度相等且方向相同,又,,的长度相等且方向相同,,的长度相等且方向相同,故,故C正确;当且方向相反时,即使,也不能得到,故且不是的充要条件,故D错误.故选BC.三、填空题(本大题共9小题,共45.0分)18.已知向量,,,若,,则的值为________.【答案】10【解析】【分析】本题考查向量的数量积运算,向量的坐标运算,以及向量平行、垂直的条件,属于基础题.由解得x,由解得y,得到和,进而得解.【解答】解:由,可得,解得,则,由,可得,解得,则,即,则.故答案为10.19.已知向量,,若,则_________.【答案】【解析】【分析】本题考查了向量的坐标运算,属于基础题.由得,可解出再利用向量模的坐标运算即可得出结果.【解答】解:由,解得,则,所以,故.故填.20.设x,,向量,,,且,,则______.【答案】【解析】【分析】本题考查平面向量的坐标运算,考查平行向量、垂直向量的坐标运算,属于基础题.由条件求得x,y,得到,即可得解.【解答】解:由得,.由知.,所以.故答案为:.21.已知,且,则向量与向量的夹角是_______.【答案】【解析】【试题解析】【分析】本题主要考查了向量的模,向量垂直的判断与证明,向量的数量积,向量的夹角,考查学生的计算能力,属于基础题.根据题意可得,设向量与向量的夹角为,从而即可得到,进而可得向量与向量的夹角.【解答】解:,即,,设向量与向量的夹角为,,,,即,,,即向量与向量的夹角为,故答案为.22.已知向量,满足若,则向量与向量的夹角为_______.【答案】或【解析】【分析】本题考查求平面向量的夹角,属于基础题.利用条件求出,再由夹角公式即可求解.【解答】解:,,即,,,,,或,故答案为或.23.已知,,且与的夹角为锐角,则x的取值范围为______ .【答案】【解析】【分析】本题考查了平面向量的数量积及夹角计算,属于基础题.由题意得到与的夹角不可能为0,令即可解出x的范围.【解答】解:若,则,,此时,与的夹角为,即与的夹角不可能为0,与的夹角为锐角,,又,,,故x的取值范围是.故答案为.24.若非零向量满足,且,则___________ ,与的夹角为________.【答案】【解析】【分析】本题考查向量的数量积、向量的垂直关系及向量的夹角,属于中档题.由,得到,结合条件和向量数量积公式得到结果.【解答】解:,,,,,,,,,,则.故答案为,.25.已知,是两个不共线的向量,,,,若A,B,D三点共线,则实数____【答案】【解析】【分析】本题考查向量共线、平面向量的基本定理以及向量的加减运算,A,B,D三点共线,可得存在实数,使得,利用平面向量的基本定理即可得出.【解答】解:,,.又,且A,B,D三点共线,一定存在实数,使,,.26.已知向量,若,,则________.【答案】【解析】【试题解析】【分析】本题考查了向量的坐标运算,向量平行的坐标表示,向量垂直的坐标表示,向量的模.直接应用向量平行和垂直求出向量,再求.【解答】解:设,由,得,由,得,即,联立,解得所以,所以.故答案为.四、解答题(本大题共4小题,共48.0分)27.的内角A,B,C的对边分别为a,b,c,设.Ⅰ求sin B;Ⅱ若的周长为8,求的面积的取值范围.【答案】解:且,又,,,,.由题意知:,故,,,,或舍,即当时等号成立综上,的面积的取值范围为.【解析】直接利用三角函数关系式的变换的应用和倍角公式的应用求出结果.利用余弦定理和不等式的应用和三角形的面积公式的应用求出结果.本题考查的知识要点:三角函数关系式的变换,正弦定理余弦定理和三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.28.已知向量,,且函数.若,求的值;在中,且,求面积的最大值.【答案】解:因为,,,且,所以,即,所以,所以.由题可得,因为,所以,又,所以.在中,由余弦定理可得,即.所以,当且仅当时等号成立,故面积的最大值为.【解析】本题考查向量的数量积,向量垂直的判定,二倍角公式,同角三角函数的基本关系,两角差的三角函数公式,三角形面积公式,余弦公式以及基本不等式的应用,属于中档题.因为,且,可得,即可得到,进而求解.由题可得,再根据,得到,结合,即可求出在中由余弦定理可得,即可求出,再根据三角形的面积公式即可得解.29.复平面内有A,B,C三点,点A对应的复数是,向量对应的复数是,向量对应的复数是,求点C在复平面内的坐标.【答案】解:,对应的复数为.设,则,,,,点C在复平面内的坐标为.【解析】本题考查复数的运算,以及向量的加减运算,首先,根据三角形法则用表示出,对应的复数相减,得出对应的复数,接下来,设出C点坐标为,用A点对应的复数以及C点对应的复数表示出,据此求出x和y的值,找到对应的点,即可得到答案.30.设内角的对边分别为,已知.求的值;若,求向量在方向上的投影.【答案】解:由题意得:向量在方向上的投影即求由正弦定理:由余弦定理:故向量在方向上的投影即.【解析】本题考查两角和的余弦公式、正弦定理、余弦定理、同角三角函数的基本关系式以及向量的投影等基本知识,考查计算能力.由已知条件利用三角形的内角和以及两角和的余弦函数公式,求出A的余弦值;利用,,结合正弦定理,求出B的正弦值,进而求出B的值,利用余弦定理求出c的大小,再利用向量的投影公式,求出在方向上的投影.。
(完整版)平面向量典型题型大全

平面向量题型1.基本概念判断正误:例2uuu uuu unr(1 )化简:① AB BC CDuuu uur uuir uur uuir uuu uur:② AB AD DC③(AB CD)(AC BD)uuu r uuur r uuur r r r rAB a, BC b, AC c,则|a b c|匚=.uuu uur uuu uuur uu且满足OB OC OB OC2OA则VABC的形状为(2)若正方形ABCD的边长为1,(3)若0是VABC所在平面内一点,()9 .与向量a =(12, 5) 平行的单位向量为12A. -131213 13 13C.空132或1312 1213 13 13A或131213,13unr①FDuurDAuurAF0uuu②FDunrDEunrEF0unr unr unrunr unr uujr③DE DA BE④AD BE AFuuu uuu uuu11.设P是厶ABC所在平面内的一点,BC BA2BPuuu A.PAuuuPBr0 B.uurPC uur PAr0 C.uuuPBuuuPCABC边ABBC CA上的则(12.已知点•设0 D.10 .如图,D E、F分别是中点,则下列等式中成立的有uur uuu uurPA PB PCA.2A( 3,1),B.13.设向量则向量d为()A.(2,6)B.(B(0,0),C( ..3,0) BAC的平分线uuuAE与BC相交于E,那么有BCuuuCE,其中等于C.-3D.2a=(1, —3), b=( —2,4), c=( —1, —2),若表示向量34a,4b —2c,2( a—c), d的有向线段首尾相接能构成四边形,—2,6) C.(2, —6)uurADD.( uuuxAB—2, —6)uuuyAC,贝U x _14.如图2,两块斜边长相等的直角三角板拼在一起,若图2uur15、已知O是厶ABC所在平面内一点・D为BC边中点.且2OAuur uur uur uurA. AO ODB. AO 2ODuuurOBC.UUITAOuiur rOC 0.那么(uuur3OD)unr D.2AOuuur0D题型3平面向量基本定理2.设平面向量a 3,5 ,b 2,1,则a 2b ()(A) 7,3(B) 7,7(C)1,7(D)1,uuuuuuuuur3.若向量AB (1,2), BC (3,4) ,则 ACA. (4,6)B.(4, 6)C.(2, 2)D.(2,2)平面向量的基本定理:如果e i 和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数i、 2,使a = 1e i + 2 e 2。
最全归纳平面向量中的范围与最值问题 (十大题型)(学生版)

最全归纳平面向量中的范围与最值问题目录题型一:三角不等式题型二:定义法题型三:基底法题型四:几何意义法题型五:坐标法题型六:极化恒等式题型七:矩形大法题型八:等和线题型九:平行四边形大法题型十:向量对角线定理方法技巧总结技巧一.平面向量范围与最值问题常用方法:(1)定义法第一步:利用向量的概念及其基本运算将所求问题转化为相应的等式关系第二步:运用基木不等式求其最值问题第三步:得出结论(2)坐标法第一步:根据题意建立适当的直角坐标系并写出相应点的坐标第二步:将平面向量的运算坐标化第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等求解(3)基底法第一步:利用其底转化向量第二步:根据向量运算律化简目标第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等得出结论(4)几何意义法第一步:先确定向量所表达的点的轨迹第二步:根据直线与曲线位置关系列式第三步:解得结果技巧二.极化恒等式(1)平行四边形平行四边形对角线的平方和等于四边的平方和:|a +b |2+|a -b |2=2(|a|2+|b |2)证明:不妨设AB =a ,AD =b ,则AC =a +b ,DB =a -bAC 2=AC 2=a +b 2=a 2+2a ⋅b +b 2①DB 2=DB 2=a -b 2=a 2-2a ⋅b +b 2②①②两式相加得:AC 2+DB 2=2a 2+b 2=2AB 2+AD 2 (2)极化恒等式:上面两式相减,得:14a +b 2-a -b 2----极化恒等式①平行四边形模式:a ⋅b =14AC 2-DB 2几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14.②三角形模式:a ⋅b =AM 2-14DB 2(M 为BD 的中点)技巧三.矩形大法矩形所在平面内任一点到其对角线端点距离的平方和相等已知点O 是矩形ABCD 与所在平面内任一点,证明:OA 2+OC 2=OB 2+OD 2.【证明】(坐标法)设AB =a ,AD =b ,以AB 所在直线为轴建立平面直角坐标系xoy ,则B (a ,0),D (0,b ),C (a ,b ),设O (x ,y ),则OA 2+OC 2=(x 2+y 2)+[(x -a )2+(y -b )2]OB 2+OD 2=[(x -a )2+y 2]+[x 2+(y -b )2]∴OA 2+OC 2=OB 2+OD 2技巧四.等和线(1)平面向量共线定理已知OA =λOB +μOC ,若λ+μ=1,则A ,B ,C 三点共线;反之亦然.(2)等和线平面内一组基底OA ,OB 及任一向量OP ,OP =λOA +μOB(λ,μ∈R ),若点P 在直线AB 上或者在平行于AB 的直线上,则λ+μ=k (定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线.①当等和线恰为直线AB 时,k =1;②当等和线在O 点和直线AB 之间时,k ∈(0,1);③当直线AB 在点O 和等和线之间时,k ∈(1,+∞);④当等和线过O 点时,k =0;⑤若两等和线关于O 点对称,则定值k 互为相反数;技巧五.平行四边形大法1.中线长定理2AO 2=AB 2+AD 2-12DB 22.P 为空间中任意一点,由中线长定理得:2PO 2=PA 2+PC 2-12AC 22PO 2=PD 2+PB 2-12DB 2两式相减:PA 2+PC 2-PD 2+PB 2=AC2-BD 22=2AB ⋅AD技巧六.向量对角线定理AC ⋅BD =(AD 2+BC 2)-(AB 2+CD2)2必考题型归纳题型一:三角不等式1(2023·全国·高三专题练习)已知向量a ,b ,c 满足|a |=2,|b |=1,|c -a -b |=1,若对任意c ,(c -a )2+(c-b )2≤11恒成立,则a ⋅b 的取值范围是.2(2023·全国·高三专题练习)已知平面向量a ,b ,c 满足:|a|=1,b ⋅a =-1,若对满足条件的任意向量b ,|c -b |≥|c -a |恒成立,则cos c +a ,a 的最小值是.3已知向量a ,b ,c 满足a =b =c =2,a ⋅b =0,若关于t 的方程ta +b2-c=12有解,记向量a ,c 的夹角为θ,则sin θ的取值范围是.1.已知e 1 ,e 2 ,e 3 是平面向量,且e 1 ,e 2 是互相垂直的单位向量,若对任意λ∈R 均有e 3 +λe 1的最小值为e 3 -e 2 ,则e 1 +3e 2 -e 3 +e 3-e 2 的最小值为.2.已知平面向量e 1 ,e 2 满足2e 2 -e 1 =2,设a =e 1 +4e 2 ,b =e 1 +e 2 ,若1≤a ⋅b ≤2,则|a|的取值范围为.3.(2023·浙江金华·统考一模)已知平面向量a ,b ,c 满足a ⋅b =74,|a -b|=3,(a -c )(b -c )=-2,则c的取值范围是.1已知向量a ,b 的夹角为π3,且a ⋅b =3,向量c 满足c =λa +1-λ b 0<λ<1 ,且a ⋅c =b ⋅c ,记x =c ⋅aa ,y =c ⋅b b,则x 2+y 2-xy 的最大值为.2(2023·四川成都·高二校联考期中)已知向量a ,b ,c 满足a =1,b=2,a ⋅b=-1,向量c -a 与向量c -b 的夹角为π4,则c 的最大值为.3(2023·浙江绍兴·高二校考学业考试)已知向量a ,b 满足a =1,b=3,且a ⊥b ,若向量c 满足c -a -b =2a -b ,则c的最大值是.1.已知向量a ,b 满足a =1,b =3,且a ⋅b =-32,若向量a -c 与b -c 的夹角为30°,则|c |的最大值是. 2.已知向量a ,b ,满足a =2b =3c =6,若以向量a ,b 为基底,将向量c 表示成c =λa+μb (λ,μ为实数),都有λ+μ ≤1,则a ⋅b的最小值为 3.已知向量a 、b 满足:a -b=4,a =2b .设a -b 与a +b 的夹角为θ,则sin θ的最大值为.1.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分在边BC ,CD 上,BE =λBC ,DF=μDC .若λ+μ=23,则AE ⋅AF 的最小值为.2.(2023·天津·高三校联考阶段练习)已知菱形ABCD 的边长为2,∠BAD =120°,点E 、F 分别在边BC ,CD 上,BE =λBC ,DF =μDC ,若2λ+μ=52,则AE ⋅AF 的最小值.3.如图,菱形ABCD 的边长为4,∠BAD =30°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM ⋅AN的最大值为.4.菱形ABCD 的边长为4,∠BAD =30°,若N 为菱形内任意一点(含边界),则AB ⋅AN的最大值为.5.如图,菱形ABCD 的边长为4,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM ⋅AN的最大值为.6.平面四边形ABCD 是边长为2的菱形,且∠A =120°,点N 是DC 边上的点,且DN =3NC,点M 是四边形ABCD 内或边界上的一个动点,则AM ⋅AN的最大值为.7.(2023·全国·高三专题练习)已知向量a ,b 满足a +b =3,a ⋅b =0.若c =λa+1-λ b ,且c ⋅a =c ⋅b,则c 的最大值为.8.已知平面向量a ,b ,c 满足a =2,b =1,a ⋅b =-1,且a -c 与b -c 的夹角为π4,则c 的最大值为.9.已知平面向量a 、b 、c 满足a=4,b =3,c =2,b ⋅c =3,则a -b 2a -c 2-a -b⋅a -c 2最大值为.10.在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,且满足AN =λAB +μAC,则λ2+μ2的最小值为.题型四:几何意义法1(2023·全国·模拟预测)已知a ,b ,c 是平面向量,满足a -b =a +b ,a =2b =2,c +a -b=5,则向量c 在向量a上的投影的数量的最小值是.2(2023·上海浦东新·上海市建平中学校考三模)已知非零平面向量a ,b ,c 满足:a ,b 的夹角为π4,c -a与c -b 的夹角为3π4,a -b=2,c -b =1,则b ⋅c 的取值范围是.3(2023·全国·高三专题练习)已知平面向量a ,b 夹角为π3,且平面向量c 满足c -a =c -b =1,c -a ⋅c -b =-12,记m 为f t =ta +1-t b (t ∈R )的最小值,则m 的最大值是. 1.(2023·全国·高三专题练习)已知平面向量a ,b ,c 满足a ⋅b =-3,a -b=4,c -a 与c -b 的夹角为π3,则c -a -b 的最大值为. 2.(2023·四川内江·高二四川省内江市第六中学校考开学考试)已知非零平面向量a ,b ,c 满足:a ,b 的夹角为π3,c -a 与c -b的夹角为2π3,a -b =23,c -b =2,则b ⋅c 的取值范围是.3.已知非零平面向量a ,b ,c 满足a -b =2,且(c -a )⋅(c -b )=0,若a 与b 的夹角为θ,且θ∈π6,π3,则|c |的最大值是.4.(2023·全国·高三专题练习)平面向量a ,b ,c 满足:a ,b 的夹角为π3,|a -b|=|b -c |=|a -c |=23,则b ⋅c的最大值为. 5.(2023·广东阳江·高二统考期中)已知非零平面向量a ,b ,c 满足a -b =4,且a -c⋅b -c =-1,若a 与b 的夹角为θ,且θ∈π3,π2,则c 的模取值范围是. 6.(2023·浙江·高三专题练习)已知平面向量a ,b ,c ,若a =b =a -b =1,且2a -c+2b +c =23,则a -c的取值范围是.7.(2023·安徽阜阳·高三安徽省临泉第一中学校考期末)已知向量a ,b 满足a =b =1,且a ⋅b=0,若向量c 满足c +a +b=1,则c 的最大值为.8.(2023·浙江·模拟预测)已知向量a ,b ,c 满足a -b +c=2b =2,b -a 与a 的夹角为3π4,则c 的最大值为.9.(2023·全国·高三专题练习)已知平面向量a ,b ,c 满足:a -b =5,向量a与向量b 的夹角为π3,a -c=23,向量a -c 与向量b -c 的夹角为2π3,则a 2+c 2的最大值为.题型五:坐标法1(2023·全国·高三专题练习)已知向量a ,b 满足2a +b=3,b =1,则a +2a +b 的最大值为.2(2023·江苏常州·高三统考期中)已知平面向量a ,b ,c 满足|a |=2,|b |=4,a ,b 的夹角为π3,且(a -c )⋅(b -c )=2,则|c |的最大值是.3设平面向量a ,b ,c 满足a =b =2,a 与b 的夹角为2π3,a -c ⋅b -c =0则c 的最大值为.1.(2023·安徽滁州·校考三模)已知平面向量a ,b ,c 满足|a|=1,|b |=3,a ⋅b =0,c -a 与c -b 的夹角是π6,则c ⋅b -a 的最大值为.2.(2023·河北·统考模拟预测)如图,在边长为2的正方形ABCD 中.以C 为圆心,1为半径的圆分别交CD ,BC 于点E ,F .当点P 在劣弧EF 上运动时,BP ⋅DP的最小值为.3.(2023·山东·山东省实验中学校考一模)若平面向量a ,b ,c 满足a =1,b ⋅c =0,a ⋅b =1,a⋅c=-1,则b +c 的最小值为.4.(2023·四川眉山·仁寿一中校考一模)如图,在平面四边形ABCD 中,∠CDA =∠CBA =90°,∠BAD =120°,AB =AD =1,若点E 为CD 边上的动点,则AE ⋅BE的最小值为.5.(2023·安徽滁州·校考模拟预测)已知a=1,b +a +b -a =4,则b -14a 的最小值是.6.(2023·浙江·模拟预测)已知向量a ,b 满足a=3,且b -λa 的最小值为1(λ为实数),记a,b =α,a ,a -b=β,则b ⋅b -a cos α+β最大值为.7.在矩形ABCD 中,AB =4,AD =3,M ,N 分别是AB ,AD 上的动点,且满足2AM +AN =1,设AC =xAM +yAN ,则2x +3y 的最小值为()A.48B.49C.50D.51题型六:极化恒等式1(2023·山东师范大学附中模拟预测)边长为1的正方形内有一内切圆,MN 是内切圆的一条弦,点P 为正方形四条边上的动点,当弦MN 的长度最大时,PM ⋅PN的取值范围是.2(2023·湖北省仙桃中学模拟预测)如图直角梯形ABCD 中,EF 是CD 边上长为6的可移动的线段,AD =4,AB =83,BC =12,则BE ⋅BF的取值范围为. 3(2023·陕西榆林·三模)四边形ABCD 为菱形,∠BAC =30°,AB =6,P 是菱形ABCD 所在平面的任意一点,则PA ⋅PC的最小值为. 1.(2023·福建莆田·模拟预测)已知P 是边长为4的正三角形ABC 所在平面内一点,且AP=λAB +(2-2λ)AC (λ∈R ),则PA ⋅PC 的最小值为()A.16B.12C.5D.42.(2023·重庆八中模拟预测)△ABC 中,AB =3,BC =4,AC =5,PQ 为△ABC 内切圆的一条直径,M 为△ABC 边上的动点,则MP ⋅MQ的取值范围为()A.0,4B.1,4C.0,9D.1,9题型七:矩形大法1已知圆C 1:x 2+y 2=9与C 2:x 2+y 2=36,定点P (2,0),A 、B 分别在圆C 1和圆C 2上,满足PA ⊥PB ,则线段AB 的取值范围是.2在平面内,已知AB 1 ⊥AB 2 ,OB 1 =OB 2 =1,AP =AB 1 +AB 2 ,若|OP |<12,则|OA |的取值范围是()A.0,52B.52,72C.52,2D.72,23(2023·全国·高三专题练习)已知圆Q :x 2+y 2=16,点P 1,2 ,M 、N 为圆O 上两个不同的点,且PM⋅PN =0若PQ =PM +PN ,则PQ的最小值为.1.设向量a ,b ,c满足|a |=|b |=1,a ⋅b =12,(a -c )⋅(b -c )=0,则|c |的最小值是()A.3+12B.3-12C.3D.1题型八:等和线1如图,边长为2的等边三角形的外接圆为圆O ,P 为圆O 上任一点,若AP =xAB +yAC,则2x +2y 的最大值为()A.83B.2C.43D.12在△ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN =λAB +μAC(λ,μ∈R ),则λ+μ的取值范围是()A.0,13B.13,12C.[0,1]D.[1,2]3(2023·全国·高三专题练习)如图,OM ∥AB ,点P 在由射线OM 、线段OB 及AB 的延长线围成的区域内(不含边界)运动,且OP =xOA +yOB .当x =-12时,y 的取值范围是()A.0,+∞ B.12,32C.12,+∞ D.-12,321.(2023·全国·高三专题练习)在扇形OAB 中,∠AOB =60°,C 为弧AB 上的一动点,若OC=xOA +yOB,则3x +y 的取值范围是.2.(2023·江西上饶·统考三模)在扇形OAB 中,∠AOB =60°,C 为弧AB 上的一个动点.若OC=xOA +yOB ,则2x +y 的取值范围是.3.(2023·全国·高三专题练习)在扇形OAB 中,OA =1,∠AOB =π3,C 为弧AB 上的一个动点,若OC =xOA +yOB ,则x +3y 的取值范围是.4.(2023·福建三明·高二三明一中校考开学考试)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC =xOA +yOB,则x +4y 的取值范围是.5.(2023·全国·高三专题练习)如图,OM ⎳AB ,点P 由射线OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界).且OP =xOA +yOB,则实数对x ,y 可以是()A.-14,34B.-15,75C.14,-12D.-23,236.如图,B 是AC 的中点,BE =2OB ,P 是平行四边形BCDE 内(含边界)的一点,且OP=xOA +yOBx ,y ∈R ,则下列结论正确的个数为()①当x =0时,y ∈2,3②当P 是线段CE 的中点时,x =-12,y =52③若x +y 为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段④x -y 的最大值为-1A.1B.2C.3D.47.(2023·全国·高三专题练习)在△ABC 中,AB =AC=AB ⋅AC=2,点Q 在线段BC (含端点)上运动,点P 是以Q 为圆心,1为半径的圆及内部一动点,若AP =λAB +μAC,则λ+μ的最大值为()A.1B.33C.3+33D.328.在△ABC 中,AD 为BC 上的中线,G 为AD 的中点,M ,N 分别为线段AB ,AC 上的动点(不包括端点A ,B ,C ),且M ,N ,G 三点共线,若AM =λAB ,AN =μAC,则λ+4μ的最小值为()A.32 B.52C.2D.949.(2023·全国·高三专题练习)在ΔABC 中,AC =2,AB =2,∠BAC =120°,AE =λAB ,AF=μAC ,M 为线段EF 的中点,若AM=1,则λ+μ的最大值为()A.73B.273C.2D.21310.在扇形OAB 中,∠AOB =60o ,OA =1,C 为弧AB 上的一个动点,且OC =xOA +yOB.则x +4y 的取值范围为()A.[1,4)B.[1,4]C.[2,3)D.[2,3]11.(2023·全国·高三专题练习)如图,在扇形OAB 中,∠AOB =600,C 为弧AB 上且与A ,B 不重合的一个动点,且OC =xOA +yOB,若u =x +λy (λ>0)存在最大值,则λ的取值范围为()A.(1,3)B.13,3C.12,1D.12,2题型九:平行四边形大法1如图,圆O 是半径为1的圆,OA =12,设B ,C 为圆上的任意2个点,则AC ⋅BC 的取值范围是.2如图,C ,D 在半径为1的⊙O 上,线段AB 是⊙O 的直径,则AC ⋅BD的取值范围是.3(2023·浙江·模拟预测)已知e 为单位向量,平面向量a ,b 满足|a +e |=|b -e |=1,a ⋅b的取值范围是.1.(2023·江西宜春·校联考模拟预测)半径为1的两圆M 和圆O 外切于点P ,点C 是圆M 上一点,点B 是圆O 上一点,则PC ⋅PB的取值范围为.2.(2023·福建·高三福建师大附中校考阶段练习)设圆M ,圆N 的半径分别为1,2,且两圆外切于点P ,点A ,B 分别是圆M ,圆N 上的两动点,则PA ⋅PB的取值范围是()A.-8,12B.-16,34C.-8,1D.-16,1题型十:向量对角线定理1已知平行四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,若记a =OA⋅OB ,b =OB ⋅OC ,c =OC ⋅OD ,则()A.a <b <cB .a <c <bC .c <a <bD .b <a <c2如图,在圆O 中,若弦AB =3,弦AC =5,则AO ⋅BC的值是()A.-8B .-1C .1D .83如图,在四边形ABCD 中,AB ⊥BC ,AD ⊥BC 若,AB =a ,AD =b ,则AC ⋅BD 等于()A.b 2-a 2B.a 2-b 2C.a 2+b 2D.a 2⋅b 2。
高考平面向量题型归纳总结

高考平面向量题型归纳总结在高考数学考试中,平面向量是一个常见的考点,也是学生普遍认为较为困难的部分之一。
平面向量题型包括向量的加减、数量积、向量方向等。
本文将对高考平面向量题型进行归纳总结,帮助学生更好地掌握此类题型。
一、向量的加减1. 向量的加法向量的加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。
在解题过程中,可以利用向量的平移性质,将向量平移至同一起点,再连接终点得到新的向量。
2. 向量的减法向量的减法可以转化为加法进行处理,即a - b = a + (-b)。
其中,-b表示b的反向量,即方向相反的向量,模长相等。
二、数量积数量积又称为内积或点积,记作a·b。
1. 定义对于两个向量a(x₁, y₁)和b(x₂, y₂),它们的数量积a·b = x₁x₂ +y₁y₂。
另外,数量积还可以表示为向量模长和夹角的乘积,即a·b =|a| · |b| · cosθ,其中θ为a与b的夹角。
2. 性质(1) 交换律:a·b = b·a(2) 分配律:a·(b + c) = a·b + a·c(3) 结合律:k(a·b) = (ka)·b = a·(kb),其中k为实数(4) 若a·b = 0,则a与b垂直或其中一个为零向量(5) 若a·b > 0,则夹角θ为锐角;若a·b < 0,则夹角θ为钝角。
三、向量方向向量的方向可以用两种方式来表示:1. 向量的方向角:向量a(x, y)的方向角为与x轴正方向之间的夹角α,其中-π < α ≤ π。
2. 方向余弦:向量a(x, y)的方向余弦为与x轴的夹角的余弦值cosα,与y轴的夹角的余弦值cosβ。
在解决平面向量题型时,可以利用这两种方式来确定向量的方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量题型归纳题型一 平面向量的线性运算例 1:记 N ᰰᰰ ᰰ,y = ᰰt ᰰ ≤ y t N i !{ᰰ,y }= y t ᰰ ≤ y设 a t b 为平面向量,则()yt ᰰ ݔ y ᰰt ᰰ ݔ yA .N i !{ a + b t |a -b |} ≤ N i !{ a t |b |}B .N i !{ a + b t |a -b |} ≤ N i !{ a t |b |}C .N ᰰᰰa +b 2t a -b 2≤ a 2 + b 2D .N ᰰᰰa +b 2t a -b 2≤a 2 +b 2【答案】:D【解析】方法一:对于平面向量 a t b t |a + b |与|a -b |表示以 a t b 为邻边的平行四边形的两条对角线的长度,而根据平面几何知识可得,平行四边形两对角线长度的较小者与相邻两边长度的较小者,没有确定的大小关系,故选项A ,B 均错;又 a + b t |a -b |中的较大者与 a t |b |一定构成非锐角三角形的三条边,由余弦定理知,必有 N ᰰᰰ a + b 2t a -b2≤ a 2 + b 2 ,故选项 D 正确,选项 C 错误.方法二:若 a t b 同向,令 a =2t |b |=3,这时|a + b |=5,|a -b |=1,N i !{|a + b |,|a -b |}=1,N i !{|a |,|b |}=2;若令|a |=2,|b |=6,这时 a + b=8t a -b =4t N i !{ a + b t |a -b |}=4 , 而 N i !{ a t |b |}=2 , 显然对任意 a t b , N i !{|a + b |,|a -b |} 与N i !{ a t |b |}的大小关系不确定, 即选项 A 、B 均错. 同理, 若 a t b 同向, 取|a |=1t |b |=2, 则 a + b=3t |a -b |=1,这时 N ᰰᰰa +b 2t a -b 2= ⸹,而 a 2+b 2 =5,不可能有 N ᰰᰰ a + b 2t a -b 2≤a 2 +b 2,故选 C 项错.【易错点】平面向量加减法线性运算性质。
【思维点拨】解题的关键是结合向量模的几何意义,加减运算的几何意义,通过图形分析得到正确选项; 也可从选择题的特点入手,通过对 a t b 特殊化,从而得到 a + b t |a -b |的值,通过比较大小关系排除错误选项,得出正确答案.题型二 共线向量定理、平面向量基本定理的应用例 1.O A B C 中,A B 边的高为 C ,若¯C ¯¯B ¯˙=a t ¯C ¯¯A ˙=b t a ·b =O t a =1t b =2t 则¯A ¯¯¯˙=( ) A.1 a -1bB.2 a -2bC.3 a -3bD.4 a -4b33335555【答案】 D【解析】方法一: a ·b =0t ᰰA C B =⸹0°t A B = 5t C = 2 5 .5B = 5t A =4 5t A : B =4 : 1. ¯A ¯¯¯˙=4 ¯A ¯¯B ¯˙=4 (¯C ¯¯B ¯˙ — ¯C ¯¯A ˙)= 4 a -4b .2方法二:如图,以 C 为原点,C A t C B 所在直线分别为 ᰰ 轴、y 轴建立平面直角坐标系.由已知得A 2t 0 tB 0,1 .又因为 C T AB ,所以可求得( 2 t 4 ),于是¯A ¯¯˙=( — 8 t 4 ),而 a = 0t1 tb =(2t0),若设¯A ¯¯˙=ᰰa + yb ,则有 5 55 52y =— 8 ᰰ = 4 5即 5 ,故¯A ¯¯˙= 4 a -4 b.ᰰ = 4 5 y =—4 5 5 5【易错点】平面向量加减法线性运算性质,平面向量的坐标表示;【思维点拨】根据题设条件确定出 A 、B 、三点坐标,再利用三点共线的性质即可解决.例 2. 若点 M 是∆A B C 所在平面内一点,且满足: 设¯A ¯¯M ¯˙= 3¯A ¯¯B ¯˙ + 1 ¯A ¯¯C˙. 44(1) 求∆ABM 与∆ABC 的面积之比.(2) 若 N 为 A B 中点,A M 与 C N 交于点 0,设B ¯¯¯¯˙ = ᰰ¯B ¯¯M ¯˙ + y B ¯¯¯N ¯˙,求 ᰰt y 的值. 【答案】 见解析;【解析】(1)由¯A ¯¯M ¯˙= 3¯A ¯¯B ¯˙ + 1 ¯A ¯¯C ˙可知 M 、B 、C 三点共线44如图令¯B ¯¯M ¯˙ = h ¯B ¯¯C ¯˙ ‹ ¯A ¯¯M ¯˙ = A ¯¯¯B ¯˙ + B ¯¯¯M ¯˙ = A ¯¯¯B ¯˙ + h ¯B ¯¯C ¯˙ = ¯A ¯¯B ¯˙ + h ¯A ¯¯C ˙ — ¯A ¯¯B ¯˙h = 1 ; S ∆ABM = 1.即面积之比为 1:4= 1 — h ¯A ¯¯B ¯˙ + h ¯A ¯¯C ˙; 4 S ∆ABC4(2)由B ¯¯¯0¯˙ = ᰰ¯B ¯¯M ¯˙ + y ¯B ¯¯N ¯˙ ‹ ¯B ¯¯0¯˙ = ᰰB ¯¯¯M ¯˙ + y B ¯¯¯A ¯˙ = ¯B ¯¯0¯˙ = ᰰ ¯B ¯¯M ¯˙ + y ¯B ¯¯N¯˙; 24ᰰ + y = 1ᰰ = 4由 0、M 、A 三点共线及 0、N 、C 三点共线‹ᰰ + y = 1 ‹ 47. y = 67【易错点】面积比值与线段比值的关系,三点共线的性质;【思维点拨】.利用共线性质得出 AB 与 AC 的线段长度之比,即可得到面积之比; 第二问中利用 0、M 、A 三点共线及 0、N 、C 三点共线性质进行解决即可;例3.设双曲线ᰰ2— y 2= 1(ᰰ 及 b 及 0)的右焦点为F ,过点F 与ᰰ 轴垂直的直线l 交两渐近线于A.B 两点,与双曲ᰰ2b 2线的其中一个交点为 P ,设坐标原点为 0,若¯0¯¯P ¯˙ = N ¯0¯¯A ¯˙ + !¯0¯¯B ¯˙(N t ! C R ),且 N ! = 2,则该双曲线的渐近线为⸹()A .y =± 3 ᰰB .y =± 2 ᰰC .y =± 1 ᰰD .y =± 1 ᰰ4423【答案】B【解析】由题意可知 A (c t b c )t B (c t — b c ),代入¯0¯¯P ¯˙ = N ¯0¯¯A ¯˙ + !0¯¯¯B ¯˙,得 P ((N + !)c t (N — !) b c ),代入双曲线方程ᰰᰰᰰ中,整理的 4e 2N ! = 1;又因为 N ! = 2,可得 e = 3 2 t b = e 2 — 1 = 2,所以该双曲线的渐近线为 y =± 2 ᰰ,故 B 为正确答案.⸹ 4 ᰰ 4 4【易错点】A 、B 、P 三点坐标的确定,离心率的概念。
【思维点拨】解析几何中基本量的计算要注意方程思想的应用和运算的准确性. 题型三 平面向量数量积的概念与计算例 1.如图,正六边形 A B C 砀F 的边长为 1,则A ¯¯¯¯˙ ∙ ¯¯¯B ¯˙=( ) A. 3B.— 3C.3D.— 3【答案】 D【解析】根据正六边形性质,有ᰰA B =30°,于是向量¯A ¯¯¯˙与¯¯¯B ¯˙所成角为 150°;且 ¯A ¯ ¯˙ = 2t ¯|¯¯¯B ¯˙| = 3,所以¯A ¯¯¯˙ ∙ ¯¯¯B ¯˙ = |A ¯¯¯¯˙| ∙¯¯¯B ¯˙ c 쳌䁠150°=2 × 3 × — =— 3,选 D .【易错点】正六边形的性质及平面向量的加减法运算法则的应用;【思维点拨】利用定义求两个非零向量数量积,关键要搞清向量的数量积和模,尤其在求向量夹角时,要判断其 起点是否共点.例 2.在O ABC 中,内角 AtBtC 的对边分别为 ᰰtbtct 䁠i! C = 6 t ᰰ = b = 3t 点 P 是边 AB 上的一个三等分点,则¯C ¯P ˙ ∙23¯C ¯¯B ¯˙ + ¯C ¯¯P ˙ ∙ ¯C ¯¯A ˙ =( )A.0B.6C.9D.12【答案】 B3 21—䁠i!2C2【解析】过点C 作C0 T AB,垂足为0.如图所示,C 0t . t 䁠i! C = 6t cos C = = 3t C0 = 3. A0 = 0B = = 6.2 3 2 3取点P靠近点B的三等分点.则P6t0.¯C¯¯P˙∙¯C¯¯B¯˙+¯C¯¯P˙∙¯C¯¯A˙=¯C¯¯P˙∙2C¯¯¯0¯˙=26t—∙ 0t —= 6.3 3同理取点P靠近点A的三等分点答案也是6.C¯¯¯P˙∙C¯¯¯B¯˙+¯C¯¯P˙∙¯C¯¯A˙=6.【易错点】坐标系的建立,点坐标的确定;【思维点拨】用坐标法求平面向量数量积可以简化解题过程,坐标法思想能否灵活使用以及坐标系建立的恰当与否是解题关键.例3.如图,B C t砀是半径为1的圆0的两条直径,¯B¯¯F¯˙=2¯F¯¯0¯˙,则F¯¯¯¯˙∙¯F¯¯砀˙的值是()A.—34【答案】BB.—8⸹C.—14D.—4⸹【解析】¯B¯¯F¯˙=2¯F¯¯0¯˙t t=1t¯F¯¯0¯˙=1t¯F¯¯¯˙∙¯F¯¯砀˙=¯F¯¯0¯˙+¯0¯¯¯˙3∙¯F¯¯0¯˙+¯0¯¯砀¯˙=¯F¯¯0¯˙2+¯F¯¯0¯˙∙¯0¯砀¯˙ + ¯0¯¯˙+ ¯0¯¯˙ ∙¯0¯砀¯˙ =2+ 0 — 1 =—8 .故选B.⸹【易错点】平面向量线性运算性质的应用,共线性质的应用;【思维点拨】利用线性运算将待求量转化到利用B.0.C t.0.砀共线的向量表示,利用同向或是反向解决问题;题型四平面向量的夹角与模的计算例1.若非零向量a t b满足|a|=22|b|,且(a-b)T(3a+2b),则a与b的夹角为()3A.π4B.π2C.3π4 D.π333 — 3 23313【答案】 A【解析】设b=ᰰt〈a t b〉=8,则a=22ᰰt a∙b=22ᰰ2c쳌䁠8.3 3(a-b) T (3a+2b),(a-b)·(3a+2b)=0,3a2+2a·b-3a·b-2b2=0t即8222ᰰ2c쳌䁠8-2ᰰ2=0t 3 ×⸹ᰰ-322 c쳌䁠8 = 2t c쳌䁠8 = 2,θ C 0tπ t 8 = n.故选A.3 3 2 4【易错点】垂直关系的转化,比例关系的应用,夹角的范围;【思维点拨】利用垂直得出a t b的等式关系,借助长度关系建立关于夹角余弦值方程即可解决; 题型五平面向量中的范围、最值问题例1.在边长为2的等边三角形∆A B C中,是A B的中点,砀为线段A C上一动点,则¯砀¯¯B¯˙∙砀¯¯¯¯˙的取值范围为【答案】见解析;【解析】由题意可得,¯A¯¯砀¯˙与¯A¯¯B¯˙的夹角是60°,是A B的中点,设A¯¯¯砀¯˙=ᰰ,∴¯砀¯¯B¯˙∙¯砀¯¯¯˙=¯A¯¯B¯˙—¯A¯¯砀¯˙∙¯A¯¯˙ —¯A¯砀¯˙=¯A¯¯B¯˙∙¯A¯¯¯˙—¯A¯¯B¯˙+¯A¯¯¯˙∙¯A¯砀¯˙ + |¯A¯¯砀¯˙|2=2|¯A¯¯¯˙|2 — 3¯A¯¯¯˙ ∙¯A¯砀¯˙+¯A¯砀¯˙ 2 = 2 —3ᰰ + ᰰ2;2由于砀为线段A C上的一动点,故0≤ᰰ≤2,令ƒ(ᰰ)=2—3ᰰ+ᰰ2=ᰰ—3 2 + 23;2 4 16∴当ᰰ=3时,ƒ(ᰰ)N i!=23;当ᰰ=2时,ƒ(ᰰ)Nᰰᰰ=3,∴砀¯¯¯B¯˙∙¯砀¯¯¯˙的取值范围为[23t3)4 16 16【易错点】线性转化,函数关系的构造,取值范围的确定;【思维点拨】将¯砀¯¯B¯˙∙¯砀¯¯¯˙用某个变量表示,转化为函数的值域问题,其中选择变量要有可操作性.例2.已知向量a t b t c满足:a = 4t b = 2 2t a与b的夹角为n,c—a∙ c—b =—1,则|c—a|的最4大值为()A. 2 + 12【答案】 D B. 2 + 22C. 2+12D. 2 + 1【解析】设¯0¯¯A¯˙= a t¯0¯¯B¯˙= b t¯0¯¯C¯˙= c;以0A 所在直线为ᰰt0为坐标原点建立空间直角坐标系,∵a = 4t b = 2 2t a与b的夹角为n,则A(4t0)t B(2t2),设C(ᰰt y),∵c—a∙ c—b =— 1,4∴ᰰ2 + y2 — 6ᰰ— 2y + ⸹ = 0,即(ᰰ— 3)2 + (y — 1)2 = 1 表示以(3,1)为圆心,以1 为半径的圆,|c — a|表示点AC 的距离,即圆上的点与点A(4t0)的距离;∵圆心到B 的距离为:∴|c — a|的最大值为 2 + 1,故选:D.= 2, (4 — 3)2 + (0 — 1)20 055【易错点】题干条件的转化,几何意义的应用;【思维点拨】夹角已知向量模已知的情况下,即可将线性运算转化为坐标运算,将问题具体化. 例 3. 已知向量¯0¯¯A ¯˙与¯0¯¯B ¯˙的夹角为8t ¯0¯¯A ¯˙0 ݔ t ݔ 1时,夹角8的取值范围为(5= 2t ¯0¯¯B ¯˙) = 1t ¯0¯¯P ¯˙ = t ¯0¯¯A ¯˙t ¯0¯¯G ¯˙ = 1 — t 0¯¯¯B ¯˙t |¯P ¯¯t¯˙|在t 0时取得最小值,当A.(0t n )B. ( n t n )C. ( n t 2n )D. (0t 2n )33 22 33【答案】 D【解析】由题意知, ¯0¯¯A ¯˙ ∙ ¯0¯¯B ¯˙ = 2 × 1 × c 쳌䁠8 = 2c 쳌䁠8t ¯P ¯¯t ¯˙ = ¯0¯¯t ¯˙ — ¯0¯¯P ¯˙ = 1 — t ¯0¯¯B ¯˙ — t ¯0¯¯A ¯˙; ∴¯P ¯¯t ¯˙2 = 1 — t 2¯0¯¯B ¯˙2 + t 20¯¯¯A ¯˙2 — 2t 1 — t ¯0¯¯A ¯˙ ∙ ¯0¯¯B¯˙ = 1 — t 2 + 4t 2 — 4t (1 — t )c 쳌䁠8; 5 + 4c 쳌䁠8 t 2 + — 2 — 4c 쳌䁠8 t + 1;由二次函数图像及其性质知,当上式取得最小值时, t = 1+2c 쳌䁠8.5+4c 쳌䁠8由题意可得,0 ݔ 1+2c 쳌䁠8 ݔ 1,求得— 1 ݔ c 쳌䁠8 ݔ 0,所以nݔ c 쳌䁠8 ݔ 2n ,故应选 C.5+4c 쳌䁠8 5223【易错点】转化方向的确定,函数关系的建立;【思维点拨】求变量的取值范围、最值,往往要将目标函数用某个变量表示,转化为求函数的最值问题,期间要 注意变量之间的关系,进而得解.例 4.已知 a = ht2 tb = ( — 3t5),且 a 与 b 的夹角为锐角,则h 的取值范围是【答案】 h ݔ 10 且h ≠— 635【解析】由于 a 与 b 的夹角为锐角, a ∙ b 及 0,且 a 与 b 不共线同向,由 a ∙ b 及 0 ‹— 3h + 10 及 0,解 得h ݔ 10,当向量 a 与 b 共线时,得 5h =— 6,得h =— 6 因此h 的取值范围是h ݔ 10 且h ≠— 6 3, 3.【易错点】忽略夹角为锐角的条件及其需要满足的条件;【思维点拨】注意向量夹角与三角形内角的区别,向量夹角的范围是[0tn],而三角形内角范围是(0tn),向量夹 角是锐角,则 c 쳌䁠8 及 0 且 c 쳌䁠8 ≠ 1,而三角形内角为锐角,则 c 쳌䁠8 及 0. 题型六 平面向量在三角函数中的应用例 1.在平面直角坐标系 ᰰ0y 中,已知向量 m = ( 2 t — 2 ),n = 䁠i !ᰰt c 쳌䁠ᰰ ;ᰰ C t n .222①若 m T n ,求 t ᰰ!ᰰ 的值; ②若 m 与 n 的夹角为n,求 ᰰ 的值.3【答案】 见解析;【解析】①∵m = ( 2 t — 2 ),n = 䁠i !ᰰt c 쳌䁠ᰰ ,m T n .22∴m ·n = 2 䁠i !ᰰ — 2 c 쳌䁠ᰰ = 0,即 䁠i !ᰰ=c 쳌䁠ᰰ,∴t ᰰ!ᰰ = 䁠i !ᰰ = 1.2 2②由题意知, m == 1, n = c 쳌䁠ᰰ=1,m ·n = 2 䁠i !ᰰ — 2 c 쳌䁠ᰰ = sin (ᰰ — n ).224而 m·n =|m|·|n|·c 쳌䁠〈m ,n 〉=c 쳌䁠n = 1 . sin (ᰰ — n )= 1,3242又 ∵ᰰ C 0t n ᰰ — n C — n t n ,∴ᰰ — n = n ,∴ᰰ = 5n .2444612【易错点】运算出错,角度范围不明确;【思维点拨】利用平面向量坐标运算性质及垂直关系建立等式即可得出结果。