平面向量知识归纳和题型总结#精选.

合集下载

平面向量题型全归纳,平面向量知识点和题型总结

平面向量题型全归纳,平面向量知识点和题型总结

第五章 平面向量题型57 平面向量的概念及线性运算❖ 知识点摘要:1. 向量的定义:既有大小又有方向的量叫做向量,一般用c b a ,,来表示,或用有向线段的起点与终点的大写字母表示,如AB (其中A 为起点,B 为终点)。

2. 向量的大小:又叫向量的模,也就是向量的长度,记作||a 或||AB 。

3. 零向量:长度为0的向量,记作0,其方向是不确定的。

我们规定零向量与任何向量a 共线(平行),即a ∥0。

4. 单位向量:模长为1个单位的向量叫做单位向量。

当≠||a 0时,很明显||a a±是与向量a 共线(平行)的单位向量。

5. 相等向量:大小相等,方向相同的向量,记为b a =。

6. 相反向量:大小相等,方向相反的向量,向量a 的相反向量记为a -。

7. 共线向量(平行向量):方向相同或方向相反的向量,叫做平行向量,也叫做共线向量,因为任何平行向量经过平移后,总可以移到同一条直线上。

一、向量的线性运算 1. 向量的加法:1.1. 求两个向量和的运算叫做向量的加法。

已知向量b a ,,在平面内任取一点A ,作b BC a AB ==,,则向量AC 叫做向量a 和b 的和(或和向量),即AC BC AB b a =+=+。

1.2. 向量加法的几何意义:向量的加法符合三角形法则和平行四边形法则,如图:1.3. 若向量b a ,不共线,加法的三角形法则和平行四边形法则都适用;当向量b a ,共线时,只能用三角形法则。

1.4. 三角形法则可推广至若干个向量的和,如图:2. 向量的减法:2.1. 向量a 与b 的相反向量之和叫做向量a 与b 的差或差向量,即)(b a b a -+=-。

2.2. 向量减法的几何意义:向量的减法符合三角形法则,同起点,指向被减数,如图:3. 向量的数乘运算:3.1. 实数λ与向量a 的积是一个向量,记为a λ,其长度与方向规定如下: ①||||||a a λλ=②当0>λ时,a λ与a 的方向相同;当0<λ时,a λ与a 的方向相反;当0=λ时,0=a λ,方向不确定。

高中数学平面向量知识点归纳总结

高中数学平面向量知识点归纳总结

高中数学平面向量知识点归纳总结
1. 平面向量的定义
平面向量是具有大小和方向的有序数对,可以用箭头表示。


用字母表示向量,如a、b等。

向量的大小可以用模表示,记作|a|。

2. 平面向量的运算
2.1 向量的加法
向量的加法是指将两个向量按照相同的方向连接起来,得到一
个新的向量。

加法满足交换律和结合律。

2.2 向量的减法
向量的减法是指将两个向量相加的相反向量相加,得到一个新
的向量。

2.3 向量的数量积
向量的数量积(点积)是指两个向量相乘后的数量,用点表示,记作a · b。

数量积满足交换律和分配律。

2.4 向量的向量积
向量的向量积(叉积)是指两个向量相乘后的向量,用叉表示,记作a × b。

3. 平面向量的性质
3.1 平行向量
如果两个向量的方向相同或相反,则它们是平行向量。

平行向
量的数量积等于两个向量的模的乘积。

3.2 垂直向量
如果两个向量的数量积为0,则它们是垂直向量。

垂直向量的
点积为0。

3.3 向量的模
向量的模表示向量的大小,可以使用勾股定理求解。

4. 平面向量的应用
平面向量在几何中有广泛的应用,可以用来表示平移、旋转和
线段的位置关系等。

在物理学中,平面向量可以用来表示力的大小
和方向。

以上是关于高中数学平面向量的基本知识点归纳总结。

希望能够对你的学习和理解有所帮助!。

平面向量题型归类及解题方法

平面向量题型归类及解题方法

平面向量题型归类及解题方法1. 平面向量的定义和性质平面向量是指在平面上具有大小和方向的量,用箭头来表示。

平面向量通常用一个字母加上一个箭头(如a→)来表示。

平面向量有以下性质: - 零向量的方向是任意的,大小为0。

- 向量的大小等于其模长,记作∥a∥。

- 向量可以相等,相等的向量有相同的大小和方向。

- 向量可以相反,相反的向量大小相等,方向相反。

- 向量可以相加,向量相加满足三角形法则。

- 向量可以缩放,即乘以一个标量。

- 向量可以平移,即使原点发生变化。

2. 平面向量的基本运算2.1 向量的加法向量a和b的和记作a + b,其几何意义是将向量b的起点放在向量a的终点,然后连接a的起点和b的终点。

2.2 向量的减法向量a和b的差记作a - b,其几何意义是将向量b的起点放在向量a的终点,然后连接a的起点和b的起点。

2.3 向量的数乘向量a与一个实数k的积记作k a,其几何意义是将向量a的长度缩放为原来的k 倍,方向不变(当k>0时)或反向(当k<0时)。

2.4 平行向量和共线向量如果两个向量的方向相同(可能大小不同),那么它们是平行向量。

如果两个向量共线,即一个向量是另一个向量的倍数,那么它们是共线向量。

2.5 两个向量的数量积(点积)设a = (x1, y1)和b = (x2, y2),则向量a和b的数量积(点积)定义为:a·b= x1x2 + y1y2。

2.6 向量的模长和方向角设向量a = (x, y),则向量a的模长定义为∥a∥= √(x^2 + y^2)。

向量a的方向角定义为与x轴的正方向之间的夹角θ,其中tanθ = y / x。

3. 平面向量的题型归类及解题方法平面向量的题型主要包括平面向量的加减法、数量积、平行向量和共线向量、模长和方向角等。

3.1 平面向量的加减法题型•已知两个向量,求其和或差向量。

•已知一个向量和其和或差向量,求另一个向量。

(完整版)高中数学平面向量知识点总结及常见题型

(完整版)高中数学平面向量知识点总结及常见题型

平面向量一.向量的基本概念与基本运算1①向量:既有大小又有方向的量向量一般用c b a,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB u u u r 几何表示法 AB u u u r ,a ;坐标表示法,(y x yj xi a向量的大小即向量的模(长度),记作|AB u u u r |即向量的大小,记作|a|向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0|a|=0 由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量向量0a 为单位向量 |0a|=1④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a大小相等,方向相同),(),(2211y x y x2121y y x x2求两个向量和的运算叫做向量的加法设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u ur u u u r =AC uuu r(1)a a a 00;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加:AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u rL ,但这时必须“首尾相连”.3① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a,零向量的相反向量仍是零向量关于相反向量有: (i ))(a =a; (ii) a +(a )=(a )+a =0 ; (iii)若a 、b是互为相反向量,则a =b ,b =a ,a +b =0 ②向量减法:向量a 加上b 的相反向量叫做a 与b的差,记作:(b a b a求两个向量差的运算,叫做向量的减法③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)4①实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a;(Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λa 的方向与a的方向相反;当0 时,0a ,方向是任意的②数乘向量满足交换律、结合律与分配律5向量b 与非零向量a共线 有且只有一个实数 ,使得b =a6如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底7特别注意:(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件 (3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况(4)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关二.平面向量的坐标表示 1在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j r r作为基底量的基本定理知,该平面内的任一向量a r 可表示成a xi yj r r r,由于a r 与数对(x,y)是一一对应的,因此把(x,y)叫做向量a r 的坐标,记作a r =(x,y),其中x 叫作a r在x 轴上的坐标,y叫做在y 轴上的坐标(1)相等的向量坐标相同,坐标相同的向量是相等的向量(2)向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关2(1) 若 1122,,,a x y b x y r r ,则 1212,a b x x y y rr (2) 若 2211,,,y x B y x A ,则 2121,AB x x y y u u u r(3) 若a r =(x,y),则 a r=( x, y)(4) 若 1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5) 若 1122,,,a x y b x y r r,则1212a b x x y y r r若a b rr ,则02121 y y x x3及其各运算的坐标表示和性质三.平面向量的数量积 1已知两个非零向量a r 与b r ,它们的夹角为 ,则a r ·b r =︱a r ︱·︱b r ︱cos 叫做a r 与b r的数量积(或内积) 规定0a r r2︱b r ︱cos =||a ba r r r ∈R ,称为向量b r 在a r 方向上的投影为射影3a r ·b r 等于a r的长度与b r 在a r 方向上的投影的乘积42||a a a a r r r r52222a b a b a b a b r r r r r r r r ;2222a b a a b br r r r r r 222a a b b r r r r6①交换律成立:a b b a r r r r②对实数的结合律成立:a b a b a b R r r r r r r③分配律成立: a b c a c b c r r r r r r r c a b rr r特别注意:(1)结合律不成立: a b c a b c r r r r r r;(2)消去律不成立a b a cr r r r 不能得到b c r r(3)a b r r =0不能得到a r =0r 或b r =r7已知两个向量1122(,),(,)a x y b x y r r,则a r ·b r =121x x y y 已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800 )叫做向量a r 与b r的夹角cos =cos ,a ba b a b • •r r r r r r =222221212121y x y x y y x x当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r 与b r 反方向时θ=1800,同时0r 与其它任何非零向量之间不谈夹角这一问题9:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r ⊥b r10两个非零向量垂直的充要条件:a ⊥b a ·b=O 2121 y y x x 平面向量数量积的性质题型1.基本概念判断正误:(1)共线向量就是在同一条直线上的向量.(2)若两个向量不相等,则它们的终点不可能是同一点. (3)与已知向量共线的单位向量是唯一的.(4)四边形ABCD 是平行四边形的条件是AB CD u u u r u u u r. (5)若AB CD u u u r u u u r,则A 、B 、C 、D 四点构成平行四边形.(6)因为向量就是有向线段,所以数轴是向量.(7)若a r 与b r 共线, b r 与c r 共线,则a r 与c r共线. (8)若ma mb r r ,则a b r r.(9)若ma na r r,则m n .(10)若a r 与b r 不共线,则a r 与b r都不是零向量. (11)若||||a b a b r r r r,则//a b r r . (12)若||||a b a b r r r r,则a b r r .题型2.向量的加减运算1.设a r 表示“向东走8km ”, b r 表示“向北走6km ”,则||a b r r.2.化简()()AB MB BO BC OM u u u r u u u r u u u r u u u r u u u u r.3.已知||5OA u u u r ,||3OB u u u r ,则||AB uuu r的最大值和最小值分别为 、 .4.已知AC AB AD u u u r u u u r u u u r 为与的和向量,且,AC a BD b u u u r r u u u r r ,则AB u u u r ,AD u u u r.5.已知点C 在线段AB 上,且35AC AB u u u r u u u r ,则AC u u u r BC uuu r ,AB u u u rBC uuu r .题型3.向量的数乘运算1.计算:(1)3()2()a b a b r r r r (2)2(253)3(232)a b c a b c r r r r r r2.已知(1,4),(3,8)a b r r ,则132a b rr .题型4.作图法球向量的和已知向量,a b r r ,如下图,请做出向量132a b r r和322a b r r .a rb r题型5.根据图形由已知向量求未知向量1.已知在ABC 中,D 是BC 的中点,请用向量AB AC u u u r u u u r ,表示AD u u u r. 2.在平行四边形ABCD 中,已知,AC a BD b u u u r u u u r rr ,求AB AD u u u r u u u r 和.题型6.向量的坐标运算1.已知(4,5)AB u u u r,(2,3)A ,则点B 的坐标是 .2.已知(3,5)PQ u u u r,(3,7)P ,则点Q 的坐标是 .3.若物体受三个力1(1,2)F r ,2(2,3)F r ,3(1,4)F r,则合力的坐标为 .4.已知(3,4)a r,(5,2)b r ,求a b r r ,a b r r ,32a b r r .5.已知(1,2),(3,2)A B ,向量(2,32)a x x y r与AB u u u r 相等,求,x y 的值. 6.已知(2,3)AB u u u r ,(,)BC m n u u u r ,(1,4)CD u u u r ,则DA u u u r.7.已知O 是坐标原点,(2,1),(4,8)A B ,且30AB BC u u u r u u u r r ,求OC uuu r的坐标.题型7.判断两个向量能否作为一组基底1.已知12,e e u r u u r是平面内的一组基底,判断下列每组向量是否能构成一组基底: A.1212e e e e u r u u r u r u u r 和 B.1221326e e e e u r u u r u u r u r 和4 C.122133e e e e u r u u r u u r u r 和 D.221e e e u u r u u r u r 和2.已知(3,4)a r ,能与a r构成基底的是( ) A.34(,)55 B.43(,)55 C.34(,)55 D.4(1,)3题型8.结合三角函数求向量坐标1.已知O 是坐标原点,点A 在第二象限,||2OA u u u r ,150xOA o,求OA u u u r 的坐标.2.已知O 是原点,点A 在第一象限,||OA u u u r ,60xOA o,求OA u u u r 的坐标.题型9.求数量积1.已知||3,||4a b r r ,且a r 与b r 的夹角为60o,求(1)a b r r ,(2)()a a b r r r , (3)1()2a b b r r r ,(4)(2)(3)a b a b r r r r .2.已知(2,6),(8,10)a b r r ,求(1)||,||a b r r ,(2)a b r r ,(3)(2)a a b rr r ,(4)(2)(3)a b a b r r r r.题型10.求向量的夹角1.已知||8,||3a b r r,12a b r r ,求a r 与b r 的夹角.2.已知(2)a b r r,求a r 与b r 的夹角.3.已知(1,0)A ,(0,1)B ,(2,5)C ,求cos BAC . 题型11.求向量的模1.已知||3,||4a b r r ,且a r 与b r 的夹角为60o,求(1)||a b r r ,(2)|23|a b r r .2.已知(2,6),(8,10)a b r r ,求(1)||,||a b r r ,(5)||a b r r ,(6)1||2a b rr .3.已知||1||2a b r r ,,|32|3a b r r ,求|3|a b r r .题型12.求单位向量 【与a r 平行的单位向量:||ae a rr r 】1.与(12,5)a r平行的单位向量是 . 2.与1(1,)2m r平行的单位向量是 . 题型13.向量的平行与垂直1.已知(6,2)a r,(3,)b m r ,当m 为何值时,(1)//a b r r ?(2)a b r r ?2.已知(1,2)a r,(3,2)b r ,(1)k 为何值时,向量ka b r r 与3a b r r 垂直? (2)k 为何值时,向量ka b r r 与3a b r r平行?3.已知a r 是非零向量,a b a c r r r r ,且b c r r ,求证:()a b c r rr .题型14.三点共线问题1.已知(0,2)A ,(2,2)B ,(3,4)C ,求证:,,A B C 三点共线.2.设5),28,3()2AB a b BC a b CD a bu u u r rr u u u r r r u u u r r r ,求证:A B D 、、三点共线.3.已知2,56,72AB a b BC a b CD a b u u u r r r u u u r r r u u u r r r,则一定共线的三点是 .4.已知(1,3)A ,(8,1)B ,若点(21,2)C a a 在直线AB 上,求a 的值.5.已知四个点的坐标(0,0)O ,(3,4)A ,(1,2)B ,(1,1)C ,是否存在常数t ,使OA tOB OC u u u r u u u r u u u r成立?题型15.判断多边形的形状1.若3AB e u u u r r ,5CD e u u u r r ,且||||AD BC u u u r u u u r,则四边形的形状是 .2.已知(1,0)A ,(4,3)B ,(2,4)C ,(0,2)D ,证明四边形ABCD 是梯形.3.已知(2,1)A ,(6,3)B ,(0,5)C ,求证:ABC 是直角三角形.4.在平面直角坐标系内,(1,8),(4,1),(1,3)OA OB OC u u u r u u u r u u u r,求证:ABC 是等腰直角三角形.题型16.平面向量的综合应用1.已知(1,0)a r,(2,1)b r ,当k 为何值时,向量ka b r r 与3a b r r 平行?2.已知a r,且a b r r ,||2b r ,求b r 的坐标. 3.已知a b r r 与同向,(1,2)b r,则10a b r r ,求a r 的坐标.3.已知(1,2)a r ,(3,1)b r ,(5,4)c r,则c r a r b r .4.已知(5,10)a r ,(3,4)b r ,(5,0)c r,请将用向量,a b r r 表示向量c r .5.已知(,3)a m r,(2,1)b r ,(1)若a r 与b r 的夹角为钝角,求m 的范围;(2)若a r 与b r的夹角为锐角,求m 的范围.6.已知(6,2)a r,(3,)b m r ,当m 为何值时,(1)a r 与b r 的夹角为钝角?(2)a r 与br 的夹角为锐角?7.已知梯形ABCD 的顶点坐标分别为(1,2)A ,(3,4)B ,(2,1)D ,且//AB DC ,2AB CD ,求点C 的坐标.8.已知平行四边形ABCD 的三个顶点的坐标分别为(2,1)A ,(1,3)B ,(3,4)C ,求第四个顶点D 的坐标.9.一航船以5km/h 的速度向垂直于对岸方向行驶,航船实际航行方向与水流方向成30o 角,求水流速度与船的实际速度.10.已知ABC 三个顶点的坐标分别为(3,4)A ,(0,0)B ,(,0)C c ,(1)若0AB AC u u u r u u u r,求c 的值;(2)若5c ,求sin A 的值.【备用】1.已知||3,||4,||5a b a b r r r r ,求||a b r r 和向量,a b r r的夹角.2.已知x a b r r r ,2y a b u r r r ,且||||1a b r r ,a b r r ,求,x y r u r的夹角的余弦.1.已知(1,3),(2,1)a b r r ,则(32)(25)a b a b r r r r.4.已知两向量(3,4),(2,1)a b r r,求当a xb a b r r r r 与垂直时的x 的值. 5.已知两向量(1,3),(2,)a b r r,a b r r 与的夹角 为锐角,求 的范围.11 变式:若(,2),(3,5)a b r r ,a b r r 与的夹角 为钝角,求 的取值范围.选择、填空题的特殊方法:1.代入验证法例:已知向量(1,1),(1,1),(1,2)a b c r r r ,则c r ( ) A.1322a b r r B.1322a b r r C.3122a b r r D.3122a b r r 2.排除法例:已知M 是ABC 的重心,则下列向量与AB u u u r 共线的是( )A.AM MB BC u u u u r u u u r u u u rB.3AM AC u u u u r u u u rC.AB BC AC u u u r u u u r u u u rD.AM BM CM u u u u r u u u u r u u u u r。

高中平面向量知识点详细归纳总结(附带练习)

高中平面向量知识点详细归纳总结(附带练习)

向量的概念一、高考要求:理解有向线段及向量的有关概念,掌握求向量和与差的三角形法则和平行四边形法则,掌握向量加法的交换律和结合律.二、知识要点:1. 有向线段:具有方向的线段叫做有向线段,在有向线段的终点处画上箭头表示它的方向.以A 为始点,B 为终点的有向线段记作AB ,注意:始点一定要写在前面,已知AB ,线段AB 的长度叫做有向线段AB 的长(或模),AB 的长度记作AB ||.有向线段包含三个要素:始点、方向和长度.2. 向量:具有大小和方向的量叫做向量,只有大小和方向的向量叫做自由向量.在本章中说到向量,如不特别说明,指的都是自由向量.一个向量可用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.用有向线段AB 表示向量时,我们就说向量AB .另外,在印刷时常用黑体小写字母a 、b 、c 、…等表示向量;手写时可写作带箭头的小写字母a 、b 、c 、…等.与向量有关的概念有:(1) 相等向量:同向且等长的有向线段表示同一向量或相等的向量.向量a 和b 同向且等长,即a 和b 相等,记作a =b .(2) 零向量:长度等于零的向量叫做零向量,记作0.零向量的方向不确定.(3) 位置向量:任给一定点O 和向量a ,过点O 作有向线段OA a =,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量a 又常叫做点A 相对于点O 的位置向量.(4) 相反向量:与向量a 等长且方向相反的向量叫做向量a 的相反向量,记作a -.显然,()0a a +-=.(5) 单位向量:长度等于1的向量,叫做单位向量,记作e .与向量a 同方向的单位向量通常记作0a ,容易看出:0a a a =│ │. (6) 共线向量(平行向量):如果表示一些向量的有向线段所在的直线互相平行或重合,即这些向量的方向相同或相反,则称这些向量为共线向量(或平行向量).向量a 平行于向量b ,记作a ∥b .零向量与任一个向量共线(平行).三、典型例题:例:在四边形ABCD 中,如果AB DC =且AB BC =│ │ │ │ ,那么四边形ABCD 是哪种四边形? 四、归纳小结:1. 用位置向量可确定一点相对于另一点的位置,这是用向量研究几何的依据.2. 共线向量(平行向量)可能有下列情况: (1)有一个为零向量;(2)两个都为零向量;(3)方向相同,模相等(即相等向量);(4)方向相同,模不等;(5)方向相反,模相等;(6)方向相反,模不等.五、基础知识训练:(一)选择题:1. 下列命题中: (1)向量只含有大小和方向两个要素. (2)只有大小和方向而无特定的位置的向量叫自由向量. (3)同向且等长的有向线段表示同一向量或相等的向量. (4)点A 相对于点B 的位置向量是BA . 正确的个数是( )A.1个B.2个C.3个D.4个2. 设O 是正△ABC 的中心,则向量,,AO OB OC 是( )A.有相同起点的向量B.平行向量C.模相等的向量D.相等向量3. a b =的充要条件是( )A.a b =│ │ │ │ B.a b =│ │ │ │ 且a b ∥ []l C.a b ∥ D.a b =│ │ │ │ 且a 与b 同向 4. AA BB ''=是四边形ABB A ''是平行四边形的( )A.充分条件B.必要条件C.充要条件D.既非充分又非必要条件5. 依据下列条件,能判断四边形ABCD 是菱形的是( )A.AD BC =B.AD BC ∥且AB CD ∥C.AB DC =且AB AD =│ │ │ │ D.AB DC =且AD BC = 6. 下列关于零向量的说法中,错误的是( )A.零向量没有方向B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向任意7. 设与已知向量a 等长且方向相反的向量为b ,则它们的和向量a b +等于( )A.0B.0C.2aD.2b(二)填空题:8. 下列说法中: (1)AB 与BA 的长度相等 (2)长度不等且方向相反的两个向量不一定共线 (3)两个有共同起点且相等的向量,终点必相同(4)长度相等的两个向量必共线。

高中数学平面向量知识点总结

高中数学平面向量知识点总结

高中数学平面向量知识点总结一、平面向量的基本概念1. 定义:平面向量是有大小和方向的量,可以用有序实数对表示。

2. 表示法:通常用小写字母加箭头表示,如 $\vec{a}$。

3. 相等:两个向量大小相等且方向相同时,这两个向量相等。

4. 零向量:大小为零的向量,没有特定方向。

二、平面向量的运算1. 加法:- 规则:平行四边形法则或三角形法则。

- 交换律:$\vec{a} + \vec{b} = \vec{b} + \vec{a}$。

- 结合律:$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$。

2. 减法:- 规则:与加法类似,但方向相反。

- 逆向量:$\vec{a} - \vec{a} = \vec{0}$。

3. 数乘:- 定义:向量与实数相乘。

- 规则:$k\vec{a} = \vec{a}$ 的长度变为 $|k|$ 倍,方向与$k$ 的符号一致。

- 分配律:$(k + l)\vec{a} = k\vec{a} + l\vec{a}$。

- 结合律:$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$。

三、平面向量的坐标表示1. 坐标表示:$\vec{a} = (x, y)$,其中 $x$ 和 $y$ 是向量在坐标轴上的分量。

2. 几何意义:$x$ 分量表示向量在 $x$ 轴上的长度,$y$ 分量表示向量在 $y$ 轴上的长度。

3. 坐标运算:- 加法:$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$。

- 减法:$(x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2)$。

- 数乘:$k(x, y) = (kx, ky)$。

四、平面向量的模与单位向量1. 模(长度):- 定义:向量从原点到其终点的距离。

平面向量知识点和重点题型总结

平面向量知识点和重点题型总结

平面向量的概念及线性运算【2013年高考会这样考】1.考查平面向量的线性运算.2.考查平面向量的几何意义及其共线条件.【复习指导】本讲的复习,一是要重视基础知识,对平面向量的基本概念,加减运算等要熟练掌握,二是要掌握好向量的线性运算,搞清这些运算法则和实数的运算法则的区别.基础梳理1.向量的有关概念(1)向量:既有大小又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度等于0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a.(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)3.(1)定义:实数λ与向量a的积是一个向量,这种运算叫向量的数乘,记作λa,它的长度与方向规定如下:①|λa|=|λ||a|;②当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当λ=0时,λa=0.(2)运算律:设λ,μ是两个实数,则①λ(μa)=(λμ)a;②(λ+μ)a=λa+μa;③λ(a+b)=λa+λb.4.共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa.一条规律一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量. 两个防范(1)向量共线的充要条件中要注意“a ≠0”,否则λ可能不存在,也可能有无数个.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线;另外,利用向量平行证明向量所在直线平行,必须说明这两条直线不重合.双基自测1.(人教A 版教材习题改编)D 是△ABC 的边AB 上的中点,则向量CD →等于( ). A .-BC →+12BA → B .-BC →-12BA → C.BC →-12BA →D.BC →+12BA →2.判断下列四个命题:①若a ∥b ,则a =b ;②若|a |=|b |,则a =b ;③若|a |=|b |,则a ∥b ;④若a =b ,则|a |=|b|. 正确的个数是( ).A .1 B .2 C .3 D .43.若O ,E ,F 是不共线的任意三点,则以下各式中成立的是( ). A.EF →=OF →+OE → B.EF →=OF →-OE → C.EF →=-OF →+OE → D.EF →=-OF →-OE →4.(2011·四川)如图,正六边形ABCDEF 中,BA →+CD →+EF →=( ).A .0 B.BE → C.AD →D.CF →5.设a 与b 是两个不共线向量,且向量a +λb 与2a -b 共线,则λ=________.考向一 平面向量的概念【例1】►下列命题中正确的是( ). A .a 与b 共线,b 与c 共线,则a 与c 也共线B .任意两个相等的非零向量的始点与终点是一个平行四边形的四个顶点C .向量a 与b 不共线,则a 与b 都是非零向量D .有相同起点的两个非零向量不平行【训练1】 给出下列命题:①若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件;②若a =b ,b =c ,则a =c ;③a =b 的充要条件是|a |=|b |且a ∥b ;④若a 与b 均为非零向量,则|a +b |与|a |+|b |一定相等.其中正确命题的序号是________.考向二 平面向量的线性运算【例2】►如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则( ).A.AD →+BE →+CF →=0B.BD →-CF →+DF →=0C.AD →+CE →-CF →=0D.BD →-BE →-FC →=0【训练2】 在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →=( ). A.23b +13c B.53c -23b C.23b -13c D.13b +23c考向三 共线向量定理及其应用【例3】►设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ). 求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.【训练3】 (2011·兰州模拟)已知a ,b 是不共线的向量,AB →=λa +b ,AC →=a +μb (λ,μ∈R ),那么A ,B ,C 三点共线的充要条件是( ).A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=1【示例1】► (2012·泰安十校联考)定义平面向量之间的一种运算“⊙”如下:对任意的a =(m ,n ),b =(p ,q ),令a ⊙b =mq -np ,下面说法错误的是( ). A .若a 与b 共线,则a ⊙b =0 B .a ⊙b =b ⊙aC .对任意的λ∈R ,有(λa )⊙b =λ(a ⊙b )D .(a ⊙b )2+(a ·b )2=|a |2|b |2【示例2】► (2011·山东)设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3→=λA 1A 2→(λ∈R ),A 1A 4→=μA 1A 2→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C ,D 调和分割点A ,B ,则下列说法正确的是( ).A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C 、D 可能同时在线段AB 上 D .C 、D 不可能同时在线段AB 的延长线上。

平面向量知识点总结归纳

平面向量知识点总结归纳

平面向量知识点总结归纳一、向量的基本概念1. 向量的定义既有大小又有方向的量叫做向量。

例如,物理学中的力、位移、速度等都是向量。

向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

向量的大小叫做向量的模,记作a(对于向量a)。

模为0的向量叫做零向量,记作0,零向量的方向是任意的。

模为1的向量叫做单位向量。

2. 向量的表示方法几何表示:用有向线段表示向量,有向线段的起点和终点分别表示向量的起点和终点。

例如,以A为起点,B为终点的向量记作AB。

字母表示:用小写字母a,b,c,表示向量。

3. 相等向量与平行向量相等向量:长度相等且方向相同的向量叫做相等向量。

若a=b,则a=b且a与b方向相同。

例如,在平行四边形ABCD中,AB=DC。

平行向量(共线向量):方向相同或相反的非零向量叫做平行向量。

规定零向量与任意向量平行。

若a与b是平行向量,则记作ab。

例如,在梯形ABCD中,ADBC。

二、向量的运算1. 向量的加法三角形法则已知非零向量a,b,在平面内任取一点A,作AB=a,BC=b,则向量AC=a+b。

例如,若a表示向东3个单位长度的位移,b表示向北4个单位长度的位移,那么a+b表示向东北方向5个单位长度(根据勾股定理3^2+4^2 = 5)的位移。

平行四边形法则已知两个不共线向量a,b,作AB=a,AD=b,以AB,AD为邻边作平行四边形ABCD,则向量AC=a+b。

运算律:向量加法满足交换律a+b=b+a,结合律(a+b)+c=a+(b+c)。

2. 向量的减法定义:向量a与b的差ab=a+(b),其中b是b的相反向量,b与b大小相等,方向相反。

三角形法则:已知向量a,b,在平面内任取一点O,作OA=a,OB=b,则向量BA=ab。

3. 向量的数乘定义:实数与向量a的积是一个向量,记作a,它的长度a=a,它的方向当> 0时与a相同,当<0时与a相反,当= 0时,a=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量章节分析:向量是近代数学中重要和基本的概念之一,具有代数形式和几何形式的“双重身份”,能融数形于一体, 是沟通代数与几何的天然桥梁,能与中学数学内容的许多主干知识相结合,形成知识交汇点.向量是沟通代数、几何和三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中有重要应用.向量有深刻的几何背景,是解决几何问题的有力工具,向量概念引入后,许多图形的基本性质都可以转化为向量的运算体系,例如平行、垂直、夹角、距离等.对本章的学习要立足基础,强化运算,重视运用,能根据向量的概念、定理、法则、公式对向量进行运算,并能运用向量知识解决平面几何中的一些证明和计算问题.平面向量的概念、几何运算和基本定理1.向量的相关概念2.向量的线性运算3.向量的共线定理非零向量a 与向量b 共线,当且仅当存在唯一一个实数λ,使b a =λ。

延伸结论:,,A B C 三点共线//AB AC ⇔⇔当且仅当有唯一R λ∈,使AB AC =λ 4.平面向量的基本定理如果12,e e 是一个平面内两个不共线向量,那么对这平面内的任一向量a ,有且只有一对实数λ1,λ2使:1122a e e =λ+λ,其中不共线的向量12,e e 叫做表示这一平面内所有向量的一组基底. 练习:(1)已知12,e e 是平面向量的一组基底,11122122,a x e y e b x e y e =+=+, ①若a b =当且仅当12x x =且12y y =.②若0,a =则120x x ==.(2)如图,OA OB 为单位向量,||23OC =,其中,OA OB 的夹角为120,,OA OC 的夹角为30。

若OC OB OA =λ+μ,求,λμ的值。

5.一个常用结论:ABC △中, M 为边BC 的中点, 则有:2AM AB AC =+. 练习:设ABC ∆的重心为点G ,设,.AB a AC b ==试用,a b 表示AG . 典型例题分析:知识点一:基本概念 例1.1.如果12,e e 是平面α内两个不共线向量,那么下列各说法错误的有( )①12+e e λμ(,λμ∈R )可以表示平面α内的所有向量;平面α内的所有向量都可以表示成12+e e λμ(,λμ∈R )。

②对于平面α中的任一向量a 使12=+a e e λμ的λ,μ有无数多对;③若向量1112+e e λμ与2122+e e λμ共线,则有且只有一个k R ∈,21221112()k +=+e e e e λμλμ ④若实数λ,μ使12+=e e λμ0,则0λμ==. A.①② B.②③ C.③④ D.② 练习:1) 判断下列命题的真假(1)向量AB 与向量CD 为共线向量,则D C B A ,,,四点共线. (2)若=AB CD 则四边形ABCD 为平行四边形. (3)若向量a b ∥,b c 则a c .(4),a b 是两个向量,则||||||a b a b +<+当且仅当,a b 不共线时成立 知识点二:向量的线性运算 例1. 化简:(1);AB BC CA ++ (2)();AB MB BO OM +++ (3);OA OC BO CO +++ (4);AB AC BD CD -+- (5);OA OD AD -+ (6);AB AD DC -- (7).NQ QP MN MP ++-例 2.如图,四边形ABCD ,E ,F 分别为AD ,BC 的中点,求证:2AB DC EF +=.练习:(1)已知ABC △三个顶点A ,B ,C 及平面内一点P ,若PA PB PC AB ++=,则 ( ) A .P 在ABC △内部 B .P 在ABC △外部 C .P 在AB 边所在直线上 D .P 在线段BC 上 (2)设M 是平行四边形ABCD 的对角线的交点,O 为任意一点,则OA OB OC OD +++=. .2 C.3OM D.4AOM B OM OM知识点三:平面向量基本定理和共线定理例1.1)已知12,e e 为不共线向量,1232,a e e =-122,b e e =-+1274c e e =-用,a b 表示c . 2) 设1e ,2e 是两个不共线的向量,已知122AB e ke =+,1223CB e e =+,122CD e e =-若A ,B ,D 三点共线,求k 的值. 例2. 证明:平面内三点,,A B C 共线⇔存在两个均不为0的实数,m n ,使,OA mOB nOC =+且 1.m n += 练习: 证明:平面内三点,,A B C 共线⇔存在三个均不为0的实数,,l m n ,使0,lOA mOB nOC ++=且0.l m n ++=向量数量积及坐标运算一、基本知识回顾:1、已知向量,,a b 其中1122(,),(,)a x y b x y ==:向量的坐标表示,实际是向量的代数表示.在cos ,a b a b <>a b ⋅=21x x 存在唯一的实数,λa =(0b ≠)0)b ≠22y yx x 0a b ⋅=向量b+y y x x a 2a (22a a =) 向量的模aa =21x +cos ,a b <>=a b a b⋅a b ,11x yx +BC ⇔BC AB λ=1、 判断下列命题的真假1)若向量//a b ,//b c ,则//a c . 2)若,a b b c ⋅=⋅则a c = 3)()(),a b c a b c ⋅⋅=⋅⋅ 4)222()2a b a a b b ±=±⋅+ 5)a b a b =⇔= 6)00,00a a ⋅=⋅=2、已知(4,2),(,3)a b x ==.若//a b ,则=x ;若a b ⊥,则=x .3、已知),3,7(),1,4(-B A 则与AB 同向的单位向量是 ,与AB 平行的单位向量是 .4、已知点(1,5)A -和向量(2,3)a =,若3AB a =,则点B 的坐标为5、已知(5,5),(6,3)a b =-=--,(1,8)c =,若a mb nc =+,求实数.,n m6、已知(1,0),(2,1)a b ==,则|3|a b +=7)下列各组向量中,可以作为平面基底的是( ) A.12(0,0),(2,1)e e ==- B. 12(4,6),(6,9)e e == C.12(2,5),(6,4)e e =-=- D. 1213(2,3),(,)24e e =-=- 8)已知//a b ,3,4,a b ==则a 在b 方向上的投影为 二、典型例题讲解例1:1)已知3,4,a b ==a 与b 的夹角为43π,求: (1)a 在b 方向上的投影(2)(32)(2)a b a b -⋅-(3)a b +2)4、在直角ABC △中,CD 是斜边AB 上的高,则下列等式不成立的是( )A.2||AC AC AB =⋅B.2||BC BA BC =⋅C.2||AB AC CD =⋅ D.22||||AC AB BA BC CD AB ⋅⨯⋅=()()3)已知向量21,e e 夹角为o60,b a e t e b e e a e e 与若212121,72,1,2+=+===的夹角为锐角,求t 的范围。

练习:1)已知向量a ,b 满足1,2,2,a b a b ==-=则a b += 2)在ABC ∆中,已知8,7,120,AB BC ABC ==∠=求边AC 的长度 例2: 1)已知(2,3),A (4,3)B -,点P 在线段AB 的延长线上,且3||||2AP PB =,求点P 的坐标(若点P 在直线AB 上)2)在ABC ∆中,点P 在BC 上,且2=,点Q 是AC 的中点,若),3,4(=)5,1(=,则=例3:已知向量)21,sin (--=→θa m ,)cos ,21(θ=→n .(Ⅰ)当22=a ,且→→⊥n m 时,求θ2sin 的值;(Ⅱ)当0=a ,且→m ∥→n 时,求θtan 的值.解:(Ⅰ)当22=a 时,)21,sin 22(--=→θm , →→⊥n m , ∴由0=⋅→→n m , 得22cos sin =+θθ,………3分 上式两边平方得212sin 1=+θ, 因此,212sin -=θ.……………6分 (Ⅱ)当0=a 时,)1,sin (--=→θm , 由→m ∥→n 得41cos sin =θθ .即212sin =θ.………9分θθθ2tan 1tan 22sin +=,∴32tan +=θ或 32-.…………12分 例4、已知向量)2sin ,2(cos ),23sin ,23(cos x x b x x a -== . 且]2,0[π∈x1)当b a ⊥时,求x 的集合; 2)求b a+; 3)求函数4||y a b a b =⋅-+的最小值4)求函数2||y a b a b =⋅-λ+的最小值5)若()b a b a x f +-⋅=λ2的最小值是23-,求实数λ的值.练习:1)设,a b 是不共线的两非零向量,若||||a b =,且,a b 夹角为60,求t 为何值时,||a tb -的值最小.2)已知向量a =33(cos,sin ),22x x b =(cos ,sin )22x x -且x ∈[,]34ππ-. (1)求a ·b 及|a +b |;(2)若()f x = a ·b -|a +b |,求()f x 的最大值和最小值.向量与三角形平面向量的应用十分广泛.由于三角形中的有关线段可以视为向量,线线之间的位置关系、大小关系以及边角关系均可以用向量表示,这就为向量与三角形的沟通、联系、交汇提供了条件,在这类问题中,往往要涉及到向量的和差运算、数乘运算、数量积运算以及向量的共线、垂直、向量的模等性质, 因此解题思路较宽、方法灵活、综合性强.三角形之心一、 外心.三角形外接圆的圆心,简称外心. 是三角形三边中垂线的交点. (下左图)二、 重心三角形三条中线的交点,叫做三角形的重心.掌握重心到顶点的距离是它到对边中点距离的2倍.(上右图)三、垂心三角形三条高的交点,称为三角形的垂心.(下左图)四、内心三角形内切圆的圆心,简称为内心. 是三角形三内角平分线的交点.三角形内角平分线性质定理:三角形内角平分线分对边所得的两条线段和这个角的两边对应成比例.(上右图)知识点一、三角形形状与向量1、已知向量321,,OP OP OP 满足条件0321=++OP OP OP ,且1|||||321===OP OP OP ,求证321P P P ∆是正三角形.2、O 是ABC ∆所在平面上的一点,若0)2()(=-+⋅-OA OC OB OC OB , 则ABC ∆是 三角形.3、已知非零向量,AB AC 和BC 满足()0||||AB AC BC AB AC +⋅=且2||||AC BC AC BC ⋅=⋅,则ABC ∆为 .4、若O 为ABC ∆所在平面内一点,且满足,2OA OB OC OB -=-则ABC ∆的形状为 ( )A.等腰直角三角形B.直角三角形C. 等腰三角形D. 等边三角形 5、已知非零向量AB 与满足0(=⋅+BC 21=,则△ABC 为 ( )A.三边均不相等的三角形B.直角三角形C.等腰非等边三角形D.等边三角形思路分析:1.根据四个选择支的特点:本题可采用验证法来处理,不妨先验证等边三角形,刚好适合题意,则可同时排除其他三个选择支,故选D.2.||||AC AB +ABC 的内心,则由0||||(=⋅+AC AB 知,=(等腰三角形的三线合一定理);21=,所以3π=∠A ,即△ABC 为等边三角形,故选D.知识点二、三角形的“心”与向量重心在△ABC 中,AD 为BC 边上的中线,根据向量加法的平行四边形法则,可得2=+.这说明+所在的直线过BC 的中点D ,从而一定通过ABC ∆的重心.另外,G 为ABC ∆的重心的充要条件是0=++GC GB GA 或)(31OC OB OA OG ++=,(其中O 为ABC ∆所在平面内任意一点),这也是两个常用的结论.例1.已知C B A ,,是平面上不共线的三点,O 是ABC ∆的外心,动点P 满足1[(1)(1)(12))]()3OP OA OB OC R =-λ+-λ++λλ∈,则P 的轨迹一定通过ABC ∆的( )A.内心B.垂心C.外心D.重心 思路分析:取AB 边的中点M,则OM 2=+,由1[(1)(1)(12))]()3OP OA OB OC R =-λ+-λ++λλ∈可得322()3(12)OP OM OC OC OM OM MC =++λ-=++λ,所以MC MP 321λ+=)(R ∈λ,即点P 的轨迹为三角形中AB 边上的中线,故选D. 垂心在ABC ∆中,由向量的数量积公式,可得0)(=⋅+BC ,这说明CAC BAB cos ||cos ||+所在直线是BC 边上的高所在直线,从而它一定通过△ABC 的垂心.例:若动点P 满足(),0||cos ||cos AB ACOP OA AB B AC C=+λ+λ>,则点P 轨迹一定通过ABC ∆的( ) A 、外心 B 、内心 C 、垂心 D 、重心 例2.点O 是ABC ∆所在平面内的一点,满足OA OB OB OC OC OA ⋅=⋅=⋅,则点O 是ABC ∆的 ( )A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点思路分析:由OA OB OB OC ⋅=⋅,得0)(=⋅=-⋅,所以AC OB ⊥,即AC OB ⊥.同理BC OA AB OC ⊥⊥,.因此O 是ABC ∆三条高的交点,故选D. 练习:点O 是ABC ∆所在平面内的一点,满足=+22||||=+22||||22||||+,则点O 是ABC ∆的( )A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点 内心在ABC ∆中,由两单位向量相加,||||AC AB +A 的平分线所在的直线,从而一定经过ABC ∆的内心.例 3 O 是平面上定点,A 、B 、C 是平面上不共线的三个点,动点P 满足(),[0,)||||AB ACOP OA AB AC =+λ+λ∈+∞,则P 的轨迹一定通过△ABC 的( ) A.外心B.内心C.重心D.垂心思路分析:设()'||AB AB AB =为AB 上的单位向量,()'||ACAC AC =为AC 上的单位向量,则||||(AC AB +的方向为∠BAC 的角平分线的方向,又[)+∞∈,0λ, 所以(+λ与(+的方向相同,而()||||AB ACOP OA AB AC =+λ+,所以点P 在上移动,故P 的轨迹一定是通过△ABC 的内心,选B. 外心1、如图已知G 为ABC ∆内的一点,若222GA GB GC ==,则G 点为ABC ∆的 心 2、O 是ABC ∆所在平面上的一点,若动点P 满足()2cos cos OB OC AB AC OP AB BAC C+=+λ+,(0,)λ∈+∞,则动点P 的轨迹通过ABC ∆的 心.最新文件 仅供参考 已改成word 文本 。

相关文档
最新文档